
CS 341
Lecture Notes
Winter 2025

Collin Roberts

March 28, 2025

Contents

1 Lecture 01 - Introduction, review of asymptotics 8
1.1 Course Intro . 8
1.2 Slide 09 . 8
1.3 Slide 10 . 8
1.4 Slide 13 Exercise . 9
1.5 Slide 14 Exercise . 9
1.6 Slide 16 . 9
1.7 Slide 17 . 10
1.8 Slide 18 . 10
1.9 Slide 19 . 10
1.10 Slide 21 . 10
1.11 Slide 22 . 10
1.12 Slide 24 . 10
1.13 Notes and Tasks from the Lecture 11

2 Lecture 02 - Solving recurrences 12
2.1 Slide 03 . 12
2.2 Slide 07 . 13
2.3 Slide 08 . 14
2.4 Slide 10 . 14
2.5 Slide 11 . 14

1

2.6 Slide 12 . 15
2.7 Notes and Tasks from the Lecture 15

3 Lecture 03 - Divide and conquer I 16
3.1 Slide 04 . 16
3.2 Slide 06 . 16
3.3 Slide 08 . 16
3.4 Slide 09 . 18
3.5 Slide 10 . 18
3.6 Slide 11 . 18
3.7 Slide 12 . 18
3.8 Slide 13 . 19
3.9 Slide 14 . 20
3.10 Slide 16 . 20
3.11 Slide 17 . 21
3.12 Notes and Tasks from the Lecture 21

4 Lecture 04 - Divide and conquer II 22
4.1 Slide 03 . 22
4.2 Slide 05 . 22
4.3 Slide 07 . 23
4.4 Slide 08 . 23
4.5 Slide 09 . 23
4.6 Slide 12 . 23
4.7 Notes and Tasks from the Lecture 24

5 Lecture 05 - Divide and conquer III 25
5.1 Rough Plan, To Be Fleshed Out 25
5.2 Notes and Tasks from the Lecture 25

6 Lecture 06 - Graphs algorithms I - breadth first search 25
6.1 Global . 25
6.2 Slide 04 . 25
6.3 Slide 09 . 25
6.4 Slide 10 . 26
6.5 Slide 12 . 26
6.6 Slide 13 . 26
6.7 Slide 14 . 26

2

6.8 Slide 16 . 27
6.9 Slide 17 . 27
6.10 Slide 18 . 28
6.11 Slide 20 . 28
6.12 Slide 21 . 28
6.13 Notes - Éric in F24 . 29
6.14 Notes and Tasks from the Lecture 30

7 Lecture 07 - Graph algorithms II - depth-first search 30
7.1 Global . 30
7.2 Slide 03 . 30
7.3 Slide 04 . 31
7.4 Slide 05 . 31
7.5 Slide 07 . 32
7.6 Slide 09 . 33
7.7 Slide 10 . 33
7.8 Slide 12 . 34
7.9 Slide 15 . 34
7.10 Slide 16 . 34
7.11 Slide 17 . 35
7.12 Slide 18 . 35
7.13 Notes - Éric in F24 . 36
7.14 Tasks . 36
7.15 Notes and Tasks from the Lecture 36

8 Lecture 08 - Graph algorithms III - Directed graphs 37
8.1 Global . 37
8.2 Slide 02 . 37
8.3 Slide 03 . 37
8.4 Slide 04 . 37
8.5 Slide 05 . 37
8.6 Slide 06 . 38
8.7 Slide 07 . 38
8.8 Slide 08 . 38
8.9 Slide 09 . 38
8.10 Slide 10 . 39
8.11 Slide 12 . 39
8.12 Slide 15 . 39

3

8.13 Slide 18 . 40
8.14 Notes and Tasks from the Lecture 40

9 Lecture 09 - Graph algorithms IV - Dijkstra’s algorithm 40
9.1 Slide 03 . 40
9.2 Slide 04 . 41
9.3 Slide 06 . 41
9.4 Slide 07 . 41
9.5 Slide 10 . 41
9.6 Slide 11 . 41
9.7 Slide 12 . 41
9.8 Slides 13-15: Proof that Dijkstra’s Algorithm is Correct 41
9.9 Notes and Tasks from the Lecture 43

10 Lecture 10 - Graph algorithms V - Minimum Spanning Trees 43
10.1 Slide 03 . 43
10.2 Slide 04 . 43
10.3 Slide 05 . 44
10.4 Slide 06 . 44
10.5 Slide 07 . 44
10.6 Slide 08 . 45
10.7 Slide 09 . 45
10.8 Slide 10 . 45
10.9 Slide 12 . 46
10.10Slide 13 . 46
10.11Notes and Tasks from the Lecture 46

11 Lecture 11 - Greedy algorithms I 47
11.1 Slide 04 . 47
11.2 Slide 08 . 47
11.3 Slide 09 . 47
11.4 Slide 10 . 47
11.5 Slide 13 . 48
11.6 Slide 14 . 48
11.7 Slide 16 . 48
11.8 Notes and Tasks from the Lecture 48

4

12 Lecture 12 - Snow Day 49
12.1 Global . 49

13 Lecture 13 - Greedy algorithms II 49
13.1 Global . 49
13.2 Slide 06 . 49
13.3 Slide 07 . 49
13.4 Slide 08 . 50
13.5 Slide 10 (Fractional Knapsack Problem) 50
13.6 Slide 11 . 51
13.7 Slide 12 . 51
13.8 Slide 13 . 52
13.9 Slide 14 . 52
13.10Slide 15 . 53
13.11Notes and Tasks from the Lecture 53

14 Lecture 14 - Dynamic Programming I 54
14.1 Global . 54
14.2 Slide 03 . 54
14.3 Slide 10 . 54
14.4 Slide 11 . 55
14.5 Slide 13 . 55
14.6 Slide 14 . 55
14.7 Slide 15 . 55
14.8 Slide 16 . 55
14.9 Notes and Tasks from the Lecture 56

15 Lecture 15 - Dynamic Programming II 56
15.1 Global . 56
15.2 Slide 2 . 56
15.3 Slide 3 . 56
15.4 Slide 4 . 56
15.5 Slide 5 . 57
15.6 Notes and Tasks from the Lecture 57

16 Lecture 16 - Dynamic programming III 58
16.1 Global . 58
16.2 Edit Distance . 58

5

16.3 Optimal Binary Search Trees 60
16.4 Maximum Independent Sets In Trees 64
16.5 Notes and Tasks from the Lecture 65

17 Lecture 17 - Dynamic programming IV 66
17.1 Global . 66
17.2 Bellman-Ford Algorithm . 66
17.3 Floyd-Warshall Algorithm . 70

18 Lecture 18 - Polynomial Time Reductions 71
18.1 Global . 71
18.2 Slide 03 . 71
18.3 Slide 04 . 71
18.4 Slide 05 . 71
18.5 Slide 06 . 71
18.6 Slide 10 . 72

18.6.1 Proof that Clique =P Independent Set 72
18.6.2 Proof that V C =P Independent Set 73

18.7 Slide 11 . 74
18.7.1 Proof that HP =P HC 74

18.8 Slide 15 . 75
18.8.1 Proof that 3SAT ≤P IS 75

18.9 Notes - Éric Lecture 19 in F24 77

19 Lecture 19 - Reductions, P, NP, co-NP 77
19.1 Global . 77
19.2 Slide 03 . 77
19.3 Slide 04 . 78
19.4 Slide 05 . 78
19.5 Slide 08 . 78

19.5.1 Explanation for the argument that Circuit-Sat is NP -
complete . 78

19.5.2 Explanation for how the argument in the slides follows
this template . 79

19.6 Slide 09 . 79
19.6.1 Explanation for Circuit-Sat ≤P 3SAT 79

6

20 Lecture 20 - NP-completeness I 80
20.1 Global . 80
20.2 Notes - Éric Lecture 21 in F24 80

21 Lecture 21 - NP-completeness II 81
21.1 Global . 81
21.2 Slide 02 . 81
21.3 Slides 03-08 . 81

21.3.1 Explanation for 3SAT ≤P DirectedHamiltonianCycle . 81
21.4 Slides 09-10 . 83

21.4.1 Explanation for DirectedHamiltonianCycle ≤P Hamil-
tonianCycle . 83

21.5 Notes - Éric Lecture 23 in F24 84
21.6 Notes and Tasks from the Lecture 84

22 Lecture 22 - NP-completeness III 85
22.1 Global . 85
22.2 3-Dimensional Matching (Slides 03-08) 85

22.2.1 Global . 85
22.2.2 Explanation for 3SAT ≤P 3DMatching 85

22.3 Subset Sum (Slides 09-12) . 88
22.3.1 Global . 88
22.3.2 Explanation for 3DM ≤P SubsetSum 88

22.4 Notes and Tasks from the Lecture 89

23 Lecture 23 - NP-Completeness 89
23.1 Notes - Éric Lecture 23 in F24 89

24 Lecture 24 - Misc 90
24.1 Notes - Éric Lecture 24 in F24 90

25 Lecture 25 - Max flow 90
25.1 Max Flow . 90

26 Lecture 26 - Max flow = Min cut 91

27 Lecture 27 - Applications of Flows and Cuts 92

7

Global Tasks:
1. When you make your own slide deck, include sections / subsections to

make navigation easier for you, and for the students.

1 Lecture 01 - Introduction, review of asymp-

totics

1.1 Course Intro

1. ISC: Sylvie Davies.
2. Textbooks

(a) CLRS = Introduction to Algorithms by Cormen, Leierson,
Rivest, Stein

(b) KT = Algorithm Design by Kleinberg, Tardos
(c) DPV = Algorithms by Dasgupta, Papadimitriou, Vazirani

1.2 Slide 09

1. Bullet 3 is the Limit Rule, say from CS 240.

1.3 Slide 10

Examples True or False?
1. 2n−1 ∈ Θ(2n)?

True.
(a) 2n−1 ∈ O(2n): c = 1, n0 = 1 works.
(b) 2n−1 ∈ Ω(2n): c = 1

2
, n0 = 1 works.

Alternatively, just apply a Lemma from the CS 341 Background Infor-
mation.

2. (n− 1)! ∈ Θ(n!)?
False.
(a) (n− 1)! ∈ O(n!) holds: c = 1, n0 = 1 works.
(b) (n− 1)! ∈ Ω(n!) does not hold: Towards a contradiction, suppose

that constants c and n0 satisfy the definition. Choose an arbitrary

8

n such that n > n0 and n > 1
c
. Then we have

c · n!
= c · n · (n− 1)!

> c · 1
c
· (n− 1)!

= (n− 1)!,

which is a contradiction.

1.4 Slide 13 Exercise

1. Cost of the Sum Routine:
(a) The for loop executes n times.
(b) Each loop iteration requires O(1)︸︷︷︸

access A[i]

+O(1)︸︷︷︸
+

time.

(c) So we get O(n) in total.

1.5 Slide 14 Exercise

1. Cost of the Product Routine:
(a) If multiplication is a basic operation, then this is the same as the

sum routine.
(b) If multiplication is not basic, but must instead be implemented

using addition, then it will be O(n2).

1.6 Slide 16

1. The problem stated here is solved (partially - we only return the sum,
not the bounds that created it) in the following ways on the subsequent
slides. Note that the run time improves as we go. We will explain each
of these techniques, later in the course.
(a) Brute force: 17-19
(b) Divide-and-conquer: 20-22
(c) Dynamic Programming: 23-25

2. We adopt the stated Convention to keep our notation as clean as pos-
sible in what follows, and not need to handle empty cases separately.

9

1.7 Slide 17

1. Per Armin’s note, Slide 17 is not actually a solution. this is a useless
pseudocode which does nothing. They have potentially seen this in
CS240 as is. In the first module of CS240, this was used to show them
how they can find the runtime of nested loops. There exists a reference
if you look at my lecture plan.

1.8 Slide 18

1. Should all the matrix entries be negative, this algorithm will return 0.
This is correct: a sum of 0 is realized by the empty sub-array.

2. The Θ(n3) runtime is clear from the structure of the code.

1.9 Slide 19

1. The Θ(n2) runtime is clear from the structure of the improved code.

1.10 Slide 21

1. This entire slide is to handle Case 3 from the previous slide; Cases 1 and
2 are trivial. This explains why the right boundary entry are included in
MaximizeLowerHalf (and, symmetrically, why the left boundary entry
would be included in MaximizeUpperHalf).

1.11 Slide 22

1. I tried, and failed, to understand Beidl’s “bare hands” proof that the
Divide-And-Conquer version of Maximum Subarray’s worst case run
time (same as MergeSort’s worst case run time) lies in Θ(n log n).

2. Every other source, including CS 341 itself, relies on a recursion tree.
3. From now on, so shall I.

1.12 Slide 24

1. The boxed pseudo-code computes M(n).

10

1.13 Notes and Tasks from the Lecture

1. Notes
(a) Answer to the Question, is the W25 offering the same as the F24

offering: The topics will be mostly the same. The one exception is
that the topic max-flow/min-cut was included during F24 but
will be omitted during W25.

(b) Slide 12 Explain better why the ∧-rule is less strict than the ∨-
rule. It is to do with the choice of C:
i. The first version (∨) makes it more difficult to fix a C, hence

it is more strict.
ii. The second version (∧) makes it easier to fix a C, hence it is

less strict.
2. Tasks

(a) Get Piazza set up and populated for the W25 term, if it’s not
done already (touch base with Sylvie).

(b) Add a link to the unsecured website, to the LEARN site.
(c) Fix my screen timeout settings!
(d) Bring treats to class, from now on!
(e) Consistently include or exclude the Ericson textbook everywhere

(It’s mentioned in Armin’s slides, but not elsewhere, I think).
(f) Post to the course website:

i. Lecture Notes
ii. CS 341 Background Information

(g) Turn the Exercises into Clicker Questions, where possible.
(h) Start L02 with the problem stated on Slide 16, and its many so-

lutions.
(i) Announce: no tutorials on January 10; first tutorials will be on

January 17.
(j) When we start into dynamic programming later on, recall this last

example: it is a great example where, by adding some storage, and
remembering work already done, we can effectively cut down our
run-time.

11

2 Lecture 02 - Solving recurrences

2.1 Slide 03

Exercise: Prove that Tw(n) ≤ T (n) and T (n) is increasing (an easy induc-
tion).
Solution:

1. Proof that Tw(n) ≤ T (n), for all n ≥ 1:
(a) The proof is by induction on n ≥ 1.
(b) Base n = 1:

i. Tw(1) = d = T (1).
(c) Induction n > 1:

i. The induction hypothesis is that Tw(m) ≤ T (m), for all m <
n.

ii. Then

Tw(n)

≤ Tw
(⌈n

2

⌉)
+ Tw

(⌊n
2

⌋)
+ cn

≤︸︷︷︸
I.H.

T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ cn

= T (n).

2. Proof that T (n) is increasing, for all n ≥ 1:
(a) We show that, for all n ≥ 1, T (n+ 1) > T (n).
(b) The proof is by induction on n ≥ 1.
(c) Base n = 1:

i.

T (1) = d

T (2) = T (1) + T (1) + cn

= d+ d+ cn

= 2d+ cn

> T (1),

since all quantities are positive.
(d) Induction n > 1:

i. The induction hypothesis is that T (m) > T (ℓ), for all m > ℓ.

12

ii. Then

T (n)

= T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ cn

>︸︷︷︸
I.H.

T

(⌈
n− 1

2

⌉)
+ T

(⌊
n− 1

2

⌋)
+ c(n− 1)

= T (n− 1).

2.2 Slide 07

1. We do the proof for n a power of b; the result holds for n ∈ R≥0.
2. As on the following slides, T (1) = d (for some d > 0) should be part of

the definition here too.
3. We should add here that c > 0.
4. Checking that the Master Theorem implies that, for MergeSort T (n) ∈

Θ(n log n):
(a) Let

a = 2

b = 2

y = 1

x = logb a, so that

bx = a.

This gives us that
x = log2 2 = 1,

which, applying the Master Theorem, says that

T (n) ∈ Θ(n log n),

as desired.
5. The statement of the Theorem should be clarified, to say that, when

x = y, we get T (n) ∈ Θ(ny logb n) (i.e. state the base explicitly - it
depends on b - it is not always 2).

13

2.3 Slide 08

1. We should add here that y ∈ Z and j ≥ 0.
2. The final size number, namely n

bj
, equals 1, because n = bj.

3. Also the number of levels, namely logb n, equals j, because logb n =
logb(b

j) = j.

2.4 Slide 10

1. Suggested revisions for Armin: “is a geometric sequence” 7→ “involves
a geometric series”

2.5 Slide 11

Setup
1. x, y are integers.
2. a ≥ 1 and b ≥ 2 are integers, with a = bx, equivalently x = logb a.
3. The geometric series has first term a = 1 and common ratio r = a

by
=

bx

by
= bx−y.

4. n = bj, equivalently j = logb n.
5. aj = (bx)j = (bj)x = nx.
6. Simplify rj as much as possible:

rj =
(a

by

)j
=

aj

(bj)y
=

nx

ny
= nx−y.

Cases of the proof, explained more fully
1. r < 1 equivalently x < y:

(a) Per the CS 240 geometric series summary,
∑

i r
i ∈ Θ(1).

(b) This shows that T (n) ∈ Θ(ny) (since x < y, the second term
dominates the first).

2. r = 1 equivalently x = y:
(a) Per the CS 240 geometric series summary,

∑
i r

i ∈ Θ(j) =︸︷︷︸
j=logb n

Θ(logb n).

(b) This shows that T (n) ∈ Θ(ny logb n) (since x = y, the second term
dominates the first).

3. r > 1 equivalently x > y:
(a) Per the CS 240 geometric series summary,

∑
i r

i ∈ Θ(rj−1).

14

(b) By a Lemma from CS 240 recalled in the Background Information
document, this says that

∑
i r

i ∈ Θ(rj) =︸︷︷︸
above

Θ(nx−y).

(c) This shows that both terms lie in Θ(nx), so that by the sum rule,
we have T (n) ∈ Θ(nx).

2.6 Slide 12

1. Example: T (n) = 2T
(
n
2

)
+ n, T (1) = 0, n a power of 2.

(a) In the notation of the Master Theorem:

a = 2

b = 2

y = 1

x = logb a

= log2 2

= 1

x = y, equivalently

r = 1, so that

T (n) ∈ Θ(ny logb n)

= Θ(n log n).

2. CR to type up the notes on the guess-and-check approach to solving
this example.

2.7 Notes and Tasks from the Lecture

1. Notes
(a) Our course convention is (as it was in CS 240) that the base of

log is 2, unless otherwise specified.
2. Tasks

(a) Correct the suggested readings on the course website, in the second
half of the term.

15

3 Lecture 03 - Divide and conquer I

3.1 Slide 04

1. Examples: Amazon, YouTube, etc where you are a member of a group
who are all interested in some stuff.

2. We are not trying to solve the collaborative filtering problem. What
we are trying to solve is one of the many tools which might be useful
in collaborative filtering.

3. The Padlet question here is just to give them some time to think about
the problem and hopefully convinces them what we are doing has some
applications.

4. Answer to Exercise: Something like “compare the similarity of two
rankings” is a good answer.

5. Counting inversion is related to the answer. It is counting the places
in two rankings which are different.

3.2 Slide 06

1. Notation:
� cℓ: # of inversions in A

[
1, . . . , n

2

]
� cr: # of inversions in A

[
n
2
+ 1, . . . , n

]
� ct: # of transverse inversions i ≤ n

2
, j > n

2
.

2. Example: A = [1, 5, 2, 6, 3, 8, 7, 4], n = 8. Then

cℓ = 1− Swap : (2, 5)

cr = 3− Swap : (8, 7), (8, 4), (7, 4)

ct = 4− Swap : (6, 3), (6, 4), (5, 3), (5, 4)

Note, this accounts for all of the 8 inversions we listed earlier, on Slide
05.

3.3 Slide 08

1. Claim: T (n) = 2T
(
n
2

)
+ cn log n gives T (n) ∈ Θ(n log2 n).

16

Proof. Sketchy proof that T (n) ∈ O(n log2 n)

T (n) = 2T
(n
2

)
+ cn log n

= 2
[
2T
(n
4

)
+ c
(n
2

)
log
(n
2

)]
+ cn log n

= 4T
(n
4

)
+ cn log

(n
2

)
+ cn log n

· · ·

= cn

log 2 + log 4 + · · ·+ log n︸ ︷︷ ︸
logn terms


≤ cn

log n+ log n+ · · ·+ log n︸ ︷︷ ︸
logn terms


= cn log2 n.

Proof that T (n) ∈ Ω(n log2 n)
This proof follows the technique of substitution outlined in CLRS. Sup-
pose that there exists a constant d > 0 and an n0 such that, for all
n ≥ n0,

d
(n
2

)
log2

(n
2

)
≤ T

(n
2

)
.

Then

T (n) = 2T
(n
2

)
+ cn log n

≥ 2
[
d
(n
2

)
log2

(n
2

)]
+ cn log n

= dn (log n− log 2)2 + cn log n

= dn (log n− 1)2 + cn log n

= dn
(
log2 n− 2 log n+ 1

)
+ cn log n

= dn log2 n+ dn(1− 2 log n) + cn log n

≥ dn log2 n,

provided dn(1− 2 log n) + cn log n ≥ 0, which will hold provided

d ≤ c log n

2 log n− 1
.

No boundary conditions are given. We could work through the bound-
ary conditions as in CLRS, if needed.

17

3.4 Slide 09

1. Recall the notation: ct denotes the number of transverse inversions,
with i ≤ n

2
, j > n

2
.

3.5 Slide 10

1. The array A in this example is the same as in the previous example.
Hence the counts of inversions are also the same.

2. How to Compute ct:
(a) Keep a running total.
(b) Each time we insert S[i] into A, count how many new transverse

inversions have been carried out since the previous S[i]-insertion.
(c) line 5: j has gotten to big; all right-hand entries are already in-

serted. Hence the ith entry must be transversely inverted with all
of the right hand entries, n

2
of them. This gives c = c+ n

2
.

(d) line 6: j is still in bounds; the ith entry must be transversely in-
verted with the right hand entries inserted to date, j−

(
n
2
+ 1
)
of

them. This gives c = c+ j −
(
n
2
+ 1
)
.

3. We showed in Lecture 02 (Slide 07) that Mergesort has T (n) ∈ O(n log n).
The merge then contributed dn ∈ O(n) then; this part is the same here.

3.6 Slide 11

1. No divide and conquer yet. It’s coming on the next slide.
2. The first, brute force approach is in Θ(n2).

3.7 Slide 12

1. Assume that n is even.
2. F0 captures the low-order terms of F (and G0 does the same for G).
3. F1 captures the high-order terms of F (and G1 does the same for G).
4. Exercise: Want: F0G1+F1G0, using only one polynomial multiplication,

starting from F0, F1, G0, G1, F0G0, F1G1.

(F0 + F1)(G0 +G1)− F0G0 − F1G1

= F0G0 + F0G1 + F1G0 + F1G1 − F0G0 − F1G1

= F0G1 + F1G0,

18

3.8 Slide 13

1. Check the identity:

(F0 + F1x
n
2)(G0 +G1x

n
2)

= F0G0 + (F0G1 + F1G0)x
n
2 + F1G1x

n,

so that we will be done if we can confirm that the middle coefficient
equals (F0 + F1)(G0 + G1) − F0G0 − F1G1. But this is exactly the
exercise from the previous slide, no?

2. Analysis: 3 recursive calls, each in size n
2
:

(a) F0G0

(b) (F0 + F1)(G0 +G1)
(c) F1G1

3. T (n) = 3T
(
n
2

)
+ cn, analyzed using the Master Theorem:

a = 3

b = 2

y = 1

x = logb a

= log2 3

=
ln 3

ln 2
≈ 1.58

x > y, so that

r > 1, and therefore

T (n) ∈ Θ(nx)

= Θ(nlog2 3).

19

3.9 Slide 14

1. Gets close to exponent 1, as k →∞. Check:

lim
k→∞

logk(2k − 1)

= lim
k→∞

ln(2k − 1)

ln k

=︸︷︷︸
L′Hopital

lim
k→∞

2
2k−1
1
k

= lim
k→∞

2k

2k − 1
= 1.✓

2. FFT stands for Fast Fourier Transforms.

3.10 Slide 16

1. T (n), analyzed using the Master Theorem:

a = 8

b = 2

y = 2

x = logb a

= log2 8

= 3

x > y, so that

r > 1, and therefore

T (n) ∈ Θ(nx)

= Θ(n3).

20

3.11 Slide 17

1. T (n), analyzed using the Master Theorem:

a = 7

b = 2

y = 2

x = logb a

= log2 7

=
ln 7

ln 2
≈ 2.807

x > y, so that

r > 1, and therefore

T (n) ∈ Θ(nx)

= Θ(nlog2 7).

3.12 Notes and Tasks from the Lecture

1. Notes
(a) Our course standard will be to number our arrays starting from

1, not from 0. We will explicitly state if any particular example
deviates from this standard.

(b) Slide 2: If possible, remove the extraneous page down at the end
of the page. Ask Armin.

(c) Slide 18: Do the results quoted here sit on top of the approach
taught in CS 370? Ask Armin/Mark.

(d) Slide 19: Should this blank page at the end be removed? Ask
Armin/Mark.

2. Tasks
(a) Update the website:

i. Post office hours, and start holding them this week.
(b) Slides 7-8: Make it clearer where we are talking about entries, not

indices. Where appropriate, change i into A[i]. Suggest to Armin
to revise the slides accordingly.

(c) Document, for Exams:
i. Reference Sheets

21

ii. Study Guide (what you will need to memorize, and what you
won’t)

iii. Practice Problems, about topics covered by the exam but not
yet by any assignment.

4 Lecture 04 - Divide and conquer II

4.1 Slide 03

1. Brute-force: Θ(n2).
2. Goal: Θ(n log n), using a Divide-and-Conquer approach.
3. See §33.4 in CLRS:

(a) Divide: Find a vertical line which bisects the point set into L and
R, of equal sizes (see the following pictures).

(b) Conquer: Make two recursive calls, one to handle each of the sub-
sets created above. This returns δL and δR, both of which are
needed as described below.

(c) Combine: Take the minimum over the three possibilities arising
from the setup:
i. min in L
ii. min in R
iii. min is transverse

4.2 Slide 05

1. dist(P,R) and dist(Q,L) are horizontal distances. In this example,
this is where the white band comes from. δ = 4, so the white band
covers all points at dist ≤ 4 from the other side.

2. I suggest the more clear notation yP ≤ yQ < yP + δ, instead of yP ≤
y < yP + δ. We have already restricted to the one point of interest
on the left, labelled P at the previous step: it is the only point in the
white band created in the previous step.

3. One small confusing point: we were looking for transverse pairs just a
moment ago, but the constructed rectangle contains points on the left.

22

4.3 Slide 07

1. A square on the left contains at most one point from L. Reason: If
some square contained two points, then the distance separating them
would be ≤ δ

2
< δ, contradicting the definition of δ.

2. The same argument shows that the square on the right contains at most
one point from R.

4.4 Slide 08

1. The reason for O(n log n) runtime for initialization: sort the points
twice, with respect to x and y (c.f. kd-trees, in Module 8 of CS 240).

2. Finding the x-median is easy, because we have already sorted the points
by x-co-ordinate, when we initialized.

3. Run time: Recursive calls: all to justify the Θ(n) term in the recursive
formula.

4.5 Slide 09

1. We should standardize our notation here. In Lecture 03, our arrays
were indexed 1 . . . n. Here our arrays are indexed 0 . . . n− 1.

2. I also suggest that we create a new line for the heading “Known Re-
sults”. Talk to Armin.

3. Reason why a randomized algorithm has expected run time in Θ(n):
Refer to CS 240, Module 03, Section on Randomized Algorithms.

4. Assumption: All the A[i]s are distinct.

4.6 Slide 12

1. Explanation for 3n
10
:

(a) 1
2
of the mis are > p.

(b) There are n
5
mis.

(c) So the number of mis that are > p is
(
1
2

) (
n
5

)
= n

10
.

(d) Each mi is the median of a set of size 5; hence there are 3 entries
in that set of size 5 which are ≥ mi.

(e) Each of these 3 entries is ≥ mi > p, by transitivity.
(f) Hence the total number of entries which are > p is 3

(
n
10

)
= 3n

10
.

23

2. Why “same thing for n− i− 1” is correct: swap less / greater through-
out: the analysis still works the same way.

3. If time permits, you can (make sure you tell the students this is op-
tional, since it’s not part of the W25 slide deck) Slide 13 from Éric’s
slide deck.

4. This (almost) completes our section on divide-and-conquer.
5. We will actually finish it at the end of Lecture 05, using the remaining

time for additional examples and techniques.

4.7 Notes and Tasks from the Lecture

1. Notes
(a) Slide 04

i. Explain that the point on the vertical boundary is another
choice for P , to be handled at a different time.

(b) Slide 05
i. Label the RH point as Q? Ask Armin.
ii. Why is it enough to

A. draw the rectangle with P at its bottom, i.e.
B. only consider points with yP ≤ y ≤ yP + δ?

(c) Slide 07
i. Explain why the maximum distance between two points in

one of the small squares is < δ: The diagonal distance for a

square with side length δ
2
equals

(√
2
2

)
δ < δ.

(d) Slide 08
i. Explain where the recursion stops: for any set containing ≤ 2

points, no recursive calls are needed - just handle transverse
pairs.

(e) Slide 11
i. Why 5? So far, it appears arbitrary. The analysis happens to

work out.
(f) Slide 12

i. Note: In this example, we do not actually divide: We
just create one smaller instance to process at each level of
recursion!

2. Tasks
(a) Run a poll (on Piazza?) to discover whether there is any appetite

24

for virtual office hours.

5 Lecture 05 - Divide and conquer III

5.1 Rough Plan, To Be Fleshed Out

1. Method of Substitution, from CLRS.
(a) Rigourous proof that T (n) = 2T

(
n
2

)
+ dn log n gives T (n) ∈

Θ(n log2 n).
2. Method of Change of Variables, from CLRS.
3. Correctness Proof(s), skipped earlier, from CLRS.

5.2 Notes and Tasks from the Lecture

1. Notes
(a) Question: Is there any improved version of theMaster Theorem,

which can handle recursions like T (n) = 2T
(
n
2

)
+ dn log n ?

2. Tasks
(a) Post the clicker questions to the course website.

6 Lecture 06 - Graphs algorithms I - breadth

first search

6.1 Global

1. Refer to §20.2 in CLRS.

6.2 Slide 04

1. Both representations of the provided graph are worked out in CLRS.

6.3 Slide 09

1. s is a chosen source vertex.
2. Note that we are using the adjacency list representation of the graph

here (as stated in the pseudocode).

25

6.4 Slide 10

1. Explanation of O(n+m) run time for BFS, from CLRS
(a) Each vertex is enqueued at most once, and hence dequeued at

most once.
(b) The operations of enqueuing and dequeuing take O(1) time, and

so the total time devoted to queue operations is O(n).
(c) Because the procedure scans the adjacency list of each vertex only

when the vertex is dequeued, it scans each adjacency list at most
once.

(d) Since the sum of the lengths of all n adjacency lists is Θ(m), the
total time spent in scanning adjacency lists is O(n+m).

(e) The overhead for initialization is O(n), and thus the total running
time of the BFS procedure is O(n+m).

(f) Thus, breadth-first search runs in time linear in the size of the
adjacency-list representation of G.

2. One useful further comment from Armin: O(nm) would mean that we
are looking at all edges for each dequeued node, which is not happening
here.

6.5 Slide 12

1. The proof is by induction on i.
2. “by assumption” 7→ “by the induction hypothesis”
3. Reason why “{vj, vi} is in E”: From the algorithm, we discovered vi as

a neighbour of vj.

6.6 Slide 13

1. The proof is by induction on i.
2. We should keep our induction approach similar across these proofs. In

the previous proof, we used strong induction for i > 0. In this proof
we use weak induction to get from i to i+ 1.

6.7 Slide 14

1. Exercise:

26

(a) The contrapositive is that m < n − 1 implies that G is not con-
nected.

(b) Claim: With m ≥ 1 edges, at most m + 1 vertices can be con-
nected.

(c) This can be proved by a straightforward induction on m ≥ 1.
(d) The claim clearly implies the above contrapositive.

6.8 Slide 16

1. The algorithm set s to be its own parent. This is why we need to
exclude the edge from s back to itself in the setup here.

2. Explanation for why T remains a tree when we set parent[w]← v
(a) The new graph is connected, because the old graph was.
(b) We add a vertex, which has only one edge incident with it. There

is no possibility of creating a cycle by doing this.
3. For a rigourous proof of Sub-Claim 1, see Lemma 20.3 in CLRS, 4th

Edition (Equivalently, Lemma 22.3 in CLRS, 2nd Edition).

6.9 Slide 17

1. Consider these two examples, corresponding with the two cases of the
proof that follows:
(a)

s

_

u

_

v

level[u] = 1

level[v] = 2

u is dequeued before v.

27

(b)

s

_

v

_

u

level[u] = 2

level[v] = 1

v is dequeued before u.
2. Improved Proof:

(a) If we dequeue v before u, then level[v] ≤ level[u]. which implies
level[v] ≤ level[u] + 1.

(b) Otherwise we dequeue u before v. Then the parent of v is either
u, or was dequeued before u.
i. If the parent of v is u, then level[v] = level[u] + 1. This

implies level[v] ≤ level[u] + 1.
Otherwise the parent of v was dequeued before u. This implies
that level[v.parent] ≤ level[u]. Also, level[v] = level[v.parent] +
1. Putting it all together gives level[v] = level[v.parent] + 1 ≤
level[u] + 1, as required.

6.10 Slide 18

1. The induction is on i.

6.11 Slide 20

1. We can swap W1 and W2, as needed.

6.12 Slide 21

1. Use an integer to keep track of the “colours” that identify each com-
ponent.

28

2. Start BFS at a vertex v.
3. When it finishes, all vertices that are reachable from v are colored (i.e.,

labeled with a number).
4. Loop through all vertices which are still unlabeled and call BFS on

those unlabeled vertices to find other components.

6.13 Notes - Éric in F24

1. To start, no edge can connect to itself, so every edge is defined by a
pair of distinct nodes.

2. Convince yourself that, given a graph, the m mentioned in the defini-
tions is constant.

3. Good Student Question: Given a tree, does it matter which node
we choose to be the root?
A: No! Parent-child relationships will change, but no properties that
we will need will change, if we make a different choice of root!

4. Convince yourself that Éric’s statement that induction and contradic-
tion are really the same thing (to prove POMI is correct, we argue by
contradiction), is actually correct!

5. Correctness 1 needs strong induction; Correctness 2 needs only simple
induction.

6. To test whether there is a walk from v to w, run BFS from v, then test
whether visited(w) = true.

7. To test whether a graph is connected, run BFS from anywhere, then
test that m = n− 1.

8. A given vertex comes out of the queue at most once (it can only go
into the queue once; it might never come out).

9. dv denotes the degree of vertex v (i.e. the number of edges emanating
from it).

10. Keeping track of parents and levels: Now, to test whether a node
was visited, we check whether its parent is not NIL.

11. Graph Convention: The distance between two nodes which are not
connected, is infinite.

12. Shortest paths from the BFS tree:
(a) Let v0 → v1 → · · · → vi−1 → vi → · · · → v → vk be a shortest

path s→ v.
(b) level(v) ≤ dist(s, v) = k.
(c) For all i, level(i) ≤ i.

29

(d) The level of the parent of vi is either vi−1 or a node that came
before vi−1.

(e) level(parent(vi)) ≤ level(vi−1)

6.14 Notes and Tasks from the Lecture

1. Notes
(a) Q: In the adjacency list example, does it matter that the linked

lists are sorted?
A: No. I just ordered them in the example to be systematic, and
make sure that I didn’t miss anything.

(b) Q: Does Sub-Claim 1 imply that the constructed graph has no
cycles?
A: Collin to answer, ASAP.

(c) All the content of Sub-Claims 1 and 2 happens within the context
of the BFS Tree.

(d) Where to Start L07: L05, Slide 18 (the 2-part claim about the
BFS tree, for a graph G).

2. Tasks
(a) Better explain the statement and proof of Sub-Claim 2: level[v] ≤

level[u] + 1.

7 Lecture 07 - Graph algorithms II - depth-

first search

7.1 Global

1. Refer to §20.3 in CLRS.

7.2 Slide 03

Example: Perform depth-first-search on the graph

30

s

> �
u �

�

w

v

Solution:
1. Start from s.
2. Visit s’s first child, namely u.
3. Visit u’s first child, namely v.
4. We cannot go any deeper: v has no children. We must now back up to

u.
5. Visit u’s next child, namely w.
6. We cannot go any deeper: w has no children. We must now back up

to u.
7. u has no more children. We must now back up to v.
8. v has no more children. We are now done.

7.3 Slide 04

1. This first version of the algorithm simply records which nodes have
been visited.

2. As is pointed out in the final bullet, we could easily enhance this to
add a parent array, as in BFS.

7.4 Slide 05

1. The proof is by induction on i ≥ 0.
2. Improved Induction Step (i > 0):

(a) Induction Hypothesis: The result is true for some i < k, i.e. we
visit vi during explore(v).

(b) We will show that the result is then true for i+ 1.
(c) By our assumption, explore(v) is not yet finished.
(d) Because there is a path v = v0, . . . , vi, vi+1, . . . , vk = w, therefore

vi+1 is a neighbour of vi.

31

(e) 2 cases for when we reach vi+1 at step 3 of explore:
i. We have already visited vi+1: the desired result holds.
ii. We have not already visited vi+1: we visit it now; again the

desired result holds.

7.5 Slide 07

1. Explanation for Why Run Time is in Θ(n+m) See pp 566-567 of CLRS!
(a) The loop on line 2 of DFS takes Θ(n) time, exclusive of the time

to execute the calls to explore.
(b) As we did for breadth-first search, we use aggregate analysis.
(c) The procedure explore is called exactly once for each vertex v ∈ V ,

since the vertex u on which explore is invoked must not be visited
yet, and the first thing explore does is set vertex u to visited.

(d) During an execution of explore, the loop on line 2 executes |Adj(v)|
times.

(e) Since
∑

v∈V |Adj(v)| ∈ Θ(m) and explore is called once per vertex,
the Depth-first search total cost of executing explore is Θ(n+m).

(f) The running time of DFS is therefore in Θ(n+m).
2. Example to show DFS need not find the shortest path: Consider the ex-

ample that started the lecture:

s

> �
u �

�

w

v

(a) Building a tree from this graph starting from s and using DFS

32

yields:

s

_

u

> �
v w

(b) In the original graph, dist(s, w) = 1.
(c) But, in the constructed tree, these nodes are at distance of 2 from

each other.

7.6 Slide 09

1. Improved Proof:
(a) Let {v, w} be any edge in G.
(b) W.L.O.G. Suppose we visit v first (If not, just swap).
(c) Since we visit v before w, therefore at the time we visit v, {v, w}

is an unvisited path of G.
(d) Therefore, by the White Path Lemma, w will be visited during

explore(v).
(e) Hence there is a path v ; w.
(f) Hence v is an ancestor of w.

7.7 Slide 10

1. Explanation for Observation: CLRS Theorem 20.10.
(a) Let {u, v} be an arbitrary edge of G, and suppose without loss of

generality that u is visited before v. Then, during explore(u), the
search must discover and finish v before it finishes u, since v is on
u’s adjacency list.
i. If the first time that the search explores edge {u, v}, it is in

the direction from u to v, then v is undiscovered until that
time, for otherwise the search would have explored this edge
already in the direction from v to u. Thus, {u, v} becomes a
tree edge.

33

ii. If the search explores {u, v} first in the direction from v to u,
then {u, v} is a back edge, since there must already be a path
of tree edges from u to v (by assumption, u was visited before
v).

7.8 Slide 12

1. Explanation:
(a) First bullet of Observation:

i. first (red) case: the intervals are distinct
ii. second (blue) case: the interval for v is contained in the in-

terval for u
(b) If finish[u] < start[v], then there is nothing to prove.
(c) Otherwise, it must be that start[v] < finish[u]. In this case,

observing that we pop v before we pop u implies that finish[v] <
finish[u].

7.9 Slide 15

1. The first bullet is a proof of the contrapositive of “if s is a cut vertex,
then s has > 1 child”.

2. The second bullet is a proof of “if s has > 1 child, then s is a cut
vertex”.

7.10 Slide 16

1. The black edges are tree edges.
2. The green edges are back edges.
3. The levels are determined when the DFS tree is created, and are not

changed after that.
4. The descendants are determined by the DFS tree structure.
5. Why a(v) = 1: Level 1 is reachable via an edge, from v.
6. Why m(v) = 0: The bottom-left node is a descendant of v; its a(·)

equals 0.
7. The test on slide 17 correctly identifies v as a cut vertex: its right child

has m(·) = 2 ≥ level[v].

34

7.11 Slide 17

1. Improved Proof
(a) Take a child w of v.
(b) Let Tw be the subtree rooted at w.
(c) Let also Tv be the subtree rooted at v.
(d) We have these cases:

i. For all children w of v, m(w) < level[v]
A. Then there is an edge from Tw to a vertex above v.
B. Therefore after removing v, Tw remains connected to the

root.
C. Hence v is not a cut vertex.
D. We have proved “If v does not have a child w withm(w) ≥

level[v], then v is not a cut vertex.” This is contrapositive
of “If v is a cut vertex, then v has a child w with m(w) ≥
level[v]”.

ii. v has a child with m(w) ≥ level[v]
A. I claim that all edges originating from Tw end in Tv (so

that v is a cut vertex). Proof: Consider any edge origi-
nating from x ∈ Tw. Then since m(w) ≥ level[v], it fol-
lows that this edge from x ends at a level at least level[v].
By the Key Property, this edge connects x to one of its
ancestors or descendants. This proves the claim.

7.12 Slide 18

1. Whym(v) = min{a(v),m(w1), . . . ,m(wk))}: The minimum level reach-
able from v is either reachable directly from v, or reachable from a
descendant of v.

2. How to compute all m(w1), . . . ,m(wk) in O(m):
(a) Use recursion (with memoization) to control which node we are

at in the tree.
(b) Update a globally available array ofm values, for the current node.
(c) The base case is a leaf, obviously. Since a leaf has no children, its

m(·) simply equals its a(·) value.
(d) Do the above min-check for all internal nodes.
(e) Compute a(·) as usual for the node (using its adjacency list).

35

7.13 Notes - Éric in F24

1. Connected components are the equivalence classes under the equiva-
lence relation: a ∼ b if and only if there exists a path from a to b.

2. DFS is BFS, with the queue replaced by a stack.
3. DFS is much more natural to define, using recursion.
4. CLRS colour scheme:

(a) white - not started visiting yet
(b) grey - visiting in process (on the stack)
(c) black - visiting is completed

7.14 Tasks

1. Look up the odd-cycle lemma (I think), from MATH 239?

7.15 Notes and Tasks from the Lecture

1. Notes
(a) Q: Is the worst-case run-time for solving a maze the same for BFS

as for DFS?
A: Intuitively, I think so. I will confirm ASAP.

(b) Slide 09
i. Up to re-labelling of the first vertex visited, this is correctly

stated in the context of G (and not in the constructed DFS
tree).

ii. The proof (I think) ignores the case where {v, w} was already
visited when constructing the tree. Or does it? Check it
again; explain it better.

2. Tasks
(a) Before the mid-term and final exams, suggest some CLRS exer-

cises, useful for preparation.
(b) Produce a better graph example that exercises both inductive

cases of the proof of the White Path Lemma, at different times.
(c) Start L08 at Cut Vertices.

36

8 Lecture 08 - Graph algorithms III - Di-

rected graphs

8.1 Global

1. Refer to §20.4 and §20.5 in CLRS.
2. For an example of DFS carried out on a directed graph, see CLRS,

Figure 20.4

8.2 Slide 02

1. The left-hand example at the bottom of the slide is cyclic.
2. The right-hand example at the bottom of the slide is acyclic (all edges

pass from left to right).

8.3 Slide 03

1. The adjacency lists now depend on the directions of the edges.

8.4 Slide 04

1. The last bullet refers to edges in G, not in the DFS tree of G.
2. There can exist edges in G connecting the trees Ti.
3. We will call these cross edges, starting on the next slide.

8.5 Slide 05

1. The left-hand subgraph is constructed first.
2. The right-hand subgraph is constructed second.
3. This is why the cross edge goes from right to left.
4. Why no cycle can contain two cross edges:

(a) A cross edge can be found only after one subtree (the LH one in
this example) is finished, then we find an edge going back to the
finished tree later on.

(b) The second cross edge which would form a cycle (going L-¿R in
this example) would instead have become a tree edge.

37

8.6 Slide 06

1. See Armin’s hand-written notes for brief explanations of the 4 cases.
Type these up when time permits.

8.7 Slide 07

1. Reason Why Acyclicity is in O(n+m): Because DFS is, and because
the start / end times we need to record in order to detect back edges
(Slide 06) can be found in constant time while constructing the DFS
tree.

8.8 Slide 08

1. A topological order is useful to find an order of doing tasks. E.g.
a DAG might be used to model dependency relations. E.g. we can
model course pre-requisites using a DAG. Then to find an order of
taking courses, we find a topological ordering on this graph.

2. The example on the slide is from a recipe.
3. No such order is possible if G contains a cycle. item E.g. no

topological ordering is possible on

u

��

w

>>

voo

4. A topological order would require u < v < w < u. By the transitivity
of <, this is impossible.

5. The prototype for an ordering, <, is the usual < on R: any two non-
equal elements can be compared.

8.9 Slide 09

1. We want to use DFS to find a topological ordering.
2. We can simply think of start and finish times.

38

3. Consider a simple DAG:

v

��

w

4. Starting DFS on the bottom vertex gives:

v

��

[3,4]

w [1,2]

5. Starting DFS on the top vertex gives:

v

��

[1,4]

w [2,3]

8.10 Slide 10

1. This Proposition affords us a linear time algorithm for finding a topo-
logical order, using DFS.

8.11 Slide 12

1. Reason Why Strong Connectivity is in O(n+m): Because DFS is.

8.12 Slide 15

1. Explanation for how to efficiently get the vertices in reverse order
of finishing from step #1, as input for step #2: Create an array reversefinish,
of size n. Fill this array up, from the end to the beginning, as we finish
processing vertices: first finished is last in the array; last finished is
first in the array. When we start on step #2, process the vertices in
the order captured in forward order by the reversefinish array.

39

8.13 Slide 18

1. I dislike the induction setup here. t is the thing about which we are
making our argument; therefore it would be better not to also use it
as an ingredient in the setup of the induction case. Also, we should
explain the base case, trivial as it is: t = s.

2. Explanation for the bullet stating “if (2), with our
induction assumption, we get start[u] < start[t]”:
(a) The assumption of case (2) gives start[u] < finish[u] < start[s] <

finish[s].
(b) Above, the induction assumption gives start[s] ≤ start[t] < finish[t] ≤

finish[s].
(c) Therefore we have the chain of inequalities start[u] < finish[u] <

start[s] ≤ start[t], in other words start[u] < start[t], as claimed.

8.14 Notes and Tasks from the Lecture

1. Notes
(a) Q: What (if anything) is the analog of cut vertices in the directed

case?
A: We are not very interested in this, actually. We are only in-
terested in the definition of weak connectivity versus strong con-
nectivity.

(b) Slide 12: Does the choice of s matter? I am fairly certain that it
doesn’t - If one vertex works, then any vertex works. Check it!

2. Tasks
(a) Start L09 at Armin’s L07 slide deck, Slide 10, the proof that <

constitutes a topological order.

9 Lecture 09 - Graph algorithms IV - Dijk-

stra’s algorithm

9.1 Slide 03

1. This, and all subsequent questions, refer to the weights. All shortest
paths are in terms of the weights.

40

9.2 Slide 04

1. Make the question into a Clicker question; the correct answer is: true.

9.3 Slide 06

1. For all vertices v, . . .
2. The estimate d[v] will become the actual value d[v] by the end of the

algorithm.
3. Q for Armin: Can we make all the letters lower case (here and on

the next slide), for consistency?

9.4 Slide 07

1. CLRS calls the process of updating the edges emanating from u relax-
ation.

2. Collin to add the CLRS notion of “relaxing” of a vertex.

9.5 Slide 10

1. Extract−Min(Q) removes u from Q, which makes the while loop work
correctly.

9.6 Slide 11

1. Think of Q as a min-priority queue, replacing the ordinaty queue from
BFS.

2. Line 8, array imp: explanation for why is it O(|V |2): We need to extract
n times, each time searching an array of size n−i for the smallest degree
element.

9.7 Slide 12

1. First bullet: when u is added to C.

9.8 Slides 13-15: Proof that Dijkstra’s Algorithm is
Correct

1. Convergence Property (CLRS Lemma 22.14): Assuming that

41

s ; u→ v is a shortest path in G for some u, v ∈ V , and that d[u] =
δ(s, u) at any time prior to relaxing edge (u, v). Then d[v] = δ(s, v) at
all times afterward.

2. The proof is based on Theorem 22.6 in CLRS: When Dijkstra’s Algo-
rithm terminates, we have d[u] = δ(s, u), for all vertices v ∈ V .

3. We will show that at the start of each iteration of the while loop of
lines 7-13, we have d[v] = δ(s, v) for all v ∈ C. This suffices, because
the algorithm terminates when C = V , so that then, d[v] = δ(s, v) for
all v ∈ V .

4. The proof is by induction on the number of iterations of the while loop,
which equals |C| at the start of each iteration. There are two bases:
(a) for |C| = 0, so that C = ∅ and the claim is trivially true, and
(b) for |C| = 1, so that C = {s} and d[s] = 0 = δ(s, s).

5. For the inductive step, the inductive hypothesis is that d[v] = δ(s, v)
for all v ∈ C. The algorithm extracts vertex u from V \ C.

6. Because the algorithm adds u into C, we need to show that d[u] =
δ(s, u) at that time.

7. If there is no path from s to u, then d[s] =∞ = δ(s, s).
8. If there is a path s ; u, then, (as CLRS Figure 22.7 shows), let y be

the first vertex on a shortest path from s to u that is not in C, and let
x ∈ C be the predecessor of y on that shortest path. (We could have
y = u or x = s or both.)

9. Because y appears no later than u on the shortest path and all edge
weights are nonnegative, we have δ(s, y) ≤ δ(s, u).

10. Because the call of EXTRACT-MIN in line 8 returned u as having the
minimum d value in V \ C, we also have d[u] ≤ d[y], and the upper-
bound property gives δ(s, u) ≤ d[u].

11. Since x ∈ C, the inductive hypothesis implies that d[x] = δ(s, x).
12. During the iteration of the while loop that added x into C, the edge

(x, y) was relaxed.
13. By the convergence property, d[y] received the value of δ(s, y) at that

time.
14. Thus, we have δ(s, y) ≤ δ(s, u) ≤ d[u] ≤ d[y] and d[y] = δ(s, y), so that

δ(s, y) = δ(s, u) = d[u] = d[y].
15. Hence, d[u] = δ(s, u), and by the upper-bound property, this value

never changes again.

42

9.9 Notes and Tasks from the Lecture

1. Notes
(a) At the start of the Lecture 09 Slide deck, point out that we are

now back to the undirected case.
(b) L09, Slide 04: Jump to the end of the slide deck for run-time

analysis (it won’t all make sense yet, though).
(c) L09, Slide 05: The motivation to modify, is to prove the correct-

ness of Kruskal’s Algorithm.
(d) Q for Armin: Does weakly connected mean that there exists

a source vertex, s, from which we can reach any other vertex, but
not necessarily navigate back to s? Does this definition go by
some other similar name?

(e) A strongly connected graph will always contain a cycle, if it con-
tains enough vertices.

2. Tasks
(a) Make slides for the proof of the correctness of Dijkstra’s Algo-

rithm.
(b) Where to Start L10: L09 deck, Slide 11 (analysis of Dijkstra’s

Algorithm)
(c) Modify the lecture notes to change r 7→ c, to match Slide 05

(inequalities).
(d) Announce mid-term exam coverage, per the February 5 instructor

meeting.

10 Lecture 10 - Graph algorithms V - Mini-

mum Spanning Trees

10.1 Slide 03

1. At each step, select the minimum weight edge which does not create a
cycle.

10.2 Slide 04

1. Kruskal’s algorithm is another greedy algorithm (as described above).

43

10.3 Slide 05

1. # con. comp. means the number of connected components.
2. explanation for why #vertices−#con.comp. ≤ #edges:

(a) As usual, suppose that our graph has n vertices and m edges.
(b) Suppose that our graph has r ≥ 1 connected components.
(c) Let the ith connected component have ni vertices and mi edges.
(d) Hence n =

∑r
i=1 ni and m =

∑r
i=1 mi edges.

(e) Because the ith connected component is connected, thereforemi ≥
ni − 1, for all 1 ≤ i ≤ r.

(f) Then we compute

#vertices−#con.comp.

= n− r

=

(
r∑

i=1

ni

)
− r

=
r∑

i=1

(ni − 1)

≤
r∑

i=1

mi

= m

= #edges,

as claimed.

10.4 Slide 06

1. We never demand that all weights are distinct. Therefore here we need
to replace some < with ≤, so that we will actually cover all possible
cases for where w(e) can fall within w(e1), . . . , w(er]).

10.5 Slide 07

1. I suggest to change the notation here to replace T by B throughout,
for better symmetry with the A notation already in use.

2. Because e is not in A, we know that (V,A+ e) must contain a cycle.

44

3. Because T is a spanning tree, therefore removing e from T splits T into
two connected components, T1, T2. (Include Armin’s diagram showing
this situation here, somehow.)

4. Explanation for why e′ is in A: e′ is some edge in the constructed cycle,
in A+ e. By construction e′ cannot equal e. Therefore e′ is one of the
other edges of the cycle, all of which are in A.

5. Explanation for why e′ is not in T : Recall that T1, T2 were both con-
nected components. e ∈ T goes from T1 to T2. e

′ goes from T2 back to
T1. All of this shows that if e

′ is in T , then T contains a cycle (namely
the cycle found above). Becuase T is a (spanning) tree, therefore this
cannot happen.

10.6 Slide 08

1. All other edges in A have weights ≤ w(e).
2. Meaning of “keep going”: After finitely many steps, we will turn T into

A. Since ≤ holds at each step, we get what we want by the end.

10.7 Slide 09

1. CLRS has a section (19.1) on the Disjoint-Set data structure.
(a) The operations on this data structure which we need here are

Union, Find.
2. We do NOT cover this data structure in CS 240. We should!

10.8 Slide 10

1. This slide treats Disjoint-Set as an ADT (i.e. no implementation
details yet).

2. On line 5,
(a) ek.1 is the first vertex defining the edge, and ek.2 is the second

vertex.
(b) The if statement is meant to determine whether the selected edge

connects two disjoint sets together.
3. U.Union replaces two distinct sets by their union.

45

10.9 Slide 12

1. This slide starts to discuss the data structure.
2. Find is constant time: O(1). This uses the array X from Slide 11.

With this X, it is clear that we can carry out Find in constant time.
3. Union takes more time: traverse the first list before we know where to

append the second: worst case O(n).
4. Kruskal

(a) Sort once O(m logm) (need a general sort because we don’t yet
have additional information about how our nodes are organized)

(b) Each find is constant; 2m vertices in total: O(m).
5. Reason for this modified approach: efficiency!
6. Colours indicate disjoint sets; when we merge into a set, we make the

colours the same.
7. Motivation for Slide 13: beat the n2 that appeared at the bottom of

Slide 12: make it n log n instead, if possible.

10.10 Slide 13

1. Maintain additional information to make the algorithm more efficient,
as described on the slide:
(a) size of each set
(b) pointer to the tail of each list

2. Total cost of union per vertex: O(log n), as near the bottom of Slide
13.

3. Therefore the total cost of all unions: O(n log n), as at the bottom of
Slide 13.

10.11 Notes and Tasks from the Lecture

1. Notes
(a) Where to Start L11: You found it on the fly.

2. Tasks
(a) Expand the Background Information Document, to include more

details that would otherwise need to be looked up in the CS 240
course materials.

46

11 Lecture 11 - Greedy algorithms I

11.1 Slide 04

1. This is an example of a Greedy Algorithm, that we have already seen
in CS 240.

11.2 Slide 08

1. Explanation for why this algorithm lies in O(n log n):
(a) Sorting a list of size n (e.g. using MergeSort) is in O(n log n).
(b) The for-loop is clearly in O(n). Because of the pre-sorting, to

check for an overlap, it suffices to compare the candidate’s start
time against the last finish time included. This can be done in
constant time.

(c) So by the max-rule, we get O(n log n) +O(n) = O(n log n).

11.3 Slide 09

1. Since O is assumed to be optimal, therefore m ≥ k.
2. Hence we need to rule out m > k, to establish m = k.
3. See Slide 11 for the confirmation of the above fact: Towards a contra-

diction, we assume that |S| < |O|. Because |S| = k and |O| = m, this
is the same as assuming that k < m.

11.4 Slide 10

1. The notation here is inconsistent with earlier. But there is no way to
avoid this, given that we are using is for S, and js for O.

2. The induction is on r.
3. Why The Base Case (r = 1) Holds: Want: f(i1) ≤ f(j1), where i1 is

the first interval in the constructed S, and j1 is the first interval in the
optimal O. Because of the sorting carried out during the construction
of S, f(i1) is guaranteed to the the earliest possible finish time for any
provided interval.

47

11.5 Slide 13

1. Time permitting, include the failed attempts from Éric’s slides.
2. If you can, change . . . to · · · .

11.6 Slide 14

1. Explanation for sℓ is a time contained in k intervals: We just argued that
sℓ is contained in all of the intervals [si1 , fi1], . . . , [sik−1

, fik−1
] (note,

there are k − 1 of them). By construction, sℓ is also contained in
[sℓ, fℓ].

11.7 Slide 16

Detailed Computation for T (L′)− T (L):

T (L′)− T (L)

= nt(e1) + (n− 1)t(e2) + · · ·+ (n− i+ 1)t(ei+1) + (n− i)t(ei) + · · ·+ 2t(en−1) + t(en)

− [nt(e1) + (n− 1)t(e2) + · · ·+ (n− i+ 1)t(ei) + (n− i)t(ei+1) + · · ·+ 2t(en−1) + t(en)]

= t(ei+1)− t(ei)

< 0,

because t(ei+1) < t(ei).

11.8 Notes and Tasks from the Lecture

1. Notes
(a) Stuff.

2. Tasks
(a) Indicate to which slide deck you are referring when you mention

slide numbers.
(b) Where to Start L12: L11 deck, Slide 10, Proof of the Lemma.

48

12 Lecture 12 - Snow Day

12.1 Global

The university campus was closed on Thursday, February 13, when we were
supposed to deliver Lecture 12.

13 Lecture 13 - Greedy algorithms II

13.1 Global

1. The slide deck for this lecture is Éric’s Lecture 06 deck, from F24.
2. If Collin can obtain the source for this deck, then he will recompile it

to match the current W25 offering, and correct typos.

13.2 Slide 06

1. Attempt #2
(a)

ℓ(1) = 0

ℓ(2) = 5

The smaller slack is first; this choice is not optimal.
(b)

ℓ(1) = 0

ℓ(2) = 0

The larger slack is first; this choice is optimal.

13.3 Slide 07

1. Observation, Explained:
(a) Suppose d(i) = d(j).
(b) Claim: The two orderings [1, . . . , i, j, . . . , n], [1, . . . , j, i, . . . , n] have

the same max-lateness.
(c) “Proof”: The only difference is i, j versus j, i. So focus on the

lateness contributed by these two pairs.

49

(d) Look at the diagram. The black vertical line is the common dead-
line.

(e) The finish time for the pair is always the same: fi + fj = fj + fi.
2. Next Bullet: Since i, j were arbitrary, therefore we can conclude that all

orderings in non-decreasing deadline order have the same max-lateness.

13.4 Slide 08

1. Checking the Argument:
(a) Suppose that L is not non-decreasing with respect to deadlines.

With this assumption, we want to show that max−lateness(L) ≥
max− lateness(Lgreedy).

(b) By definition, there exists 1 ≤ i ≤ n such that d(ei) ≥ d(ei+1).
(c) Let L′ be the permutation [1, . . . , ei+1, ei, . . . , n].
(d) Consider max− lateness(L′).
(e) The new lateness of ei+1 cannot increase compared to L: we now

do it earlier than before. So it is at most max− lateness(L).
(f) The new lateness of ei is at most the old lateness of ei+1. So it is

at most max− lateness(L).
(g) Nothing else changes. Hencemax−lateness(L′) ≤ max−lateness(L).
(h) L′ removes one inversion that was present in L. (d(ei)) > d(ei+1)⇔

(d(ei+1)) < d(ei).
(i) Keep going. What is the maximum number of swaps needed to

correctly sort the list? The worst case is when the list is sorted in
the reverse of the needed, greedy order.

1. n− 1 swaps
2. n− 2 swaps
...

...
n− 1. 1 swap∑n−1

i=1 = n(n−1)
2

swaps

13.5 Slide 10 (Fractional Knapsack Problem)

1. Remark: This is dynamic programming, which is the topic of our
next unit.

50

13.6 Slide 11

1. Trivial Solution: if
∑

iwi < w (all ei = 1).
2. So for a non-trivial solution, assume

∑
i wi ≥ w.

3. Observation: Yes, under the assumption
∑

i wi ≥ w which we just
made.

4. Consequence: Yes, under the assumption
∑

i eiwi ≤ w from the defini-
tion.

13.7 Slide 12

1. Attempt 1 Example setup (W = 50)

i 1 2 3
wi 10 30 20
vi 60 90 100

decreasing order of vi : 3, 2, 1. Right: 20 + 30 = 50, full already, no
room left for #1.

2. Attempt 2 Example setup (W = 10)

i 1 2
wi 10 5
vi 100 1

(a) w2, w1 gives: e2 = 1, e1 =
1
2
, total value =

(
1
2

)
100 + (1)1 = 51.

(b) w1, w2 gives: e1 = 100, e2 = 0, total value = (1)100 + (0)1 = 100.
3. Attempt 3 non-increasing “value per kilo” vi

wi
.

(a) Confirming that the first example yields [6, 3, 5], again with w =
50
i 1 2 3
wi 10 30 20
vi 60 90 100
vi
wi

6 3 5

This gives the order 1, 3, 2. This gets
[
1, 1, 2

3

]
, for a value (1)60 +

(1)90 +
(
2
3

)
100 = 150 + 200

3
= 450+200

3
= 650

3
= 2162

3
> 190.

(b) Confirming that the second example yields
[
10, 1

5

]
, again with

w = 10
i 1 2
wi 10 5
vi 100 1
vi
wi

10 1
5

51

This gives the order 1, 2. This gets [1, 0], for a value (1)100+(0)1 =
100. This agrees with my earlier guess at the optimal choice.

13.8 Slide 13

1. Runtime: O(n log n). The pre-sort is in O(n log n); the rest is clearly
in O(n).

13.9 Slide 14

1. Assumption, not stated but should be: We have pre-sorted by non-decreasing
vi
wi
.

2. Reason for sij ≤ sℓ: the pre-sorting that is done at the start of the

algorithm.
3. Change “because their weights are the same” to “because

∑
eiwi =

w =
∑

siwi”.
4. Problem: We are using i in two different ways here. To correct this,

choose i, j as described; index by k instead of i afterwards.
5. Question: Why is

∑
s′iwi = w?

6. Add this definition of s′k, for all 1 ≤ s′k ≤ n to the slides.

s′k =


si +

α
wi

if k = i

sj − α
wj

if k = j

sk otherwise

7. Claim:
∑

k sk′wk = w. (Have
∑

k skwk = w)
8. Proof: ∑

k

sk′wk

=
∑
k

skwk +

(
α

wi

)
wi −

(
α

wj

)
wj, by earlier definition of sk′

=
∑
k

skwk + α− α

=
∑
k

skwk, by earlier assumption with corrected notation

= w,

as claimed.

52

9. Claim: value(S ′) ≥ value(S).
10. Proof:

value(S ′) =
∑
k

skvk

value(S) =
∑
k

sk′vk

=
∑
k

skvk +

(
α

wi

)
vi −

(
α

wj

)
vj

=
∑
k

skvk + α

(
vi
wi

− vj
wj

)
= value(S) + +α

(
vi
wi

− vj
wj

)
.

Recall that we pre-sorted by non-increasing vi
wi
, and j > i. Hence(

vi
wi
− vj

wj

)
≥ 0. By assumption α > 0. This shows that α

(
vi
wi
− vj

wj

)
≥

0. So finally, this shows that value(S ′) ≥ value(S) ≥ 0, as claimed.
11. Change “choose the first α such that” to “choose the smallest α such

that either s′i = ei or s
′
j = ej or both”.

12. Change “one more common entry with” to “at least one more common
entry with”.

13. After finitely many steps (the list is finitely long, hence can have at
most finitely many differences), it is guaranteed to equal E.

13.10 Slide 15

1. Include the example of computing finish times, from Éric’s L05 slide
deck.

13.11 Notes and Tasks from the Lecture

1. Notes
(a) If possible, correct the typo on Éric’s L06 slide deck, Slide 06: red

t(1) 7→ t(2).
(b) If possible, fix the colours too.

2. Tasks

53

(a) Announce my modified office hours for Feb 27 and 28: Feb 27
hours are cancelled; Feb 28 hours will run from 14:00 to 16:00.

14 Lecture 14 - Dynamic Programming I

14.1 Global

1. This lecture uses Armin’s Lecture 11 slide deck?

14.2 Slide 03

1. Explanation for T (n) = F (n+ 1)− 1:
(a) Proof by (strong) induction on n ≥ 0.
(b) Base (n = 0):

i. T (0) = 0.
ii. F (0 + 1)− 1 = F (1)− 1 = 1− 1 = 0✓

(c) Base (n = 1):
i. T (1) = 0.
ii. F (1 + 1)− 1 = F (2)− 1 = 1− 1 = 0✓

(d) Induction (n > 1):
i. I.H. T (n− 1) = F (n)− 1 and T (n− 2) = F (n− 2)− 1.
ii.

T (n) = T (n− 1) + T (n− 2) + 1

=︸︷︷︸
I.H.

[F (n)− 1] + [F (n− 1)− 1] + 1

= F (n) + F (n− 1)− 1

=︸︷︷︸
Fibonacci definition

F (n+ 1)− 1.

2. Explanation for T (n) ∈ Θ(φn), where φ = 1+
√
5

2
, the Golden Ratio:

Refer to Background Information document.

14.3 Slide 10

1. all indices < n 7→ all indices t < n.

54

14.4 Slide 11

1. increasing end time 7→ non-decreasing end time.

14.5 Slide 13

1. Definition of M [j]: from the two cases mentioned earlier:
(a) where we exclude interval j, and
(b) where we include interval j: wj is from including interval j, and

M [pj] is from all intervals that don’t overlap with interval j.
2. Exercise: recover the optimum set, not only M [n], for extra Θ(n).

(a) I think we just need to add an indicator array of size n, and
indicate in that array for each interval j, whether we have included
interval j or not, as we go through the main procedure.

(b) Then at the end, make one pass through the array to list off which
intervals we included.

(c) Check all of this with Mark, when time permits.

14.6 Slide 14

1.
S ⊂ {1, . . . , n} 7→ S ⊆ {1, . . . , n}.

2. While the above is mathematically more correct, the problem will be
trivial if we can include everything!

14.7 Slide 15

1. we choose item n or not 7→ we include item n, or we don’t
2. “choose” 7→ “include” through the rest of the bullets also.
3. Indent the list of two items, of which we take the max.

14.8 Slide 16

1. The array O is two-dimensional!
2. Explanation for why the run time is in Θ(nW):

(a) The outer loop runs n times.
(b) The inner loop runs W times.
(c) The work inside the inner loop is all in Θ(1).

55

14.9 Notes and Tasks from the Lecture

1. Notes
(a) Stuff.

2. Tasks
(a) Stuff.

15 Lecture 15 - Dynamic Programming II

15.1 Global

1. This lecture uses Armin’s Lecture 12 slide deck.

15.2 Slide 2

1. The subsequence does not need to be contiguous.
2. There are 2n subsequences from a sequence of length n (each entry is

included, or not).

15.3 Slide 3

1. We want to solve this problem using dynamic programming. Hence we
first need to decide which subproblems we can solve, to make it possible
to solve the main problem.

2. Attempt #2: The example provided us shows us the difficulty with this
attempt, in the case where i = 6 and we cannot add A[7] to form a
longer increasing subsequence.

15.4 Slide 4

1. cat here means concatenation.
2. In the provided example (sequence [7, 1, 3, 10, 11, 5, 19]), we get

56

i L[i] increasing subsequence witnessing L[i]
1 1 [7]
2 1 [1]
3 2 [1, 3]
4 3 [1, 3, 10]
5 4 [1, 3, 10, 11]
6 3 [1, 3, 5]
7 5 [1, 3, 10, 11, 19]

15.5 Slide 5

1. We should state up front that the array L has entries 1, . . . , n.
2. Explanation for the Algorithm:

(a) Line 3: At a minimum, each entry constitutes an increasing se-
quence by itself.

(b) Lines 5-6: If A[j] < A[i], then A[j] can fit into an increasing sub-
sequence ending with A[i] - revise L[i] if appropriate (i.e. when
L[j] + 1 is at least as big as L[i]).

15.6 Notes and Tasks from the Lecture

1. Notes
(a) Slide 2: The subsequence must actually be strictly increasing, even

though some entries in the provided sequence can be equal.
(b) Question: What run-time would result from brute force, with-

out dynamic programming, for the longest increasing subsequence
problem? Would it be worse than n2?

(c) Slide 6: Remark: This example makes m = n, which is NOT
TRUE IN GENERAL.
Remark: This length 0 is possible, as is confirmed on Slide 7.

2. Tasks
(a) Include in some form Éric’s improved algorithm for the longest

increasing subsequence problem, which achieves O(n log n).

57

16 Lecture 16 - Dynamic programming III

16.1 Global

1. This lecture uses Armin’s Lecture 13 slide deck.
Outline:

1. Edit Distance
2. Optimal Binary Search Trees
3. Maximum Independent Sets In Trees

16.2 Edit Distance

1. Assume we want to design a spell checker.
2. We need to find a way to deal with mis-spelling.
3. So given an input word (string), we want to be able to find “close”

words.
4. It is up to us to define closeness ear.
5. When do mis-spellings occur?

(a) A character is typed in error.
(b) A character is omitted during typing.
(c) An extra character is typed.

6. One way to measure closeness to other words is to try to align the input
with other words.

7. We try to see to what extent we can align two words.
8. In other words, try to write one word on top of another.
9. Let’s be more formal.

(a) Our inputs are A[1 . . . n], B[1 . . .m].
10. Example with A = snowy,B = sunny, as in the slides.
11. Remark: This example should be improved to demonstrate that m =

n will not hold in general.
12. The character is called a gap and can be used as many times as

needed.
13. Count the number of operations {add, delete, change} which are needed

to turn A into B.
14. An alignment of words A,B writes A on top of B, and shows what

changes are needed to turn A into B.
15. The cost of an alignment is the number of columns in which the

letters are not the same.

58

16. The edit distance is the cost of the best possible alignment.
17. We want to compute the edit distance between A[1 . . . n] and B[1 . . .m].
18. Goal: Compute the edit distance between A and B.
19. Define an array D of size (n + 1) × (m + 1), where for any i ≤ n, j ≤

m, D[i, j] is the edit distance between A[1 . . . i] and B[1 . . . j].
20. Initialization:

(a) The edit distance between an empty word and A[1 . . . i] = i, so
D[i, 0] = i for all i.

(b) The edit distance between an empty word and B[1 . . . j] = j, so
D[0, j] = j for all j.

21. Three cases may happen.
(a) Write A[i] on top of B[j].

· · · Ai−1 Ai

· · · Bj−1 Bj

This last column will
i. add 1 to the edit distance, if A[i] ̸= B[j], and
ii. add 0 to the edit distance, if A[i] = B[j].

The edit distance of the remaining columns will equal the edit
distance between A[1 . . . i− 1] and B[1 . . . j − 1].

(b) Write A[i] on top of .
· · · Ai−1 Ai

· · · Bj

In this case, the edit distance will equal 1 plus the edit distance
between A[1 . . . i− 1] and B[1 . . . j].

(c) Write on top of B[j].
· · · Ai

· · · Bj−1 Bj

In this case, the edit distance will equal 1 plus the edit distance
between A[1 . . . i] and B[1 . . . j − 1].

22. This can be generalized to other indices.
23. Computing any D[i, j]:

i− 1, j − 1

+1 or +0

&&

i− 1, j

+1��

i, j − 1
+1

// i, j

Take the minimum of the three possibilities.

59

24. The desired answer is then D[n,m].
25. Example from DVP

16.3 Optimal Binary Search Trees

1. In CS 240, you have seen re-ordering items in linked lists and arrays.
2. The move-to-front heuristic suggests to (ad-hoc) bring the last searched

(or inserted) item to the front of the list.
3. We also saw that, if we know probabilities of enquiries of items in

advance, then we can find an optimal ordering which gives the best
expected cost of accessing entries.

4. What we did for linked lists can be done if we have a BST.
5. Idea: Keep the items with higher search probabilities in places in the

BST which are easier to access.
6. So assume he have n items, say numbers, or comparable other objects.

Each of these items has a probability of access:
i 1 2 · · · n
pi p1 p2 · · · pn

with
∑

i pi = 1.
7. Goal: Construct a BST with the least expected cost of access.
8. The cost of accessing a node at depth i is i+ 1.

60

9. Hence the expected costs of access is

n∑
i=1

pi(depth(i) + 1)

10. Example:
i 1 2 3 4 5
pi

1
5

1
5

1
5

1
5

1
5

(a)

3

@ ~

2

@

5

~

1 4

Expected Cost:

1 ·
(
1

5

)
+ 2 · 2 ·

(
1

5

)
+ 2 · 3 ·

(
1

5

)
=

11

5
.

(b)

1

~

2

~

3

~

4

~

5

61

Expected Cost:

1

5
(1 + 2 + 3 + 4 + 5) =

15

5
= 3.

11. Observation: In the linked list example, we saw that a greedy strategy
worked.

12. Example to Demonstrate that a Greedy Strategy Does Not
Work:
i 1 2 3 4 5
pi 0.1 0.2 0.25 0.05 0.4
(a) Greedy: Put the key with the highest probability at the root.

5

@

3

@ ~

2

@

4

1

Expected Cost:

(0.4) · 1 + (0.25) · 2 + (0.2 + 0.05) · 3 + (0.1) · 4 = 2.05

(b) Better Than Greedy:

3

@ ~

2

@

5

@

1 4

Expected Cost:

(0.25) · 1 + (0.2 + 0.4) · 2 + (0.1 + 0.05) · 3 = 1.9

62

13. Define M [i, j] to be the minimal cost for items i to j.
14. Having already fixed 1 ≤ i ≤ j ≤ n, take an arbitrary i ≤ k ≤ j, and

put item k at the root.

k

6 �

i to k − 1 k + 1 to j

(a) Cost of left subtree:

M [i, k − 1] +
ℓ=k−1∑
ℓ=i

pℓ

Explanation for the second term: All items are shifted down by
one level, so the cost of access increases by one in each case.

(b) Cost of right subtree (similar):

M [k + 1, j] +

ℓ=j∑
ℓ=k+1

pℓ

(c) Cost of root:
pk

15. Hence the total cost for the choice k is

M [i, k − 1] +
ℓ=k−1∑
ℓ=i

pℓ +M [k + 1, j] +

ℓ=j∑
ℓ=k+1

pℓ + pk

= M [i, k − 1] +M [k + 1, j] +

ℓ=j∑
ℓ=1

pℓ.

16. The above formula is for any choice of k. Now we have to choose k so
that it gives minimal value. Try for all k. This gives

M [i, j] = min
i≤k≤j

(M [i, k − 1] +M [k + 1, j]) +

ℓ=j∑
ℓ=1

pℓ.

63

17. We also define M [i, j] = 0 for j < i.
18. To compute

∑ℓ=j
ℓ=1 pℓ, we define

S[ℓ] =
∑t=ℓ

t=1 pt, so that∑ℓ=j
ℓ=i pℓ = S[j]− S[i− 1], with S[0] = 0.

19. We can compute all S in O(n2).

16.4 Maximum Independent Sets In Trees

1. An independent set of a graph G = (V,E) is S ⊆ V such that
u, v ∈ S implies (u, v) /∈ E.

2. The maximum independent set problem is to find an independent
set of maximum cardinality.

3. Example:

1

_

�
2

~

5
�
6

3
�

4

@

The maximum independent set in this example: {2, 3, 6}.
4. It is believed that the maximum independent set problem is intractable.
5. However, if our graph is a tree, then we can use dynamic programming.

But what sub-problems do we want?
6. Given a tree,

r

- ; �
�v1

_

v2

_

· · · vt−1

_

vt

_

we have two cases, for whether the root r belongs to the maximum
independent set, S, or not.

64

(a) r ∈ S:
i. Since r ∈ S, therefore no child of r can be in S.
ii. Hence the remainder of S must come from the subtrees rooted

at the grandchildren of r.
(b) r /∈ S:

i. Since r /∈ S, therefore all of the elements of S are from sub-
trees rooted at the children of r.

7. Based on these observations, the subproblems should be based on sub-
trees.

8. Define I(v) = size of the largest independent set in the subtree rooted
at v.

9. We are done if we can compute I(r), where r is the root.
10. Based on the above argument for the root, which holds for any subtree,

we have the following recurrence relation:

I(v) = max

{
1 +

∑
u a grandchild of v

I(u),
∑

u a child of v

I(u)

}
.

Remark: The first option comes from the case where v is in the maxi-
mum independent subset; the second option comes from the case where
v is not in the maximum independent subset.

11. Using the above recurrence relation, one can solve the problem in
O(|V |) time. See the notes referenced below for the details; pull those
details in here.

12. Note that there are only n subproblems to solve: one per vertex.

16.5 Notes and Tasks from the Lecture

1. Notes
(a) In the third edit distance example, check with Armin that two

changes are needed, and not one, correct?
(b) For Maximum Independent Sets in Trees, is the runtime in O(|V |),

instead of in O(|V |+ |E|), as in Armin’s hand-written notes?
Armin’s answer: I think it should be just O(|V |). This is a tree
so |E| = |V | − 1. The Top-Down implementation is discussed
in Lap Chi’s notes: https://cs.uwaterloo.ca/~lapchi/cs341/
notes/L13.pdf For a bottom-up implementation, we need to have
references to parents as well.

65

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L13.pdf
https://cs.uwaterloo.ca/~lapchi/cs341/notes/L13.pdf

2. Tasks
(a) Make your own slides for this lecture. Include all details from

these notes there instead.

17 Lecture 17 - Dynamic programming IV

17.1 Global

1. This lecture uses Armin’s Lecture 14 slide deck.

17.2 Bellman-Ford Algorithm

1. We have seen Dijkstra’s algorithm, which solves the single-source shorted
path problem, when the input has no negative weights.

2. Dijkstra’s algorithm used a greedy strategy.
3. Here we look at another algorithm, which is one of the earliest algo-

rithms which used the dynamic programming approach.
4. The input may have negative weights, and the algorithm can detect

negative cycles.
5. We have already seen that distance is well-defined only if there are no

negative cyles.
6. If there are no negative cycles, then Bellman-Ford finds all distances

δ(s, v), for a source s and a vertex v.
7. The good news about this algorithm is that it can detect negative

cycles.
8. All these good properties come with a price.
9. The cost is worse than Dijkstra.
10. Simple informal observation A path s ; v contains at most n − 1

edges, unless it contains a cycle. If a path contains ≥ n edges, then
by pigeonhole principle, a vertex appears more than once, hence there
exists a cycle.

11. Assume there are no negative cycles.
12. Recall: δ(s, v) is the length of a shortest path s ; v, as before.
13. Definition: For all 0 ≤ i ≤ n − 1, δi(s, v) is the length of a shortest

path s ; v having ≤ i edges. If no such path exists, then δi(s, v) =∞.
14. Observations (assuming there are no negative cycles):

(a) δ0(s, s) = 0.

66

(b) δ0(s, v) =∞, for all v ̸= s.
(c) Since there are no negative cycles, therefore δn−1(s, v) = δ(s, v)

(shortest paths are simple).
(d) δ(s, v) ≤ δi(s, v), for all 0 ≤ i ≤ n− 1 and for all v

i. If δi(s, v) =∞, then it is obvious.
ii. If δi(s, v) < ∞, then there exists a path s ; v. So δ(s, v) is

either the length of that path, or the length of a shorter path.
So δ(s, v) ≤ δi(s, v).

(e) δn−1(s, v) = δ(s, v)
i. If δ(s, v) =∞, then it is obvious.
ii. If δ(s, v) < ∞, then there exists a path s ; v. So δ(s, v)

is the weight of a shortest path, P, s ; v. We claim that
this path has at most n − 1 edges. If not, then the path has
≥ n edges. This implies (by pigeonhole principle) that the
path contains a cycle. By our assumption, this cycle cannot
be negative. The presence of this positive cycle contradicts
the fact that δ(s, v) is the weight of a shortest path (remove
the positive cycle to produce a path which is strictly shorter).
Since P has ≤ n − 1 edges, therefore δn−1(s, v) is the length
of P , which by definition of δ equals δ(s, v).

15. Now let’s find a recurrence relation.
16. Assume δi(s, v) <∞.
17. Then δi(s, v) is the length of a path with ≤ i edges, which has a finite

weight.
18. The path either has exactly i edges, or ≤ i− 1 edges.

(a) If it has ≤ i− 1 edges, then we use δi−1(s, v).
(b) Otherwise (i.e. length equals i), the path can be decomposed into

a sub-path s ; u, having i− 1 edges, and one edge (u, v).
(c) Hence δi(s, v) = δi−1(s, u) + w(u, v).

19. For finding the shortest path, we must consider all edges (u, v), as the
path may pass through any neighbour u of v.

20. Hence we have

δi(s, v) = min

{
δi−1(s, v), min

(u,v)∈E
{δi−1(s, u) + w(u, v)}

}
.

21. Define d[v], di[v] as in the algorithms from the slides.
22. Explanation for line 3 of the improved algorithm: Bellman-Ford is ba-

sically n − 1 rounds of relaxation. The counter i makes sure we have

67

done n− 1 rounds of relaxation.
23. We have already seen the correctness of the first version, i.e.

Dijkstra (assuming no negative cycle is present):

di[v] = δi(s, v) for all 0 ≤ i ≤ n− 1, since this implies

dn−1[v] = δn−1(s, v)

= δ(s, v), by the last observation above.

24. Remark: We have to find edges (u, v) for the given vertex v, which is
time consuming.

25. Saving Time and Space: We can use a single array d instead of n of
them. We can also modify the algorithm to go with edges not toward
specific vertices, v.

26. Recall: Lines 5 to 7 of the improved algorithm are called relaxation.
27. Correctness (Improved version), Part 1 - Claim: For all 0 ≤ i ≤

n − 1 and for all v, after iteration i, d[v] ≤ di[v]. Proof by induction
on i:
(a) Base (i = 0):

i. Clear from the initialization of the d0 and d arrays.
(b) Induction (i > 0):

i. I.H.: Suppose that the statement is true up to i− 1.
ii. At the beginning of the ith iteration, by the I.H. we have

d[v] ≤ di−1[v].
iii. d[v] can only decrease, so d[v] ≤ di−1[v] remains true through

the loop.
iv. d[v] is replaced by min

{
d[v],min(u,v)∈E{d[u] + w(u, v)}

}
, where

by the I.H. we have d[u] ≤ di−1[u].
v. So at the end of iteration i, by how the first algorithm updates

di, we have d[v] ≤ di[v]. Explanation:
A. In the original version, di[v]← di−1[v] to start.
B. di[v] is updated only if relaxation strictly improves path

length.
C. In this case, di[v] ← di−1[u] + w(u, v). In the improved

version, d[v] ← d[u] + w(u, v). So the desired inequality
must hold at the end of the ith iteration.

28. Claim:
(a) d[v] can only decrease through a relaxation, and

68

(b) if δ(s, u) ≤ d[u] and δ(s, v) ≤ d[v] before relaxation, then δ(s, v) ≤
d[v] after relaxation.

Proof of Claim:
(a) The first item is obvious from the shape of the algorithm.

(b)

(c) Before Relaxation:

δ(s, v) ≤ δ(s, u) + w(u, v), by triangle inequality, so that

δ(s, v) ≤ d[u] + w(u, v), because δ(s, u) ≤ d[u] by assumption.

(d) After relaxation, d[v] gets the value of

min

 d[v]︸︷︷︸
≥δ(s,v) before relaxation

, min
(u,v)∈E

 d[u] + w(u, v)︸ ︷︷ ︸
≥δ(s,v) before relaxation




Hence d[v] ≥ δ(s, v).
29. Correctness (Improved version), Part 2 - Claim: For all 0 ≤ i ≤

n− 1 and for all v, after iteration i, δ(s, v) ≤ d[v] ≤ δi(s, v). Proof of
Claim:
(a) Correctness Part 1: d[v] ≤ di[v] =︸︷︷︸

earlier Dijkstra observation

δi(s, v).

(b) Previous Claim: δ(s, v) ≤ d[v].
30. Why This Suffices To Establish Correctness: The above identity is for

all i, in particular for i = n− 1. So taking δn−1(s, v) = δ(s, v). Hence
δ(s, v) ≤ d[v] ≤ δ(s, v), which implies d[v] = δ(s, v), for all v.

69

31. Summary:
(a) If no negative cycle is present, then

i. At the end of the algorithm, for all v we have d[v] = δ(s, v).
ii. So by the triangle inequality, we obtain

δ(s, v) ≤ δ(s, u) + w(u, v), so that

d[v] ≤ d[u] + w(u, v), for any edge (u, v).

iii. This says that we can detect the presence of a negative cycle,
by exhibiting a vertex v and an edge, (u, v) ∈ E such that
d[v] > d[u] + w(u, v).

(b) If there is a negative cycle, say v0, . . . , vk = v0 with
∑k

i=1w(vi−1, vi) <
0, then
i. I claim that there exists an edge (vi−1, vi) with d[vi] > d[vi−1]+

w(vi−1, vi). Proof:
A. Towards a contradiction, suppose that for all i, d[vi] ≤

d[vi−1] + w(vi−1, vi).
B. Sum the inequality around the cycle:

k∑
i=1

d[vi]

≤
k∑

i=1

(d[vi−1] + w(vi−1, vi))

≤
k∑

i=1

d[vi−1] +
k∑

i=1

w(vi−1, vi)

C. Because v0 = vk, we have
∑k

i=1 d[vi] =
∑k

i=1 d[vi−1].
D. So subtracting these equal quantities from the above chain

of inequalities, we obtain

0 ≤
k∑

i=1

w(vi−1, vi),

which is a contradiction.

17.3 Floyd-Warshall Algorithm

1. Explanation for the Recurrence Relation on Slide 15:

70

(a) Let vj, vk be any two vertices.
(b) To define Di (vj, vk), let P be a shortest path vj ; vk with all

intermediate vertices in {v1, . . . , vi}.
(c) We have these cases for whether vi ∈ P or not:

i. vi /∈ P : Take Di (vj, vk) = Di−1 (vj, vk).
ii. vi ∈ P (only once, since P is a shortest path): Partition P into

vj ;︸︷︷︸
P1

vi ;︸︷︷︸
P2

vk

A. P1 : vj ; vi (a shortest path, because P is)
B. P2 : vi ; vk (a shortest path, because P is)

iii. Take Di (vj, vk) = Di−1 (vj, vi) +Di−1 (vi, vk).
(d) These are the two cases of the recursion.

18 Lecture 18 - Polynomial Time Reductions

18.1 Global

1. This lecture uses Armin’s Lecture 15 slide deck.

18.2 Slide 03

1. The provided definition is equivalent to requiring
(a) all “yes” answers for A to map to “yes” answers for B, and
(b) all “no” answers for A to map to “no” answers for B.

18.3 Slide 04

1. Work through this (straightforward) exercise during the lecture.

18.4 Slide 05

1. Type up this proof.
2. Do not spend time on this proof in class.

18.5 Slide 06

1. Create a Clicker Question based on this.
2. Write up an explanation for the correct answer in these notes.

71

18.6 Slide 10

18.6.1 Proof that Clique =P Independent Set

Remark: This result is not even stated in Armin’s slides. However it is
worth proving, so we prove it here.
Definition: Given a graph G = (V,E), its complement is G = (V,E)
((u, v) ∈ E if and only if (u, v) /∈ E).
Lemma: S ⊆ V is a clique in G (having ≥ k vertices) if any only if S is an
independent set in G (having ≥ k vertices).

Proof. 1. Forward:
(a) Assume that S is a clique in G (having ≥ k vertices).
(b) I claim that S is an independent set in G (having ≥ k vertices).
(c) Towards a contradiction, suppose that S is not an independent

set in G.
(d) Then there is a pair of vertices u, v ∈ S, with (u, v) ∈ E.
(e) By definition of the graph complement, (u, v) /∈ E.
(f) This contradicts the fact that S is a clique in G.

2. Backward:
(a) Assume that S is an independent set in G (having ≥ k vertices).
(b) I claim that S is a clique in G (having ≥ k vertices).
(c) Towards a contradiction, suppose that S is not a clique in G.
(d) Then there is a pair of vertices u, v ∈ S, with (u, v) /∈ E.
(e) By definition of the graph complement, (u, v) ∈ E.
(f) This contradicts the fact that S is an independent set in G.

1. Proof that Clique ≤P Independent Set
(a) We must exhibit a polynomial time algorithm, F , to transform

inputs for Clique into inputs for IS, preserving “yes” answers and
“no” answers.

(b) Let (G, k) be an arbitrary instance for Clique.
(c) Return the instance (G, n− k) for Independent Set.
(d) Clearly this can be done in polynomial time.
(e) By the Lemma, this reduction is correct.

2. Proof that Independent Set ≤P Clique
(a) We must exhibit a polynomial time algorithm, F , to transform

inputs for IS into inputs for Clique, preserving “yes” answers and

72

“no” answers.
(b) Let (G, k) be an arbitrary instance for Independent Set.
(c) Return the instance (G, n− k) for Clique.
(d) Clearly this can be done in polynomial time.
(e) By the Lemma, this reduction is correct.

18.6.2 Proof that V C =P Independent Set

1. To see the connection between VC and Independent Set, we need this
Lemma: S is a vertex cover in G if and only if V \S is an independent
set in G.

Proof. (a) Forward:
i. Assume that S is a vertex cover in G.
ii. We claim that V \ S is an independent set in G.
iii. Towards a contradiction, suppose that V \ S is not an inde-

pendent set.
iv. Then there are some vertices x, y ∈ V \S such that (x, y) ∈ E.
v. By the definition of a vertex cover, either x ∈ S or y ∈ S.
vi. But this contradicts the fact that x, y ∈ V \ S.
vii. This shows that V \ S is an independent set in G.

(b) Backward:
i. Assume that V \ S is an independent set in G.
ii. We claim that S is a vertex cover in G.
iii. Towards a contradiction, suppose that S is not a vertex cover.
iv. Then there is an edge (x, y) ∈ E such that x /∈ S and y /∈ S.
v. In other words, x, y ∈ V \ S, and there is an edge between

them.
vi. This contradicts the fact that V \ S is an independent set.
vii. This shows that S is a vertex cover in G.

2. Now we want to show that V C ≤P Independent Set and Independent Set ≤P

V C.
3. The previous lemma shows that

G has a vertex cover of size ≤ k, if and only if G has an independent
set of size ≥ n− k.

4. Proof that Independent Set ≤P V C

73

(a) We need to exhibit a polynomial reduction from Independent Set
to VC.

(b) Given (G, k) for Independent Set, return (G, n− k) for VC.
(c) This runs in polynomial time.
(d) By the observation following from the Lemma, the reduction is

correct.
5. Proof that V C ≤P Independent Set

(a) We need to exhibit a polynomial reduction from VC to Indepen-
dent Set.

(b) Given (G, k) for VC, return (G, n− k) for Independent Set.
(c) This runs in polynomial time.
(d) By the observation following from the Lemma, the reduction is

correct.
6. The above results plus transitivity imply that Clique =P Independent Set =P

V C.

18.7 Slide 11

18.7.1 Proof that HP =P HC

1. Proof that HP ≤P HC
(a) Given an arbitrary instance G = (V,E) for HP, we must produce

an instance G′ = (V ′, E ′) for HC.
(b) Construct G′ as follows:

i. Add a new vertex s to V : V ′ = V ∪ {s}.
ii. Add new edges (s, v), for all v ∈ V .

(c) It is easy to see that this algorithm, F , runs in polynomial time.
(d) Claim: G has a Hamiltonian path if and only if G′ has a Hamil-

tonian cycle.
Proof:
i. Forward:

A. Assume P is a Hamiltonian path in G with end points
a, b.

B. Then (s, a) + P + (b, s) is a Hamiltonian cycle in G′.
ii. Backward:

A. Assume that C ′ is a Hamiltonian cycle in G′.
B. Then there must be two incident edges in S; name them

(a, s), (b, s).

74

C. Construct C by removing (a, s), (b, s) from C ′.
D. Then C is a Hamiltonian path in G.

2. Proof that HC ≤P HP
(a) Given an arbitrary instance G = (V,E) for HC, we must produce

an instance G′ = (V ′, E ′) for HP.
(b) Construct G′ as follows:

i. Choose an arbitrary vertex x ∈ V .
ii. Add a duplicate x′ of x (connect x′ to exactly the vertices of

G to which x connects).
iii. Add degree 1 (see next step) vertices t, t′.
iv. Add edges (t, x), (t′, x′).

(c) This is a polynomial time construction.
(d) Claim: G has a Hamiltonian cycle if and only if G′ has a Hamil-

tonian path.
Proof:
i. Forward:

A. Assume that P is a Hamiltonian cycle in G.
B. Then P must contain edges (y1, x), (y2, x) for some ver-

tices y1, y2.
C. Then (P \(y1, x))+(t′, x′)+(x′, y1)+(x, t) is a Hamiltonian

path in G′.
ii. Backward:

A. Assume P is a Hamiltonian path in G′.
B. Since t, t′ are the only two degree 1 vertices inG′, therefore

these must be the endpoints of P .
C. x′ has two neighbours: t′ and some other vertex y.
D. Since x′ is a copy of x, therefore (x, y) is an edge in G.
E. Then (P \{(t′, x′), (x′, y), (t, x)})+(x, y) is a Hamiltonian

cycle in G′.

18.8 Slide 15

18.8.1 Proof that 3SAT ≤P IS

1. Let an arbitrary instance for 3SAT be given (i.e. a formula in CNF in
which each disjunctive clause has ≤ 3 literals).

2. Construct a graph for each clause (containing edges of the first type),
as follows:

75

(a) For each clause having 3 literals, form a triangle labelling each
vertex with a literal of the clause.

(b) If there are only 2 literals, form a linesegment, labelling the two
endpoints.

(c) If there is only 1 literal, simply include it alone in the graph we
are constructing.

3. To force exactly one choice from each clause, we set k to the number
of clauses.

4. We need to avoid choosing opposite literals x,¬x in different clauses.
So add an edge (first type) between any two vertices that correspond
to opposite literals.

5. This construction takes polynomial time.
6. Claim: Suppose that the formula contains k clauses. Then the formula

is satisfiable if and only if there is an independent set of size k in the
constructed graph.

Proof. (a) Forward:
i. Suppose that the formula is satisfiable (i.e. there is a truth

valuation which satisfies every clause).
ii. Select one literal that is satisfied, from each clause. Include

the corresponding vertex in the constructed independent set.
iii. Since there are k clauses, therefore our constructed vertex set

contains k vertices.
iv. Why the constructed set is independent:

A. We choose only one literal from each clause; hence no edge
of the first type joins a pair of vertices in the constructed
set.

B. Because we have a satisfying truth valuation, therefore
no edge of the second type joins a pair of vertices in the
constructed set (we cannot simultaneously select a literal
plus its negation).

(b) Backward:
i. Suppose that the constructed graph has an independent set

of size k.
ii. An independent set can select at most one vertex from each

clause (because of the presence of the edges of the first type).
iii. Since there are k clauses, therefore an independent set must

then choose exactly one vertex from each clause.

76

iv. Because of the presence of edges of the second type, therefore
for each variable we select at most one literal involving it
(possibly neither; never both).

v. How to determine (xi)
t:

A. If the independent set selected xi, then set (xi)
t = 1;

B. if the independent set selected ¬xi, then set (xi)
t = 0;

C. if the independent set did not select either of xi or ¬xi,
then set (xi)

t does not matter.
vi. By the consistency edges, this truth valuation is well-defined.
vii. We selected a literal from every clause to satisfy.
viii. Therefore we have constructed a satisfying truth valuation for

the formula.

18.9 Notes - Éric Lecture 19 in F24

Now from Lecture 20, I think
1. Slide 4 Correct “conjonctive” to “conjunctive”!

19 Lecture 19 - Reductions, P, NP, co-NP

19.1 Global

1. This lecture uses Armin’s Lecture 16 slide deck.

19.2 Slide 03

1. Recall from the last lecture, that (minimum) VC asks, given a graph
G = (V,E) and a positive integer k, Does there exists a vertex cover
for G of size ≤ k?

2. Correction: Example 1 (the first one): Algv(S, t): go through all E and
check if t covers the edges and |t| ≤ k (aboslute value bars missing in
the Slides).

3. Correction: Example 1 (the second one): Rename it to Example 2.
4. Exercises:

(a) Clique:
i. S: a graph G = (V,E)

77

ii. t: a vertex subset of V
iii. Algv(S, t): go through pairs of vertices and check that each

pair is connected by a vertex in E.
(b) IS:

i. S: a graph G = (V,E)
ii. t: a vertex subset of V
iii. Algv(S, t): go through edges and check that no edge has both

vertices in t.
(c) HC:

i. S: a graph G = (V,E)
ii. t: an ordering of the vertex list V
iii. Algv(S, t): go through t in order, verifying that each candi-

date edge is in E, and that the end is connected back to the
beginning.

(d) HP:
i. S: a graph G = (V,E)
ii. t: an ordering of the vertex list V
iii. Algv(S, t): go through t in order, verifying that each candidate

edge is in E.
(e) Subset-Sum: See Slide 11 in this slide deck.

19.3 Slide 04

1. The question of whether an arbitrary graph is non-Hamiltonian is in
NP, is still open.

19.4 Slide 05

1. Correction: There is no unique hardest problem in NP. Hence I sug-
gest to change this statement from “the hardest problem in NP” to “a
hardest problem in NP”.

19.5 Slide 08

19.5.1 Explanation for the argument that Circuit-Sat is NP-complete

1. Use the definition of NP-completeness:
(a) Let A be an arbitrary problem in NP.

78

(b) Construct a polynomial-time reduction from A to Circuit-Sat.
(c) This reduction witnesses that A ≤P Circuit-Sat.
(d) Since A was arbitrary, therefore Circuit-Sat satisfies the definition

of NP-completeness.

19.5.2 Explanation for how the argument in the slides follows this
template

1. Since A ∈ NP, there exists a verification algorithm AlgA(S, t), which
runs in polynomial time.

2. Use AlgA(S, t) to construct a circuit, with t as its input. Treat t as
a binary string, as in the original definition of NP. This means that
AlgA(S, t) can be expressed as a boolean function, with inputs the bits
of t. Construct the corresponding boolean circuit. Because AlgA(S, t)
runs in polynomial time, therefore this construction runs in polynomial
time.

3. To summarize, this construction
(a) takes an arbitrary instance S for A as input,
(b) outputs an instance for Circuit-Sat as output, and
(c) runs in polynomial time.

4. To conclude that this is a correct reduction, we still need to verify that
it preserves “yes” and “no” answers.
(a) If S is a “yes” for A, then a certificate, t, exists for S. Hence the

constructed instance for Circuit-Sat will also be a “yes”.
(b) If S is a “no” for A, then no certificate, t, exists for S. Hence the

constructed instance for Circuit-Sat will also be a “no”.
5. The reduction is correct; this completes the argument that A ≤P

Circuit-Sat.

19.6 Slide 09

19.6.1 Explanation for Circuit-Sat ≤P 3SAT

1. Let S be an arbitrary instance for Circuit-Sat.
2. Consider pairs of input bits xi, xi+1, one pair at a time.
3. Each pair combines in some yi, via ∧ or ∨, yielding (yi ↔ (xi ∧ xi+1))

or (yi ↔ (xi ∨ xi+1)).
4. Note that each formula involves at most 3 inputs.

79

5. Iteratively handle the next level up the tree in the same way.
6. Construct the conjunction of all formulas created in this way.
7. The constructed formula is an instance for 3SAT.
8. It also follows that the constructed formula will be a “yes” for 3SAT if

and only if S was a “yes” for Circuit-Sat.
9. Hence we have a correct reduction from Circuit-Sat to 3SAT.
10. This shows that Circuit-Sat ≤P 3SAT, as claimed.

20 Lecture 20 - NP-completeness I

20.1 Global

1. This lecture continues to use Armin’s Lecture 16 slide deck.
2. By the end of this lecture, we finished covering this slide deck.

20.2 Notes - Éric Lecture 21 in F24

Still from Lecture 20, I think
1. Global: To verify a decision problem lies in NP: it must have a poly-

nomial size certificate and a polynomial time verification algorithm.
2. Slide 16: Stuff.

Now from Lecture 21, I think
1. Slide 9:

(a) certification: are at least 2 yis 1?
(b) Darn! Too slow!
(c) Hey, he mentioned that students see Turing machines in CS 245!

2. Given an arbitrary instance x ∈ PROB ∈ NP, build circuit from
B(x, ·). Input to the circuit = certificate, y.

3. He waved his hands over constructing the circuit. Still, polynomial
size.

4. Slide 12:
(a) To prove 3SAT ≤ Independent− Set.
(b) We know I.S. ≤ Clique, I.S. ≤ V ertex−Cover, so I.S., Clique, V ertex−

Cover are all NP-complete.
(c) Exercise: explain (English, pseudo-code not required) why the

provided construction is polynomial time.

80

21 Lecture 21 - NP-completeness II

21.1 Global

1. This lecture uses Armin’s Lecture 17 slide deck.
2. See also the KT Textbook.
3. See also Lap Chi’s L19 notes, especially for the diagrams.

21.2 Slide 02

1. Because we have already proved that 3SAT is NP-Complete, the The-
orem stated on the slide will establish that both of DirectedHamiltoni-
anCycle and HamiltonianCycle are NP-complete.

21.3 Slides 03-08

21.3.1 Explanation for 3SAT ≤P DirectedHamiltonianCycle

1. It is easy to see that DirectedHamiltonianCycle is in NP. (Certificate:
a candidate directed Hamiltonian cycle.)

2. Let an arbitrary instance for 3SAT be given (i.e. an arbitrary CNF
formula, in which each disjunctive clause has ≤ 3 literals).

3. Let the formula contain variables x1, . . . , xn and clauses C1, . . . , Cm.
4. We need to construct a directed graph, G = (V,E), such that the

formula is satisfiable if and only if G has a directed Hamiltonian cycle.
5. We need to start by creating some graph structures for the variables

and the truth valuation, t.
6. Idea: Associate a long “two-way” path to each variable, xi:

(a) L-R if (xi)
t = 1 (true),

(b) R-L if (xi)
t = 0 (false).

7. The “base” graph (Slide 03) has a one-to-one correspondence between
the 2n possible truth valuations, and the 2n directed Hamiltonian cycles
in the graph.
(a) There are n two-way paths, one per variable.
(b) Each path contains 3m vertices, having 3 vertices per clause.
(c) The two end points of the path Pi connect to the two start points

of Pi+1.
(d) There is a source vertex s that connects the two start points of

P1.

81

(e) There is a sink vertex t that connects the two end points of Pn.
(f) The vertex t connects back to s.

8. There are 2n directed Hamiltonian cycles in this directed graph, since
we must use each path Pi in exactly one direction, as the intermediate
vertices of these paths are not connected to anything else.

9. This is a good start, with a one-to-one correspondence between truth
valuations and Hamiltonian cycles.

10. Next, we will add some clause structures to “kill” all of the Hamiltonian
cycles that do not correspond to satisfying truth valuations.

11. Recall that the two-way paths are all of length 3m. The first three
vertices belong to the first clause, and in general the three vertices
between v3i+1, v3i+2, v3i+3 belong to the ith clause.

12. Suppose we have a clause, say x1∨x2∨¬x3. Then to satisfy the clause,
we want the Hamiltonian cycles to
(a) go L-R in P1, P2 (to satisfy x1, x2),
(b) go R-L in P3 (to satisfy ¬x3).

13. To this end, create a new vertex cj, for each clause Cj.
14. Label the vertices in Pi as vi,1, vi,2, . . . , vi,3m.
15. If the literal xi appears in Cj, then add the directed edges (vi,3j−1, cj)

and (cj, vi,3j).
16. Otherwise, if the literal ¬xi appears in Cj, then add the directed edges

(cj, vi,3j−1) and (vi,3j, cj). item Do this for each clause, Cj.
17. Note that the edges for Cj, Ck(k ̸= j) don’t share any vertices. This is

why we created the long paths in the first place.
18. This is the whole construction. Clearly it can be done in polynomial

time.
19. It remains to prove that the formula is satisfiable if and only if the

constructed graph has a directed Hamiltonian cycle.
20. Forward:

(a) Assume that there is a satisfying assignment.
(b) As above,

i. if (xi)
t = 1, then we visit Pi, L-R;

ii. otherwise if (xi)
t = 0, then we visit Pi, R-L.

(c) For clause Cj, say (xa ∨ xb¬ ∨ xc), say, at least one literal is true
under t.

(d) If (xa)
t = 1 (true), then when we follow Pa L-R, we “detour” to

visit cj during the clause j region in the path Pa.
(e) Similarly, if (xa)

t = 0 (false), then when we follow Pa R-L, we

82

“detour” to visit cj during the clause j region in the path Pa.
(f) Since t satisfies every clause, therefore we visit every clause ver-

tex cj following these directions and detours, and hence form a
Hamiltonian cycle in the graph.

21. Backward:
(a) Assume that the constructed graph has a directed Hamiltonian

cycle.
(b) We need to argue that the directed Hamiltonian cycle must look

like those paths and detours above, which correspond with a sat-
isfying truth valuation. But why must this be the case?

(c) Crucial observation: If we use the directed edge (va,3j−1, cj), then
we must also use the edge (cj, va,3j) immediately after it; otherwise
the vertex va,3j will not be reachable, and there will be no way to
complete the cycle. (Task: Insert the diagram from Lap Chi’s
notes here.)

(d) Since a Hamiltonian cycle visits every vertex, therefore at least
one variable path is going in the correct direction.

(e) All the paths go L-R or R-L (as it must come back immediately
after each “detour” to a clause vertex. as observed above).

(f) Therefore this corresponds to a satisfying truth valuation, as in-
tended.

21.4 Slides 09-10

21.4.1 Explanation for DirectedHamiltonianCycle ≤P Hamiltoni-
anCycle

1. Given an arbitrary directed graph G = (V,E) for DHC, we construct an
undirected graph G′, in which we create three new vertices vin, vmid, vout
for each vertex v ∈ V .

2. Create edges of G′ as follows:
(a) For every v ∈ V , add edges (vin, vmid) and (vmid, vout).
(b) For each directed edge (u, v) ∈ E, add an undirected edge (uout, vin)

in E ′.
3. This is the construction. It can clearly be done in polynomial time.
4. It remains to prove that G has a directed Hamiltonian cycle if and only

if G′ has a Hamiltonian Cycle.
(a) Forward:

83

i. Assume that G has a directed Hamiltonian cycle.
ii. By following the cycle and replacing each directed edge (u, v)

by (uout, vin) and using the paths vin → vmid → vout for all
v ∈ V , we get a Hamiltonian cycle in G′.

(b) Backward:
i. Assume that G′ has a Hamiltonian Cycle.
ii. In the cycle, start with a vertex vin, then vmid must be a

neighbour of vin in the Hamiltonian cycle (otherwise vmid will
not be reachable, since it is of degree 2), and then vout must
be a neighbour of vmid in the Hamiltonian cycle.

iii. By construction, the the cycle must go to win for some w, and
then wmid, wout as above.

iv. So following the undirected Hamiltonian cycle of G′, it must
be of the form described in the previous direction, hence it
corresponds to a directed Hamiltonian cycle in G.

21.5 Notes - Éric Lecture 23 in F24

Still from Lecture 21.
1. Slide 18:

(a) input size = ℓ︸︷︷︸
of clauses

· log n︸︷︷︸
of bits needed to write indices in{1,...n}

(b) x1000 ∨ x1001 ∨ x1000

(c) (becomes)
x1 ∨ x2 ∨ x1

Now from Lecture 22
1. Slide 4:

(a) We all agree to quietly forget the Euclidean Travelling Salesman
Problem.

2. Slide 6:
(a) k = 0: if and only if there exist no vertices. Silly, but correct.

21.6 Notes and Tasks from the Lecture

1. Notes
(a) Q: Is HamiltonianCycle ≤P DirectedHamiltonianCycle?

A: Yes, I think so: just make every undirected edge into two
directed edges.

84

2. Tasks
(a) Add a note to the proof that 3SAT ≤P DirectedHamiltonianCycle:

It is crucial that we select a unique literal that satisfies each clause,
in case there are multiple choices. The reason is that for the
constructed graph to have a directed Hamiltonian cycle, we must
visit each vertex exactly once. If we have several literals that could
satisfy a clause, then without the note above, we could visit the
clause vertex multiple times. Write this up properly, when time
permits.

22 Lecture 22 - NP-completeness III

22.1 Global

1. This lecture uses Armin’s Lecture 18 slide deck.
2. See also the KT Textbook.
3. See also Lap Chi’s L20 notes, especially for the diagrams.

22.2 3-Dimensional Matching (Slides 03-08)

22.2.1 Global

1. See the KT Textbook, §8.6.
2. This is a generalization of the bipartite matching problem.

22.2.2 Explanation for 3SAT ≤P 3DMatching

1. First, note that 3DMatching is clearly in NP (certificate: a candidate
set of hyperedges).

2. The above result will establish that 3DMatching is NP-complete, since
3SAT is.

3. Let an arbitrary instance for 3SAT be given (i.e. an arbitrary CNF
formula, in which each disjunctive clause has ≤ 3 literals).

4. Let the formula contain variables x1, . . . , xn and clauses C1, . . . , Cs.
5. We are done if we can construct an instance H for 3DMatching such

that F is satisfiable if and only if H admits a perfect 3D matching (and
obviously the reduction must take polynomial time).

85

6. As in the Hamiltonian cycle problem, we create the “fidget spinner
gadgets” to capture the truth valuations of the variables.

7. For any variable vi(1 ≤ i ≤ n), we create the gadget pictured, with
(a) Vertices

i. 2s core vertices vi,1, . . . , vi,2s (only used in the gadget),
ii. 2s tip vertices zTi,1, z

F
i,1, . . . , z

T
i,s, z

F
i,s (will connect to clauses).

(b) Hyperedges for 1 ≤ j ≤ s

i. zTi,j, vi,2j−1, vi,2j
ii. zFi,j, vi,2j, vi,2j+1

8. By construction, the core vertices vi,j are not used in any other hyper-
edges. We will preserve this fact as we add vertices and hyperedges to
handle the clauses.

9. This implies that there are only two possibilities for choosing the hyper-
edges in the variable gadget to cover the core vertices, corresponding
to setting the gadget’s corresponding variable to 0 (false) or 1 (true):
(a) 0 (false): Include the F tip vertices, via hyperedges of the form

zFi,j, vi,2j, vi,2j+1

(b) 1 (true): Include the T tip vertices, via hyperedges of the form
zFi,j, vi,2j−1, vi,2j

Note, the first choice determines all the subsequent choices. Hence
there are two choices per variable.

10. This captures the binary decision for each variable, as we have one
gadget per variable.

11. This also gives us 2n choices in total, as there are n variables.
12. It remains to add some clause structures to the 3DM instance so that

only satisfying truth valuations “survive”.
13. For any clause Cj,

(a) Add two new vertices: aj, bj.
(b) For any literal xi in Cj, add a hyperedge (aj, bj, z

T
i,j).

(c) For any literal ¬xi in Cj, add a hyperedge (aj, bj, z
F
i,j).

14. Note that the hyperedges for different clauses are disjoint, because they
use different tips in the variable gadgets.

15. Each clause (s of them) covers one tip. There are 2ns tips in total.
There will be 2ns− s = (2n− 1)s tips left over at this point (i.e. not
covered yet).

16. Create
(a) (2n− 1)s pairs of “ dummy” vertices dk, ek, and

86

(b) all hyperedges (zTi,j, dk, ek) and (zFi,j, dk, ek) for every tip zi,j not
yet covered, in every variable gadget There are (2ns− s)(2ns) of
these new hyperedges.

17. In total, we have just added
(a) 2(2n− 1)s new dummy vertices, and
(b) (2n− 1)s · (2ns) < 4n2s2 new hyperedges.

18. The construction is now finished. It is wasteful, but it can clearly be
done in polynomial time.

19. It remains to prove that the original formula is satisfiable if and only
if the constructed 3DM instance admits a perfect 3D-matching.
(a) Forward:

i. Assume that there is a satisfying truth valuation, t, for the
orignal formula.

ii. For each variable xi(1 ≤ i ≤ n), cover its gadget according to
(xi)

t.
A. (xi)

t = 1 (true): cover the T tips, or
B. (xi)

t = 0 (false): cover the F tips.
iii. Since t is a satisfying truth valuation, therefore it satisfies

every clause Cj. Every clause has a literal xi or ¬xi in it.
iv. By construction, each variable xi has a tip in the gadget with

the right F/T value. This tells us which hyperedge to use to
cover aj, bj.

v. For these remaining (2n − 1)s uncovered tips, we use the
dummy hyperedges to cover them all.

vi. This is a perfect 3D matching.
(b) Backward:

i. Assume that the constructed 3DM instance has a perfect 3D-
matching.

ii. For each variable xi’s gadget, there are only two ways to cover
all of the core vertices vi,j.
A. If these hyperedges don’t cover the F tips, then set (xi)

t =
1 (true), and otherwise

B. if these hyperedges don’t cover the T tips, then set (xi)
t =

0 (false).
iii. It remains to argue that this t satisfies the original formula.
iv. Let Cj be an arbitrary clause in the formula.
v. The 3D matching picked exactly one of the hyperedges

A. (aj, bj, z
T
i,j) iff xi is in Cj, or

87

B. (aj, bj, z
F
i,j) iff (¬xi) is in Cj.

vi. This says that the above choice for (xi)
t satisfies Cj.

vii. Since Cj was arbitrary, therefore t is a satisfying truth valu-
ation for the formula.

22.3 Subset Sum (Slides 09-12)

22.3.1 Global

1. See the KT Textbook, §8.8.

22.3.2 Explanation for 3DM ≤P SubsetSum

1. First, note that SubsetSum is clearly in NP (certificate: a choice of
subset).

2. The above result will establish that SubsetSum is NP-complete, since
3DMatching is.

3. Let an arbitrary instance (X, Y, Z all of size n; m hyperedges E ⊂
X × Y × Z) for 3DM be given.

4. We are done if we can construct an instance a1, . . . , an, K for Subset-
Sum such that the first instance admits a perfect 3D matching if and
only if the second instance has some subset S ⊆ {1, . . . , n} such that
K =

∑
i∈S ai (and obviously the reduction must take polynomial time).

5. By Slide 10, we have reduced 3DMatching to

Given m 0-1 vectors in dimension 3n, does there exist a sub-
set that sums to the 1-vector in dimension 3n?

6. This shows that this new decision problem is NP-complete.
7. Hence we will be finished if we can reduce this new decision problem,

to SubsetSum.
8. Idea: Think of the 0−1 vector as the (backwards) binary representation

of a number: (xu, yv, zw) 7→ 2u−1 + 2n+v−1 + 22n+w−1.
9. With this mapping, if there is a subset of hyperedges that constitute a

perfect 3D matching, then their corresponding numbers would add up
to
∑3n−1

i=0 2i, which corresponds with the 1-vector.
10. However a subset whose numbers sum to

∑3n−1
i=0 2i may not correspond

with a perfect 3D matching, because of the possibility of carrying during
binary addition.

11. We need a way to solve this carrying problem.

88

12. There are at most m numbers in any chosen subset.
13. So select our base for addition to be b = m+ 1.
14. Final Construction:

(a) Map each triple (xu, yv, zw) 7→ bu−1 + bn+v−1 + b2n+w−1.
(b) Define K =

∑3n−1
i=0 bi (the 1-vector in base b). This can be done

in polynomial time.
15. Claim: There is a perfect 3D matching if and only if there is a subset

with sum = K.
(a) Forward:

i. Assume that there is a perfect 3D matching.
ii. We have already explained this direction above.

(b) Backward:
i. Assume that there is a subset with sum = K.
ii. Because the choice of b prevents carrying, for each position ℓ

in the base-b representation, the subset sum records how many
times we have covered the ℓth vertex in the 3DM instance.

iii. As the target number, K, has 1 in each digit, therefore the
subset must correspond to a perfect 3D matching.

22.4 Notes and Tasks from the Lecture

1. Notes
(a) Stuff.

2. Tasks
(a) In the proof that 3SAT ≤P 3DM, clarify how the indices for the

hyperedges loop back to the start (it’s clear from the pictures, of
course).

23 Lecture 23 - NP-Completeness

23.1 Notes - Éric Lecture 23 in F24

Still from Lecture 22.
1. Slide 17:

(a) Per variable, 2s tips → 2ns total.
(b) ns covered in pink
(c) s covered (at least) by clauses

89

(d) So we get ns− s tips (= 4) uncovered ???
Now from Lecture 23

1. Slide 4:
(a) Stuff.

2. Slide 6:
(a) Stuff.

24 Lecture 24 - Misc

24.1 Notes - Éric Lecture 24 in F24

Still from Lecture 23.
1. Slide 4:

(a) log t, because we express the bound on the run-time, in binary
form.

2. Slide 7:
(a) The Halting Problem is NP-hard, but not in NP.

25 Lecture 25 - Max flow

25.1 Max Flow

1. Slide 5:
(a) The edge in the first sum is named e.

2. Slide 6:
(a) Not clearly a flow problem yet, but it is “close enough”.
(b) See the graph at the bottom of the slide, where the labels indicate

capacities.
3. Slide 7:

(a) The algorithm might not be polynomial. It might only be pseudo-
polynomial.

4. Slide 8:
(a) Modify the provided flow, to increase its value from 3 to 4.

5. Slide 10:
(a) Explanation for why we want a minimal value of all capacities

on γ in Gf :

90

i. It is the most conservative choice, hence the least likely to
violate any flow constraints after we have modified the graph
as in the algorithm.

(b) Why the new flow is improved: As on the slide itself!
6. Slide 11: Why we still have a flow afterwards: Let f be the new flow.

(a) For all integers 0 ≤ f ′(e) ≤ c(e)
(b) Suppose e is blue: f ′(e) = f(e) + x.
(c) Hence f ′(e) ≥ 0 because x ≥ 0.
(d) Also, x︸︷︷︸

min capacity

≤ c(e)− f(e)︸ ︷︷ ︸
capacity of e in Gf

so f(e) + x︸ ︷︷ ︸
f ′(e)

≤ c(e).

(e) Now, 1 of 4 possible cases: blue-in, red-out, I think
red edge got decreased by x.
blue edge got increased by x.
Things work out in this case.

(f) The other 3 cases are similar
(g) Now suppose e is red? Maybe I missed this case.
(h) Check these details, ASAP!

7. Slide 13
(a) After 200000 steps, we will terminate and return the max flow.
(b) I think that he said this is true polynomial time.
(c) We can do better at choosing our augmented graph; he did not

explain how.
8. Slide 14

(a) Check that r2 = 1− r.
(b) This implies (multiplying through by ri) ri+2 = ri − ri+1.

9. Slide 18
(a) No need to know how the example was created.
(b) Moral: If we stick to integers, the algorithm will terminate, find-

ing the maximum flow.
(c) Next Lecture: proof of correctness.

26 Lecture 26 - Max flow = Min cut

Stuff.

91

27 Lecture 27 - Applications of Flows and

Cuts

1. General I think that he said he proved in Lecture 17 that max-flow
equals min-cut. Check it!

2. Slide 4
(a) I think we need a bit more care in the “loop” case: What if we

loop back to the source???
(b) I think the induction step is is (quietly) a proof by contradiction.

Check it!
(c) Recall that the value of a flow is the total amount leaving the

source node.
(d) Check all of this, and generate questions for Éric, ASAP.
(e) Stuff.

3. Slide 11
(a) Stuff.

92

	Lecture 01 - Introduction, review of asymptotics
	Course Intro
	Slide 09
	Slide 10
	Slide 13 Exercise
	Slide 14 Exercise
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 24
	Notes and Tasks from the Lecture

	Lecture 02 - Solving recurrences
	Slide 03
	Slide 07
	Slide 08
	Slide 10
	Slide 11
	Slide 12
	Notes and Tasks from the Lecture

	Lecture 03 - Divide and conquer I
	Slide 04
	Slide 06
	Slide 08
	Slide 09
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Notes and Tasks from the Lecture

	Lecture 04 - Divide and conquer II
	Slide 03
	Slide 05
	Slide 07
	Slide 08
	Slide 09
	Slide 12
	Notes and Tasks from the Lecture

	Lecture 05 - Divide and conquer III
	Rough Plan, To Be Fleshed Out
	Notes and Tasks from the Lecture

	Lecture 06 - Graphs algorithms I - breadth first search
	Global
	Slide 04
	Slide 09
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Notes - Éric in F24
	Notes and Tasks from the Lecture

	Lecture 07 - Graph algorithms II - depth-first search
	Global
	Slide 03
	Slide 04
	Slide 05
	Slide 07
	Slide 09
	Slide 10
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Notes - Éric in F24
	Tasks
	Notes and Tasks from the Lecture

	Lecture 08 - Graph algorithms III - Directed graphs
	Global
	Slide 02
	Slide 03
	Slide 04
	Slide 05
	Slide 06
	Slide 07
	Slide 08
	Slide 09
	Slide 10
	Slide 12
	Slide 15
	Slide 18
	Notes and Tasks from the Lecture

	Lecture 09 - Graph algorithms IV - Dijkstra's algorithm
	Slide 03
	Slide 04
	Slide 06
	Slide 07
	Slide 10
	Slide 11
	Slide 12
	Slides 13-15: Proof that Dijkstra's Algorithm is Correct
	Notes and Tasks from the Lecture

	Lecture 10 - Graph algorithms V - Minimum Spanning Trees
	Slide 03
	Slide 04
	Slide 05
	Slide 06
	Slide 07
	Slide 08
	Slide 09
	Slide 10
	Slide 12
	Slide 13
	Notes and Tasks from the Lecture

	Lecture 11 - Greedy algorithms I
	Slide 04
	Slide 08
	Slide 09
	Slide 10
	Slide 13
	Slide 14
	Slide 16
	Notes and Tasks from the Lecture

	Lecture 12 - Snow Day
	Global

	Lecture 13 - Greedy algorithms II
	Global
	Slide 06
	Slide 07
	Slide 08
	Slide 10 (Fractional Knapsack Problem)
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Notes and Tasks from the Lecture

	Lecture 14 - Dynamic Programming I
	Global
	Slide 03
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Notes and Tasks from the Lecture

	Lecture 15 - Dynamic Programming II
	Global
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Notes and Tasks from the Lecture

	Lecture 16 - Dynamic programming III
	Global
	Edit Distance
	Optimal Binary Search Trees
	Maximum Independent Sets In Trees
	Notes and Tasks from the Lecture

	Lecture 17 - Dynamic programming IV
	Global
	Bellman-Ford Algorithm
	Floyd-Warshall Algorithm

	Lecture 18 - Polynomial Time Reductions
	Global
	Slide 03
	Slide 04
	Slide 05
	Slide 06
	Slide 10
	Proof that Clique =P Independent Set
	Proof that VC =P Independent Set

	Slide 11
	Proof that HP =P HC

	Slide 15
	Proof that 3SAT P IS

	Notes - Éric Lecture 19 in F24

	Lecture 19 - Reductions, P, NP, co-NP
	Global
	Slide 03
	Slide 04
	Slide 05
	Slide 08
	Explanation for the argument that Circuit-Sat is NP-complete
	Explanation for how the argument in the slides follows this template

	Slide 09
	Explanation for Circuit-Sat P 3SAT

	Lecture 20 - NP-completeness I
	Global
	Notes - Éric Lecture 21 in F24

	Lecture 21 - NP-completeness II
	Global
	Slide 02
	Slides 03-08
	Explanation for 3SAT P DirectedHamiltonianCycle

	Slides 09-10
	Explanation for DirectedHamiltonianCycle P HamiltonianCycle

	Notes - Éric Lecture 23 in F24
	Notes and Tasks from the Lecture

	Lecture 22 - NP-completeness III
	Global
	3-Dimensional Matching (Slides 03-08)
	Global
	Explanation for 3SAT P 3DMatching

	Subset Sum (Slides 09-12)
	Global
	Explanation for 3DM P SubsetSum

	Notes and Tasks from the Lecture

	Lecture 23 - NP-Completeness
	Notes - Éric Lecture 23 in F24

	Lecture 24 - Misc
	Notes - Éric Lecture 24 in F24

	Lecture 25 - Max flow
	Max Flow

	Lecture 26 - Max flow = Min cut
	Lecture 27 - Applications of Flows and Cuts

