CS 341: Algorithms
Lec 11: Dynamic Programming

Armin Jamshidpey Collin Roberts

Based on lecture notes by Eric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025

1/17

Goals

This module: the dynamic programming paradigm through
examples

o interval scheduling, longest increasing subsequence, longest
common subsequence, etc

Computational model:
e word RAM

e assume all weights, values, capacities, deadlines, etc, fit in
a word

What about the name?

@ programming as in decision making

@ dynamic because it sounds cool.

A. Jamshidpey C. Roberts (CS, v Lec 11: Dynamic Programming ‘Winter 2025 2/17

A slow recursive algorithm
Def: Fibonacci numbers
o FO = 0, F1 =1
o [, =F, 1+ F, oforn>2

Fib(n)
1. if n =0 return 0
2. if n=1return 1

3. return Fib(n — 1) + Fib(n — 2)

Assuming we count additions at unit cost, runtime is
T0)=T(1)=0, Tn)=Tn-1)4+T(n-2)+1

This gives T(n) = F(n+1) — 1, 50 T(n) € ©(¢"),
p=01+V5)/2.

‘Winter 2025

A. Jamshidpey C. Roberts (CS, UW)[Lec 11: Dynamic Programming

3/17

A better algorithm

Observations
e to compute F},, we only need the values of Fy,..., F,_1

o the algorithm recomputes them many, many times

Improved recursive algorithm

let T =1[0,1,e,e,...] be a global array
Fib(n)

1. if Tlnl=e

2. T[n] = Fib(n — 1) + Fib(n — 2)
3. return T'[n)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 4/17

A better algorithm

Iterative version

Fib(n)

1. let T=1[0,1,0,0,...]

2. fori=2,...,n

3. T[i] = T}i — 1]+ T[i — 2]
4 return 7T'[n)

Lec 11: Dynamic Programming

A. Jamshidpey C. Roberts (CS, UW)

A better algorithm

Iterative version (enhanced, not always feasible)

Fib(n)
1. (u,v) « (0,1)

2 fori=2,...,n
3. (u,v) < (v,u+v)
4 return v

All these improved versions use O(n) additions

Main feature: solve “subproblems” bottom up, and store
solutions if needed.

Lec 11: Dynamic Programming ‘Winter 2025 6/17

A. Jamshidpey C. Roberts (CS, UW)

A Recipe for Designing a D. P. Algorithm

© ldentify the subproblem
Typically the computation of solutions of the subproblems will
make it natural to retain the solutions in an array.
» Need to know dimensions of the array
» specify the precise meaning of the value in any cell of the
array
» specify where the answer will be found in the array

© Establish DP-recurrence
Specify how a subproblem contributes to the solution of a larger
subproblem. How does the value in a cell of the array depend on
the values of other cells in the array?

@ Set values for the base cases

© Specify the order of computation
The algorithm must clearly state the order of computation for
the cells.

@ Recovery of the solution (if needed)
Keep track of the subproblems that provided the best solutions.
Use a traceback strategy to determine the full solution.

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 7/17

Dynamic programming

Key features
@ solve problems through recursion
@ use a small (polynomial) number of nested subproblems
e may have to store results for all subproblems

@ can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer
@ dynamic programming usually deals with all input sizes
1,...,n
e DAC may not solve “subproblems”

o DAC algorithms not easy to rewrite iteratively

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 8/17

The Interval scheduling Problem
Input:
e n intervals Iy = [s1, fi1],...,In = [Sn, fn] start time, finish
time
@ each interval has a weight w;

Output:
@ a choice T of intervals that do not overlap and maximizes

ZiET wi

o greedy algorithm in the case w; = 1

Example: A car rental company has the following requests for a

given day:
o I} =[2,8], w; =6
o I, =[2,4], wy =2
o 13: [5,6],10321
° I4= [7,9],11)4:2

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 9/17

Sketch of the algorithm

Basic idea: either we choose I,, or not.
e then the optimum O(Iy,...,I,) is the max of two values:

o wn +O(Ipyy...yIm,), if we choose I, where
Iy, ..., Iy, are the intervals that do not overlap with I,

e O(I1,...,I,_1), if we don’t choose I,,

In general, we don’t know what Ip,,,..., I, look like.
Goal:
e find a way to ensure that I, ..., I, are of the form
Ii,..., I, for some s < n

(and so on for all indices < n)

o then it suffices to optimize over all I1,...,I;, 7 =1,...,n

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 10/17

The indices p;

Assume I, ..., I, sorted by increasing end time: f; < fi11
Claim: for all j, the set of intervals I < I; that do not overlap
I; is of the form Iy, ..., I, for some 0 < p; < j (pj =0if no

such interval)

The algorithm will need the p;’s.

o if —co<s; < f1,pi =0 fi1= earliest finish time
o if fi<s; < fo,pi =1
° ...

(we will write fo = —00)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 11/17

Computing the p;’s

let A be a permutation of [1,...,n] such that
SA[1) S SAp) S0 S Sap)

Exercise: make sure you know how to find such an A

Findpj(Aasl)'"75n7f1a"'afn)

1. fo+ —o0

2. 141

3. for k=0,...,n

4. while i <n and fi < s4p) < fet1
6. 14+

Runtime: O(nlog(n)) (sorting) and O(n) (loops)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 12 /17

Main procedure

Definition: M[¢] is the maximal weight we can get with
intervals I,...,1;

Recurrence: M[0] =0 and for ¢ > 1

Mi] = max(M|[i — 1], M [p;] + w;)
Runtime: O(nlog(n)) (sorting twice) and O(n) (finding the
Mi]s)

Exercise: recover the optimum set for an extra O(n)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 13 /17

The 0/1 Knapsack Problem

Input:
e items 1,...,n with weights w1, ..., w, and values vy, ..., v,

@ a capacity W

Output:
@ a choice of items S C {1,...,n}
o that satisfies the constraint Zz‘e gw; < W
e and maximizes the value) . ¢ v;
Example:
@ w1 = 3,11)2 :4,w3 = 6,?1)4 =5
o vy =2, =3,v3=1,v4=5
o W =38
e optimum S = {1,4} with weight 8 and value 7

See also:

e fractional knapsack (items can be divided), solved with a
greedy algorithm

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 14 /17

Setting up the recurrence

Basic idea: either we choose item n or not.
o then the optimum O[W, n] is the max of two values:
® v, + O[W — wy,n — 1], if we choose n (and w, < W)
e O[W,n — 1], if we don’t choose n

O[w, i] :==maximum value achievable using a knapsack of

capacity w and items 1,...,¢

Initial conditions

e 0][0,:] =0 for any 7

e Ofw,0] =0 for any w

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 15 /17

Algorithm

01KnapSack(vy, ..., Un, w1, ..., wy, W)

1 initialize an array O[0..W,0..n]

2 with all 0(0,7) =0 and all O(w,0) =0

3 fori=1,...,n

4 forw=1,.... W

5. if w; >w

6 Olw, i] < Olw,i — 1]

7 else

8 Olw,] + max(v; + Olw — w;, i — 1], Ow, i — 1])

Runtime ©(nW).

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 16 /17

Discussion

This is called a pseudo-polynomial algorithm

@ in our word RAM model, we have been assuming all v;s
and w;s fit in a word

@ so input size is ©(n) words

@ but the runtime also depends on the values of the inputs

01-knapsack is NP-complete, so we don’t really expect to do
much better

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming ‘Winter 2025 17 /17

