«3 Electrical & Computer CMU 18-447
ENGINEERING 509 Lia1
© 2009
J. C. Hoe

18-447 Lecture 14:
Exceptions and Interrupts

James C. Hoe
Dept of ECE, CMU
March 16, 2009

Announcements: Spring break is over . . .
HW 3 is due now
Project 2 due this week
Midterm 2 on 3/30 in class (last lecture to be included)

Handouts:

({3 Electrical & Computer C(V\U 18-447
ENGINEERING 509 114-2

Exceptions and Interrupts

J. C. Hoe
A systematic way to handle exceptional conditions
that are relatively rare, but must be detected and
acted upon quickly
- instructions may fail and cannot complete
- external I/0 devices may need servicing
- quantum expiration in a time-shared system

Option 1. write every program with continuous
checks (a.k.a. polling) for every possible contingency

acceptable for simple embedded systems (foaster)

Option 2: write "normal” programs for the best-
case scenario where nothing unusual happens
- detect exceptional conditions in HW

- "“fransparently” transfer control to an exception handler
that knows how to resolve the condition and then back to
your program

«3 Electrical & Computer CMU 18-447
ENGINEERING 509 1143

Types of Interrupts

J. C. Hoe
Synchronous Interrupts (a.k.a. exceptions)
- exceptional conditions tied to a particular instruction

- e.g. illegal opcode, illegal operand, virtual memory
management faults

- the faulting instruction cannot be finished
no forward progress unless handled immediately

Asynchronous Interrupts (a.k.a. interrupts)
- external events not tied to a particular instruction
- I/0 events, timer events
- some flexibility on when to handle it
cannot postpone forever or things start to “fall on the floor'

+ System Call/Trap Instruction

- an instruction whose only purpose is to raise an exception
- whatever for?

U

{{} Electrical & Compurer CMU 18-447
ENGINEERING <09 Lida

Interrupt Sources

J. C. Hoe

\9)
Q
O
=
Q
o ~
=N
—— £%
CPU [, 5%
intferrupt 2 g
control S F
logic j;;g
£5
—— oo
: E
atapatty_ tailed instriictions
- system call|instructions

Interrupts, ak.a.
asynchronous interrupts

Exceptions, a.k.a. i
external interrupts

synchronous interrupts

((.; Electrical & Computer CMU 18-447
ENGINEERING 509 L14-5

Interrupt Control Transfer

& Aninterrupt is an “unplanned”
function call to a system routine
(aka, the interrupt handler)

¢ Unlike a normal function call, the
interrupted thread cannot
anticipate the control transfer or
prepare for it in any way

¢ Control is later returned to the
main thread at the interrupted
instruction

The control transfer to the interrupt
handler and back must be 100%
transparent to the interrupted
thread!l!

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509114-6

Virtualization and Protection ™~
Modern OS supports time-shared multiprocessing
but each “user-level” process still thinks it is alone

- each process sees a private set of user-level
architectural states that can be modified by the user-
level instruction set

- each process cannot see or manipulate (directly) state
and devices outside of this abstraction
+ OS implements and manages a critical set of
functionality
- keep low-level details out of the user-level process
- protect the user-level process from each other and itself

Do you want to access/manage harddisk directly? Do
you trust your buddy or yourself to access the
harddisk directly?

((3 Electrical & Computer CMU 18-447
ENGINEERIN 509 Lia-7

Privilege Levels

¢ The OS must somehow be more powerful fo create
and maintain such an abstraction, hence a separate
privileged (aka protected or kernel) mode

- additional architectural states and instructions, in
particular those controlling virtualization/
protection/isolation

- the kernel code running in the privileged mode has
access to the complete "bare” hardware system

user-level level
state and instructions

privileged level

“hypervisor” level for
virtualizing multiple OSs

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509114-8
© 2009

Control and Privilege Transfer

¢ User-level code never runs
in the privileged mode

¢ Processor enters the
privileged mode only on
interrupts---user code
surrenders control to a
handler in the OS kernel

¢ The handler restores
privilege level back to user
mode before returning
control to the user code

(B. Electrical & Computer [18-447
ENGINEERIN 5091149
© 2009
J. C. Hoe

Implementing Interrupts

L) ENGINEERING soLis
Precise Interrupt/Exception
Sequential Code Semantics Overlapped Execution

A precise interrupt appears (to the interrupt handler) to
take place exactly between two instructions
- older instructions finished completely
« younger instructions as if never happened
- on synchronous interrupts, execution stops just before
the faulting instruction

Electrical & Computer
S'09 L14-11

) ENGINEER 5200

How would things look different for asynchronous interrupts?

CMU 18-447

J. C. Hoe

Stopping and Restarting a Pipeline

ol T[T |t |ta| T | Tty | Ts| Tt
—
IF Io Il IZ I4 bub | bub Ih Ih+1Ih+2Ih+3
ID IO Il I%%Ub bub g bub Ih Ih+1Ih+2
i
EX I, | L, bublbub|bub| I, [T, .4
MEM IO L | L, bub | bub | bub Ih
wB IO I, L, bub | bub | bub

What if I, I;, I,, I3 and I,all generate exceptions in t,?

€O

CMU 18-447

Electrical & Computer
ENGINEERING 509 L14-12
© 2009

J. C. Hoe

Exception Sources in Different Stages

s IF
- instruction memory address/protection fault
¢ ID
- illegal opcode
- trap to SW emulation of unimplemented instructions
- system call instruction (a SW requested exception)

¢ EX

- invalid results: overflow, divide by zero, etc

¢ MEM

- data memory address/protection fault

+ WB
- nothing can stop an instruction now...

We can associate async interrupts (I/0) with any
instruction/stage we like

rical & Computer
) ENGINEERR

Pipeline Flush for Exceptions

CMU 18-447
S'09 L14-13
© 2009

J. C. Hoe

40000040

Data
memory

- new pipeline flush points

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

- carry PC in the pipeline with each inst.

M
u
x

€ EiNeERve

MIPS Interrupt Architecture

CMU 18-447
5'09 L14-14
© 2009

J. C. Hoe

CMU 18-447
509 L14-15

rical & Computer
) ENGINEERR
© 2009

MIPS Interrupt Architecture

Privileged system control registers
- Exception Program Counter (EPC, CR14): which instruction
did we stop on
- Interrupt Cause Register (CR 13): what caused the

intferrup?

. Exceplion
level

= Interupt
enable

Also accessed by the "move from/to co-processor-
0" instruction: "mfcO Ry, CRx" and "mtc0O Ry, CRx"

Figures from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

CMU 18-447
5'09 L14-16

{U. Electrical & Compurer
ENGINEERING
© 2009

MIPS Interrupt Architecture

¢ Onan interrupt transfer, the CPU hardware saves
the interrupt address to EPC
- can't just leave frozen in the PC: overwritten immediately
- can't use r31 as in a function call: need fo save user value
In general, CPU hardware must saves any such
information that cannot be saved and restored in
software by the interrupt handler (very few such
things)
o For example, the GPR can be managed in SW by the
interrupt handler using a callee-saved convention

- however, r26 and r27 are reserved by convention to be
available to the kernel immediately at the start and the
end of an interrupt handler

(U. Electrical & Computer C{V\U 18-447
ENGINEERING 509 L1417

Interrupt Servicing

J. C. Hoe

Onan interrupt transfer, the CPU hardware records
the cause of the interrupt in a privileged registers
(Interrupt Cause Register)

Option 1: Control is transfer to a pre-fixed default
interrupt handler address

- this initial handler examines the cause and branches to the
appropriate handler subroutine to do the work

- this address is protected from user-level process so one
cannot just jump or branch to it
Option 2: Vectored Interrupt

- abank of privileged registers to hold a separate specialized
handler address for each interrupt source

- On an interrupt, hardware transfer control directly to the
appropriate handler to save interrupt overhead

MIPS uses a 7-instruction handler for TLB-miss

(U. Electrical & Computer CMU 18-447
ENGINEERING 509 L14-18

Example of Causes

J. C. Hoe

[umber [name | causn o rcapion |

(o] Int interrupt (hardware)
4 | AdEL I address error exception (load or instruction fetch)
5 AdES address error exception (store)
6 IBE bus error on instruction fetch
T DBE | bus error on data load or store
8 | Sys I syscall exception
9 Bp breakpoint exception
10 [RI I reserved instruction exception
11 CpU coprocessor unimplemented
12 |ov [arithmetic overflow exception
13 [7r trap
15 | FPE [floating point

Figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 L1419
© 2009

Handler Examples

On asynchronous interrupts, device-specific
handlers are invoked to service the I/0 devices

On exceptions, kernel handlers are invoked to either

- correct the faulting condition and continue the program
(e.g., emulate the missing FP functionality, update virtual
memory management), or

- "signal” back to the user process if a user-level handler
function is registered, or

- kill the process if the exception cannot be corrected

"System call” is a special kind of function call from
user process to kernel-level service routines

L) ENGNEERING soLiazo
Returning from Interrupt

¢ Software restores all architectural state saved at
the start of the interrupt routine

& MIPS32 uses a special jump instruction (ERET) to
atomically
- restore the automatically saved CPU states
- restore the privilege level
- jump back to the interrupted address in EPC

& MIPS R2000 used a pair of instructions
jrr2é // jump to a copy of EPC in r26
rfe // restore from exception mode
// must be used in the delay slot!!

((3 Electrical & Computer CMU 18-447
ENGINEERIN 509 L14.21
© 2009

Branch Delay Slot and RFE

¢ What if the faulting address is a branch delay
slot?
- simply jumping back to the faulting address won't
continue correctly if the preceding branch was taken
- we didn't save enough information to do the right thing
& MIPS's solution

- the CPU HW makes a note (in the Cause register) if the
faulting address captured is in a delay slot

- in these cases, the handler returns o the preceding
branch instruction which gets executed twice (as the last
instruction before and first instruction after)

Generally harmless except "JALR r31"
- explicitly disallowed by the MIPS ISA
- think about what would happen in that case

{U. Electrical & Compurer CMU 18-447
ENGINEERING 509 L14-22

An Extremely Short Handler

J. C. Hoe

_handler_shortest:
no prologue needed

epilogue

mfcO r26,epc # get faulting PC

jr 26 # jump to retry faulting PC

rfe # restore from exception mode

Note: You can find more examples in the book CD. If you are
really serious about it, take a look inside Linux source. It is
not too hard to figure out once you know what to look for.

) ENGINEERINE géz% gz;f'é‘i
A Short Handler

J. C. Hoe
_handler_short:

prologue
addi sp, sp -0x8 # allocate stack space (8 byte)
sw r8, 0x0(sp) # back-up r8 and r9 for use in body
sw r9, Ox4(sp) #
epilogue
Iw r8, 0x0(sp) # restore r8, r9
lw r9, Ox4(sp) #
addi sp, sp, 0x8 # restore stack pointer
mfcO r26,epc # get EPC
jraé # jump to retry EPC
rfe # restore from exception mode
4 ENGINEERING i

© 2009
J. C. Hoe

Nesting Interrupts

Onan interrupt control transfer, further
asynchronous interrupts are disabled automatically

- another interrupt would overwrite the contents of the
EPC and Interrupt Cause and Status Registers

- the handler must be carefully written to not generate
synchronous exceptions itself during this window of
vulnerability

For long-running handlers, interrupt must be re-
enabled to not missed additional interrupts

- the handler must save the contents of EPC/Cause/Status
to memory (stack) before re-enabling asynchronous
interrupt

- once interrupts are re-enabled, EPC/Cause/Status is
clobbered by the next interrupt (contents appear to
change for no reason)

? Electrical & Computer CMU 18-447
) ENGiNEERING 509 L14.25

Interrupt Priority
Asynchronous interrupt sources are ordered by
priorities
- higher-priorities interrupts are more timing critical
- if multiple interrupts are triggered, the handler handles
the highest-priority interrupt first
¢ Interrupts from different priorities can be
selectively disabled by setting the mask in the
Status register

When servicing a particular priority interrupt, the
handler only re-enable higher-priority interrupts
- higher-priority interrupt won't get delayed

Re-enabling same/lower-priority interrupts may
lead to an infinite loop if a device interrupts

repeatedly
L) ENGNEERING 50 gg;f‘é?
Nestable Handler
_handler_nest:
prologue
addi sp, sp, -0x8 # allocate stack space for EPC
mfcO r26, epc # get EPC
sw r26, 0x0(sp) # store EPC onto stack
sw r8, Ox4(sp) # allocate a register for use
later
*interr - e
mtcO r26, status # write into status reg
epilogue
addi r8, r0, 0x404 # clear interrupt enable

bit

