(U. Electrical & Computer C{V\U 18-447
ENGINEERIN 509 L111

18-447 Lecture 11:
Pipelined Implementations:
Hazards and Resolutions

James C. Hoe
Dept of ECE, CMU
February 25, 2009

Announcements: Project 1 due this week

Handouts:

(U. Electrical & Computer CMU 18-447
ENGINEERING S09L11-2

Instruction Pipeline Reality

J. C. Hoe

& Identical operations ... NOT!

= unifying instruction types
- coalescing instruction types into one “multi-function” pipe
- external fragmentation (some idle stages)

& Uniform Suboperations ... NOT!
= balance pipeline stages

- stage quantization to yield balanced stages
- internal fragmentation (some too-fast stages)

Independent operations ... NOT!
= resolve data and resource hazards ;
- duplicate contended resources
- inter-instruction dependency detection and resolution

MIPS ISA features are engineered for improved pipelineability

CMU 18-447

({? Eﬁ%ﬁmﬁ?ﬁmﬂ goz% I(;él-s
Data Dependence)

Data dependence
ry.«< ry op r, Read-after-Write
rs < Iz Op Iy (RAW)

Anti-dependence
r3 < .ryopr; Write-after-Read
rf <« ry op rs (WAR)

Output-dependence
ry < ryop r, Write-after-Write
<r5 «— r; op ry (WAW)
ry < rg op ry

We discuss control-flow dependence in a later lecture

({? Electrical & Compurer CMU 18-447
ENGINEERING 509 L11-4
© 2009
J.C. Hoe

Dependencies and Pipelined Execution

Sequential and atomic Th(_a true d_ependence between two
instructions may only require

instruction semantics ordering of certain sub-operations

(i iy .
@ PY

This semantics is an overspecification.
It defines what is correct but doesn't
say to do it that way only

rical & Computer
) ENGiNEERING

RAW Dependency and Hazard

CMU 18-447
S'09 L11-5
© 2009

J. C. Hoe

Following RAW dependencies lead to hazards in the
5-stage pipelined from L10

addi rar--[TF [ID | EXJMEM[WE
addi ri\ra - | IFC*ID A\‘i’EA LIV_EIV\ WB |
addi r-\ra - | IF HMED " EX_JIMEM]
addi r-ra- | IF MD ||‘\ EX |
addi r-ra- | IF ||-bID |
addi r-ra-
A ERGNEERING g%% gzii,"
Register Data Hazard Analysis
el [sw e | |
IF
ID read RF | read RF | read RF | read RF read RF
EX
MEM
WB |write RF|write RF

For a given pipeline, when is there a register data
hazard between 2 data dependent instructions?
- dependence type: RAW, WAR, WAW?
- instruction types involved?
- distance between the two instructions?

((.; Electrical & Computer C{V\U 18-447
ENGINEERING 509 Li1-7
© 2009

Necessary Condition for Hazards

L'rag X
Ji_<rc |RegRead| Jife— RegWritd Ji'k— Reg Writg

|

ioj | . ‘iAJ : ‘ibj :
Ktage v l l
iir¢«_ [RegWritd ii_«<r, |[RegRead| iir«_ RegWrite
RAW Hazard WAR Hazard WAW Hazard

dist(i,j) < dist(X,Y) = Hazard!
dist(i,j) > dist(X,Y) = Safe

*(,} Electrical & Computer CMU 18-447
ENGINEERING 509 L1168

RAW Hazard Analysis Example

J. C. Hoe

$.; o | osw | e I Ir
IF
ID read RF | read RF | read RF | read RF read RF
EX
MEM
WB |write RF|write RF

Instructions I, and I; (where I, comes before Ip)
have RAW hazard iff

- I (R/I, LW, SW, Br or JR) reads a register written by I,
(R/I or LW)

- dist(I,, I,) < dist(ID, WB) = 3
What about WAW and WAR hazard?
What about memory data hazard?

CMU 18-447
S'09 L11-9

Pipeline Stall: it
a universal hazard resolution

rical & Computer
) ENGiNEERING

th 1 ot 3 ot oty ——
Inst,[IF]|ID JALU]JIMEM|WB]

Inst, i [IF_][ID J[ALU][MEM[WB
Tnst, i B JALE
Insty (L[TF|[TF ||ID <2
Inst,
it Py — _
bubble Stall==make the younger instruction
bubble wait until the hazard has passed
bubble 1. stop all up-stream stages

Ji_<ry dist(i,j)=4 2. drain all down-stream stages

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509 L11-10

What should happen in this case? "

J. C. Hoe

to 1 1, 13 4 ty —
Inst,[IF |[ID ||ALU|[MEM[WB |

Inst; i [IF_][ID J[ALU]J[MEM[WB

Inst, j [ZF_][ID_JPALU][MEM[WB]

Inst, k [IF _1[ID J[ALUIIMEM[WEB £

Inst, [IF_[ID ||ALUJIMEM
— |IF_|[ID [[ALE

. nop [IF_JIID <
k"0 n dist(iK)=2

CMU 18-447

) ENGINEERING soaLin
Pipeline Stall
it |t | || G | S | s | e | i | e | e | i
IF | i | j|k|k|k|k]]I
ID | h|i|jlilililkll
4
EX h | i |bublbublpub| j | k | |
MEM h | i |bubjbublbubl j | k | |
wB h |/bubbubbub b k|
it rxX « _
J: _ < rx
) ENGINEERING 50 g{i‘?

Stall

Pesr
0 IDEX
M ~__ [
u A 'ﬁx/mw
1 [\ 1]
{con }—. L. w mewwa
A

Read
register 1

Lelpc Address Read
data 1

Instruction
memory

p—s{ Read
register 2
e o5 Reag
fite ta2

[register “

| write
data

Instruction
faren 1 2

Instruction
[20- 18]

Instruction
[15-11]

Address
Data
memory
Wite
data
I

2
- disable PC and IR latching
- control should set

Based on figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

=0 and =0

) ENGINEERINE 332% g?ﬁ‘é’
Stall Conditions

¢ Instructions I, and I; (where I, comes before I)
have RAW hazard iff

- I (R/I, LW, SW, Br or JR) reads a register written by
I, (R/ITorlLW)

- dist(L,, I,) < dist(ID, WB) = 3

¢ Inother words, must stall when I in ID stage
wants to read a register to be written by I, in EX,
MEM or WB stage

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509 L11-14

Stall Condition

J. C. Hoe
Helper functions
- rs(I) returns the rs field of T
- use_rs(I) returns true if I requires RF[rs]and rsl=rO

¢ Stall when

- (rs(IRyp)==) && use_rs(IRy,) && or
- (rs(IRpp)==) && use_rs(IR;,) && or
- (rs(TRyp)==) && use_rs(IRy,) && or
- (rt(IRyp)==) && use_rt(IRy) && or
- (rt(IRyp)==) && use_rt(IRy,) && or
- (rt(IRyp)==) && use_rt(IRy,) &&

It is crucial that the EX, MEM and WB stages
continue to advance normally during stall cycles

((.; Electrical & Computer C{V\U 18-447
ENGINEERIN 509 L1115

Impact of Stall on Performance

J. C. Hoe

Each stall cycle corresponds to 1 lost ALU cycle

o For a program with N instructions and S stall
cycles, Average IPC=N/(N+S)

S depends on
- frequency of RAW hazards
- exact distance between the hazard-causing instructions
- distance between hazards

suppose iy,i, and i; all depend on iy, once i;'s hazard is
resolved, i, and i; must be okay too

L) ENGINEERING soaLis
Sample Assembly [p126, P&H]
for (j=i-1; j>=0 && v[j]> v[j+1]; j-=D { }

addi $s1, $s0, 1 _——3stalls
for2tst: st $10, $s1,0 3 stalls

bne $10, $zer‘o,e%

sl $t1,$s1,2 3 g1a)s

add $t2, $a0, $f<1 3 stalls

Iw $t3,0($12)

Iw $t4, 4($12)<3 stalls
slt $10, $t4, $13 3 stalls
beq $t0, $zer‘ﬁ

addi $s1, $s1, -1
J for2tst
exit2:

((.; Electrical & Computer CMU 18-447
ENGINEERING 509 L1117
© 2009
J. C. Hoe

Data Forwarding or Register Bypassing

It is intuitive to think of RF as state
- "add rx ry rz" literally means get values from RF[ry] and
RF[rz] respectively and put result in RF[rx]
& Buft, RF is just a part of a computing abstraction

- “add rx ry rz" means 1. get the results of the last
instructions to define the values of RF[ry] and RF[rz],
respectively, and 2. until another instruction redefines
RF[rx], younger instructions that refers to RF[rx] should
use this instruction’'s result

¢ What matters is to maintain the correct "dataflow”
between operations, thus

add rgr-r- | TF |[ID [[EXIMEM]| WB\|\
addi r-rar- | IF 2B |['EX |IMEM|[WB |

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509 L11-18
© 2009
J. C. Hoe

Resolving RAW Hazard by Forwarding

¢ Instructions I, and I; (where I, comes before I;)
have RAW hazard iff

- I; (R/I, LW, SW, Br or JR) reads a register written by
I, (R/TorlLW)

- dist(T,, I,) < dist(ID, WB) = 3

o Inother words, if I in ID stage reads a register
written by I, in EX, MEM or WB stage, then the
operand required by I; is not yet in RF
= retrieve operand from datapath instead of the
RF
= refrieve operand from the youngest definition
if multiple definitions are outstanding

rical & Computer
) ENGiNEERING

_dist(i,j)=3

Forwarding Paths (v1)

—
—|
ety |

Forwart

»

(<= (x==
i

dist(i,j)=2

CMU 18-447
S'09 L11-19
© 2009

J. C. Hoe

o C)= Dat
1N leST(l,J)] meﬁwzry M
N u
X
in"'er‘nal Rs__ ForwardB
Ri
forward? | [& ﬂ .
R u JEX/MEM.RegisterR
X L I
\J L(Forwarding IllEMI\NB.Registeer
| unit
dist(i j)=3 —
1
[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
(U. :lmn:.al&i:umlpum ggg 5181 42‘277
ENGINEERING ©2009
. J.C. Hoe
Forwarding Paths (v2)
ID/EX EX/MEM MEM/WB
dist(i,j)=3
I
o
tForwardA ALUI . . .
dist(i,j)=4
B ; dist(i,j)-1
= Dat:
-»;1 v IS "J me:ua)ry 1 M
~_ M
|IRs ForwardB]
|Rt M
Ez’ ’\lf JEX/MEM.RegisterRd
L1 X L | L |
/ | Forvvartdmg ‘_' IMEM/\NB.Registeer —|
uni

b. With forwarding

[Based on figures from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] A ssumes R F fo rwar d S l nT erna I Iy

CMU 18-447

(U. Electrical & Computer A
ENGINEERING 509 Lit-21

Forwarding Logic (for v2)

J. C. Hoe

if (rse1=0) && (rsqy ==) && then
forward operand from MEM stage // dist=1

else if (rs;,1=0) && (5., ==) &&
then
forward operand from WB stage // dist=2

else

use Ag, (operand from register file) // dist >= 3
Ordering matters!l Must check youngest match first

Why doesn't use_rs() appear in the forwarding
logic?

(U. Electrical & Computer CMU 18-447
ENGINEERING 509 L11-22

Data Hazard Analysis (with Forwarding)

el w | sw e | 7 |
IF
ID use
EX pr‘gjﬁce use use use
MEM produce| (use)
wB

Even with data-forwarding, RAW dependence on
an immediate preceding LW instruction produces a
hazard

((3 Electrical & Computer CMU 18-447
ENGINEERING 509 L1123

Load Delay Slot

LW ra---[IF |[ID][EX [[MEMI[WB]

addi r-\ra r- | IF || ID |F EX fAMEM|[WB |
addi r-rar- LIF |[ID IF EX |IMEM|[WB |

R2000 defined load with arch. latency of 1 inst

- the instruction immediately following a load (in the "delay
slot") still sees the old register value (this is the behavior if
we don't do anything special beyond forwarding)

- ISA feature tailored to the 5-stage pipelined
microarchitecture Warning!l Implementation exposed!!
o If loads are defined normally, i.e., atomic

- adependent immediate successor o LW must stall 1 cycle in
ID

- = (rs(IRpp)==) && use_rs(IR;,) &&

QO ERaREARE
Sample Assembly [p126, P&H]
for (j=i-1; j>=0 && v[j]> v[j+1]. j-=1) { }

addi $s1, $s0, -1
for2tst: slti $10, $s1,0

bne $10, $zero, exit2

sll $11, $s1, 2

add $t2, $a0, $11

Iw $13, 0($12)

W $t4, 4($t2)

slt $10, $t4, $13
beq $t0, $zero, exit2
addi $s1, $s1, -1
J for2tst

exit2:

«3 Electrical & Computer CMU 18-447
ENGINEERING 509 L1125

Terminology

J. C. Hoe

Dependencies
- ordering requirement between instructions

Pipeline Hazards:
- (potential) violations of dependencies

¢ Hazard Resolution:

- static = schedule instructions at compile time to avoid
hazards

- dynamic = detect hazard and adjust pipeline operation
Stall, Flush or Forward
¢ Pipeline Interlock:
- hardware mechanisms for dynamic hazard resolution
- detect and enforce dependences at run time

({3 Electrical & Computer C(V\U 18-447
ENGINEERING 509 L11-26

Why not very deep pipelines?

J. C. Hoe

+ B-stage pipeline still has plenty of combinational
delay between registers

"Superpipelining” = increase pipelining such that
even intrinsic operations (e.g. ALU, RF access,
memory access) require multiple stages

¢ What's the problem? Inst,: r%— ré +r3

Instird4d & rl+2

TO Tl 1'2 1'3 1'4 1'5 -
Insto [EI[FJDJOENEJMIMIWIW]
Inst; [Fa[Fu][DJO EEEJE L] M MWW]
[EEIR] AR EEIMIm W]

a.:lecm:al&mm ter CMU 18-447
) ENGiNEERING 509 Lit-27

© 2009

Intel P4's Superpipelined Integer ALU"

-N.S
Alower - (S}
= S
L] = lower
Blower — ".3
O
-~
S
Aupper T <
5 S
L _(|3 upper
Bupper] Ne)
-~
- OEX, EX,

32-bit addition pipelined over 2 stages, BW=1/latency pi-q4q
No stall between back-to-back dependencies

*0. Electrical & Computer CMU 18-447
ENGINEERING 509 L11-28
© 2009
J. C. Hoe

What if you really can't superpipeline?
\/ I input, outputy
4 I input; output,

o< 2T delay

If you can't double the bandwidth by pipelining, doubling
the resource also doubles the bandwidth

