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Goals

This module: the dynamic programming paradigm through
examples

interval scheduling, longest increasing subsequence, longest
common subsequence, etc

Computational model:

word RAM

assume all weights, values, capacities, deadlines, etc, fit in
a word

What about the name?

programming as in decision making

dynamic because it sounds cool.
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A slow recursive algorithm

Def: Fibonacci numbers

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2

Fib(n)
1. if n = 0 return 0
2. if n = 1 return 1
3. return Fib(n− 1) + Fib(n− 2)

Assuming we count additions at unit cost, runtime is

T (0) = T (1) = 0, T (n) = T (n− 1) + T (n− 2) + 1

This gives T (n) = F (n+ 1)− 1, so T (n) ∈ Θ(φn),
φ = (1 +

√
5)/2.
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A better algorithm

Observations

to compute Fn, we only need the values of F0, . . . , Fn−1

the algorithm recomputes them many, many times

Improved recursive algorithm

let T = [0, 1, •, •, . . . ] be a global array
Fib(n)
1. if T [n] = •
2. T [n] = Fib(n− 1) + Fib(n− 2)
3. return T [n]
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A better algorithm

Iterative version

Fib(n)
1. let T = [0, 1, •, •, . . . ]
2. for i = 2, . . . , n
3. T [i] = T [i− 1] + T [i− 2]
4. return T [n]
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A better algorithm

Iterative version (enhanced, not always feasible)

Fib(n)
1. (u, v)← (0, 1)
2. for i = 2, . . . , n
3. (u, v)← (v, u+ v)
4. return v

All these improved versions use O(n) additions

Main feature: solve “subproblems” bottom up, and store
solutions if needed.
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A Recipe for Designing a D. P. Algorithm
1 Identify the subproblem

Typically the computation of solutions of the subproblems will
make it natural to retain the solutions in an array.

▶ Need to know dimensions of the array
▶ specify the precise meaning of the value in any cell of the

array
▶ specify where the answer will be found in the array

2 Establish DP-recurrence
Specify how a subproblem contributes to the solution of a larger
subproblem. How does the value in a cell of the array depend on
the values of other cells in the array?

3 Set values for the base cases

4 Specify the order of computation
The algorithm must clearly state the order of computation for
the cells.

5 Recovery of the solution (if needed)
Keep track of the subproblems that provided the best solutions.
Use a traceback strategy to determine the full solution.
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Dynamic programming

Key features

solve problems through recursion

use a small (polynomial) number of nested subproblems

may have to store results for all subproblems

can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer

dynamic programming usually deals with all input sizes
1, . . . , n

DAC may not solve “subproblems”

DAC algorithms not easy to rewrite iteratively

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 8 / 17



The Interval scheduling Problem
Input:

n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish
time

each interval has a weight wi

Output:

a choice T of intervals that do not overlap and maximizes∑
i∈T wi

greedy algorithm in the case wi = 1

Example: A car rental company has the following requests for a
given day:

I1 = [2, 8], w1 = 6

I2 = [2, 4], w2 = 2

I3 = [5, 6], w3 = 1

I4 = [7, 9], w4 = 2

Answer is T = [I1], W = 6
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Sketch of the algorithm

Basic idea: either we choose In or not.

then the optimum O(I1, . . . , In) is the max of two values:

wn + O(Im1, . . . , Ims), if we choose In, where
Im1 , . . . , Ims are the intervals that do not overlap with In

O(I1, . . . , In−1), if we don’t choose In

In general, we don’t know what Im1 , . . . , Ims look like.
Goal:

find a way to ensure that Im1 , . . . , Ims are of the form
I1, . . . , Is, for some s < n
(and so on for all indices < n)

then it suffices to optimize over all I1, . . . , Ij , j = 1, . . . , n
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The indices pj

Assume I1, . . . , In sorted by increasing end time: fi ≤ fi+1

Claim: for all j, the set of intervals Ik ≤ Ij that do not overlap
Ij is of the form I1, . . . , Ipj for some 0 ≤ pj < j (pj = 0 if no
such interval)

The algorithm will need the pi’s.

if −∞ ≤ si < f1, pi = 0 f1= earliest finish time

if f1 ≤ si < f2, pi = 1

. . .

(we will write f0 = −∞)
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Computing the pj’s

let A be a permutation of [1, . . . , n] such that

sA[1] ≤ sA[2] ≤ · · · ≤ sA[n]

Exercise: make sure you know how to find such an A

FindPj(A, s1, . . . , sn, f1, . . . , fn)
1. f0 ← −∞
2. i← 1
3. for k = 0, . . . , n
4. while i ≤ n and fk ≤ sA[i] < fk+1

5. pi ← k
6. i++

Runtime: O(n log(n)) (sorting) and O(n) (loops)
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Main procedure

Definition: M [i] is the maximal weight we can get with
intervals I1, . . . , Ii

Recurrence: M [0] = 0 and for i ≥ 1

M [i] = max(M [i − 1],M [pi] + wi)

Runtime: O(n log(n)) (sorting twice) and O(n) (finding the
M [i]’s)

Exercise: recover the optimum set for an extra O(n)
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The 0/1 Knapsack Problem
Input:

items 1, . . . , n with weights w1, . . . , wn and values v1, . . . , vn

a capacity W

Output:

a choice of items S ⊂ {1, . . . , n}
that satisfies the constraint

∑
i∈S wi ≤W

and maximizes the value
∑

i∈S vi

Example:

w1 = 3, w2 = 4, w3 = 6, w4 = 5

v1 = 2, v2 = 3, v3 = 1, v4 = 5

W = 8

optimum S = {1, 4} with weight 8 and value 7

See also:

fractional knapsack (items can be divided), solved with a
greedy algorithm
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Setting up the recurrence

Basic idea: either we choose item n or not.

then the optimum O[W,n] is the max of two values:

vn + O[W − wn, n − 1], if we choose n (and wn ≤W )

O[W,n − 1], if we don’t choose n

O[w, i] :=maximum value achievable using a knapsack of

capacity w and items 1, . . . , i

Initial conditions

O[0, i] = 0 for any i

O[w, 0] = 0 for any w
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Algorithm

01KnapSack(v1, . . . , vn, w1, . . . , wn,W )
1. initialize an array O[0..W, 0..n]
2. with all O(0, j) = 0 and all O(w, 0) = 0
3. for i = 1, . . . , n
4. for w = 1, . . . ,W
5. if wi > w
6. O[w, i]← O[w, i− 1]
7. else
8. O[w, i]← max(vi +O[w − wi, i− 1], O[w, i− 1])

Runtime Θ(nW ).
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Discussion

This is called a pseudo-polynomial algorithm

in our word RAM model, we have been assuming all vis
and wis fit in a word

so input size is Θ(n) words

but the runtime also depends on the values of the inputs

01-knapsack is NP-complete, so we don’t really expect to do
much better
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