CS 341: Algorithms

Lec 18: NP-completeness part 3

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost, and many other CS 341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Perfect 3D matchings

3D matching

- input: 3 sets X, Y, Z of size n and a family of hyperedges $E \subset X \times Y \times Z$
- output: is there a perfect matching (n hyperedges that cover X, Y and Z)? (each x_i (and each y_j , and each z_k) is in a unique hyperedge)
- NP

Remark: 2D version

- input: 2 sets X, Y of size n and a family of edges $E \subset X \times Y$
- output: is there a perfect matching (n edges that cover X, Y)?
- this is testing if a bipartite graph has a perfect matching

3DMatchings is NP-complete

Claim

 $3SAT <_P 3DMATCHING$

- given: a formula F in 3CNF, with s clauses C_1, \ldots, C_s
- want: build an instance H of 3DMATCHING such that F satisfiable iff H admits a perfect 3D matching
- reduction must be polynomial time

The variable gadget

build one fidget-spinner-thing per variable x_i , i = 1, ..., n.

Vertices

• 2s core vertices $v_{i,1}, \ldots, v_{i,2s}$

- only used in the gadget will connect to clause
- 2s tip vertices $z_{i,1}^T, z_{i,1}^F, \dots, z_{i,s}^T, z_{i,s}^F$ vertices

Hyperedges for $j = 1, \ldots, s$

- \bullet $z_{i,j}^T, v_{i,2j-1}, v_{i,2j}$
- $z_{i,j}^F, v_{i,2j}, v_{i,2j+1}$

The variable gadget

build one fidget-spinner-thing per variable x_i , i = 1, ..., n.

Vertices

- 2s core vertices $v_{i,1}, \ldots, v_{i,2s}$
- 2s tip vertices $z_{i,1}^T, z_{i,1}^F, \dots, z_{i,s}^T, z_{i,s}^F$ vertices

only used in the gadget will connect to clause

Covering the core vertices

 2^n coverings (2 possibilities per variables)

Using the clauses to (almost) finish the graph

For any clause C_j

- add two new vertices a_j and b_j
- for any literal x_i in C_j , add hyperedge $\{a_j, b_j, z_{i,j}^T\}$
- ullet for any literal $\overline{x_i}$ in C_j , add hyperedge $\{a_j,b_j,z_{i,j}^F\}$

Final adjustments

- we have 2ns tips (in the example it is 12)
- in a perfect matching, each clause covers a tip, so 2ns s tips left (in the example it is 10)
- in a perfect matching, ns tips will be covered by hyperedges which cover core vertices (triangle hyperedges).
- we add ns-s dummy pairs d_k, e_k and all hyperedges $\{z_{i,j}^T, d_k, e_k\}$ and $\{z_{i,j}^F, d_k, e_k\}$ (that's (ns-s)(2ns))

F satisfiable iff perfect 3D matching

If F is satisfiable

- cover gadgets for x_1, \ldots, x_n according to their truth value
- ullet pick **exactly** one true literal per clause C_j
 - ▶ if x_i , take hyperedge $\{a_j, b_j, z_{i,j}^T\}$
 - ▶ if $\overline{x_i}$, take hyperedge $\{a_j, b_j, z_{i,j}^{\vec{F}}\}$
- match all remaining tips with pairs of dummy vertices

If perfect 3D matching

- matching gives truth values
- for each clause C_j , we picked a hyperedge $\{a_j, b_j, z_{i,j}^T\}$, resp. $\{a_j, b_j, z_{i,j}^F\}$
- the corresponding x_i is T, resp. F
- this makes C_j satisfied either way

Subset sum is NP-complete

Subset sum

- given: positive integers a_1, \ldots, a_n and K
- want: is there a subset S of $\{1,\ldots,n\}$ with $\sum_{i\in S}a_i=K$
- NP

Claim

 $3DMatching <_P SubsetSum$

- given: sets X,Y,Z of size n,m hyperedges $E\subset X\times Y\times Z$
- want: integers a_1, \ldots, a_s, K s.t. perfect 3D matching iff $\sum_{i \in S} a_i = K$ for some $S \in \{1, \ldots, n\}$
- reduction must be polynomial time

From 3D matchings to vectors

we define $m \ 0/1$ vectors (one per hyperedge) of size 3n.

- jth hyperedge = $\{x_{\boldsymbol{u}}, y_{\boldsymbol{v}}, z_{\boldsymbol{w}}\}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ in } \{1, \dots, n\}$
- jth vector given by

$$v_{j} = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ \uparrow & & & & \uparrow & & \uparrow & & \uparrow \\ u & & & & v+n & & w+2n \end{bmatrix}$$

Observation

there is a perfect 3D matching iff there is a subset of $\{v_1, \ldots, v_m\}$ that adds up to

$$\begin{bmatrix} 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \dots \ \cdots \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

From vectors to numbers

we define \boldsymbol{m} integers (one per hyperedge) of bit-size polynomial in n,m

- set b = m + 1
- given

define

$$a_i = b^u + b^{v+n} + b^{w+2n}$$

(vector $v_j \leftrightarrow \text{digits of } a_j \text{ in base } b$)

• $a_i < (m+1)^{3n+1}$ so $\log_2(a_i) \in (mn)^{O(1)}$

End of the proof

$$set K = b + b^2 + \dots + b^{3n}$$

Claim

for S subset of
$$\{1,\ldots,m\}$$
, $\sum_{i\in S} v_i = [1 \cdots 1] \iff \sum_{i\in S} a_i = K$

1. we always have

$$\sum_{i \in S} a_i = \sum_{j=1}^{3n} c_j b^j$$

with c_j = number of v_i 's in S with $v_{i,j} = 1$

2. if $\sum_{i \in S} v_i = [1 \cdots 1], c_j = 1$ for all j, so $\sum_{i \in S} a_i = \sum_{i=1}^{3n} b^j = K$

3. if $\sum_{i \in S} a_i = K$,

$$\sum_{i=1}^{3n} b^j = \sum_{i=1}^{3n} c_j b^j$$