
CS 341: Algorithms
Lec 11: Dynamic Programming

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 1 / 17



Goals

This module: the dynamic programming paradigm through
examples

interval scheduling, longest increasing subsequence, longest
common subsequence, etc

Computational model:

word RAM

assume all weights, values, capacities, deadlines, etc, fit in
a word

What about the name?

programming as in decision making

dynamic because it sounds cool.

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 2 / 17



A slow recursive algorithm

Def: Fibonacci numbers

F0 = 0, F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2

Fib(n)
1. if n = 0 return 0
2. if n = 1 return 1
3. return Fib(n− 1) + Fib(n− 2)

Assuming we count additions at unit cost, runtime is

T (0) = T (1) = 0, T (n) = T (n− 1) + T (n− 2) + 1

This gives T (n) = F (n+ 1)− 1, so T (n) ∈ Θ(φn),
φ = (1 +

√
5)/2.

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 3 / 17



A better algorithm

Observations

to compute Fn, we only need the values of F0, . . . , Fn−1

the algorithm recomputes them many, many times

Improved recursive algorithm

let T = [0, 1, •, •, . . . ] be a global array
Fib(n)
1. if T [n] = •
2. T [n] = Fib(n− 1) + Fib(n− 2)
3. return T [n]

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 4 / 17



A better algorithm

Iterative version

Fib(n)
1. let T = [0, 1, •, •, . . . ]
2. for i = 2, . . . , n
3. T [i] = T [i− 1] + T [i− 2]
4. return T [n]

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 5 / 17



A better algorithm

Iterative version (enhanced, not always feasible)

Fib(n)
1. (u, v)← (0, 1)
2. for i = 2, . . . , n
3. (u, v)← (v, u+ v)
4. return v

All these improved versions use O(n) additions

Main feature: solve “subproblems” bottom up, and store
solutions if needed.

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 6 / 17



A Recipe for Designing a D. P. Algorithm
1 Identify the subproblem

Typically the computation of solutions of the subproblems will
make it natural to retain the solutions in an array.

▶ Need to know dimensions of the array
▶ specify the precise meaning of the value in any cell of the

array
▶ specify where the answer will be found in the array

2 Establish DP-recurrence
Specify how a subproblem contributes to the solution of a larger
subproblem. How does the value in a cell of the array depend on
the values of other cells in the array?

3 Set values for the base cases

4 Specify the order of computation
The algorithm must clearly state the order of computation for
the cells.

5 Recovery of the solution (if needed)
Keep track of the subproblems that provided the best solutions.
Use a traceback strategy to determine the full solution.

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 7 / 17



Dynamic programming

Key features

solve problems through recursion

use a small (polynomial) number of nested subproblems

may have to store results for all subproblems

can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer

dynamic programming usually deals with all input sizes
1, . . . , n

DAC may not solve “subproblems”

DAC algorithms not easy to rewrite iteratively

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 8 / 17



The Interval scheduling Problem
Input:

n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish
time

each interval has a weight wi

Output:

a choice T of intervals that do not overlap and maximizes∑
i∈T wi

greedy algorithm in the case wi = 1

Example: A car rental company has the following requests for a
given day:

I1 = [2, 8], w1 = 6

I2 = [2, 4], w2 = 2

I3 = [5, 6], w3 = 1

I4 = [7, 9], w4 = 2

Answer is T = [I1], W = 6
A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 9 / 17



Sketch of the algorithm

Basic idea: either we choose In or not.

then the optimum O(I1, . . . , In) is the max of two values:

wn + O(Im1, . . . , Ims), if we choose In, where
Im1 , . . . , Ims are the intervals that do not overlap with In

O(I1, . . . , In−1), if we don’t choose In

In general, we don’t know what Im1 , . . . , Ims look like.
Goal:

find a way to ensure that Im1 , . . . , Ims are of the form
I1, . . . , Is, for some s < n
(and so on for all indices < n)

then it suffices to optimize over all I1, . . . , Ij , j = 1, . . . , n

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 10 / 17



The indices pj

Assume I1, . . . , In sorted by increasing end time: fi ≤ fi+1

Claim: for all j, the set of intervals Ik ≤ Ij that do not overlap
Ij is of the form I1, . . . , Ipj for some 0 ≤ pj < j (pj = 0 if no
such interval)

The algorithm will need the pi’s.

if −∞ ≤ si < f1, pi = 0 f1= earliest finish time

if f1 ≤ si < f2, pi = 1

. . .

(we will write f0 = −∞)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 11 / 17



Computing the pj’s

let A be a permutation of [1, . . . , n] such that

sA[1] ≤ sA[2] ≤ · · · ≤ sA[n]

Exercise: make sure you know how to find such an A

FindPj(A, s1, . . . , sn, f1, . . . , fn)
1. f0 ← −∞
2. i← 1
3. for k = 0, . . . , n
4. while i ≤ n and fk ≤ sA[i] < fk+1

5. pi ← k
6. i++

Runtime: O(n log(n)) (sorting) and O(n) (loops)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 12 / 17



Main procedure

Definition: M [i] is the maximal weight we can get with
intervals I1, . . . , Ii

Recurrence: M [0] = 0 and for i ≥ 1

M [i] = max(M [i − 1],M [pi] + wi)

Runtime: O(n log(n)) (sorting twice) and O(n) (finding the
M [i]’s)

Exercise: recover the optimum set for an extra O(n)

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 13 / 17



The 0/1 Knapsack Problem
Input:

items 1, . . . , n with weights w1, . . . , wn and values v1, . . . , vn

a capacity W

Output:

a choice of items S ⊂ {1, . . . , n}
that satisfies the constraint

∑
i∈S wi ≤W

and maximizes the value
∑

i∈S vi

Example:

w1 = 3, w2 = 4, w3 = 6, w4 = 5

v1 = 2, v2 = 3, v3 = 1, v4 = 5

W = 8

optimum S = {1, 4} with weight 8 and value 7

See also:

fractional knapsack (items can be divided), solved with a
greedy algorithm

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 14 / 17



Setting up the recurrence

Basic idea: either we choose item n or not.

then the optimum O[W,n] is the max of two values:

vn + O[W − wn, n − 1], if we choose n (and wn ≤W )

O[W,n − 1], if we don’t choose n

O[w, i] :=maximum value achievable using a knapsack of

capacity w and items 1, . . . , i

Initial conditions

O[0, i] = 0 for any i

O[w, 0] = 0 for any w

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 15 / 17



Algorithm

01KnapSack(v1, . . . , vn, w1, . . . , wn,W )
1. initialize an array O[0..W, 0..n]
2. with all O(0, j) = 0 and all O(w, 0) = 0
3. for i = 1, . . . , n
4. for w = 1, . . . ,W
5. if wi > w
6. O[w, i]← O[w, i− 1]
7. else
8. O[w, i]← max(vi +O[w − wi, i− 1], O[w, i− 1])

Runtime Θ(nW ).

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 16 / 17



Discussion

This is called a pseudo-polynomial algorithm

in our word RAM model, we have been assuming all vis
and wis fit in a word

so input size is Θ(n) words

but the runtime also depends on the values of the inputs

01-knapsack is NP-complete, so we don’t really expect to do
much better

A. Jamshidpey C. Roberts (CS, UW) Lec 11: Dynamic Programming Winter 2025 17 / 17




