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ABSTRACT

Traditional adaptive filtering systems learn the user’s
interests in a rather simple way — words from relevant
documents are favored in the query model, while words from
irrelevant documents are down-weighted. This biases the
query model towards specific words seen in the past, causing
the system to favor documents containing relevant but
redundant information over documents that use previously
unseen words to denote new facts about the same news
event. This paper proposes news ways of generalizing
from relevance feedback by augmenting the traditional bag-
of-words query model with named entity wildcards that
are anchored in context. The use of wildcards allows
generalization beyond specific words, while contextual
restrictions limit the wildcard-matching to entities related
to the user’s query. We test our new approach in a nugget-
level adaptive filtering system and evaluate it in terms of
both relevance and novelty of the presented information.
Our results indicate that higher recall is obtained when
lexical terms are generalized using wildcards. However, such
wildcards must be anchored to their context to maintain
good precision. How the context of a wildcard is represented
and matched against a given document also plays a crucial
role in the performance of the retrieval system.
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1. INTRODUCTION

Adaptive Filtering (AF) is the task of online prediction of
the relevance of documents with respect to predefined topics.
Based on an initial query or a few example documents, the
AF system monitors a stream of documents and selects some
of them for the user’s attention. The user provides feedback
on these documents, which is used by the system to update
its query model and present a new set of documents to
the user. AF has been studied extensively and large scale
evaluations have been conducted as part of TREC and TDT
forums [1, 2, 7, 8]. Various algorithms have been applied to
incremental learning of user’s information needs and logistic
regression is considered to be the state of the art due to its
learning performance as well as computational efficiency in
light of frequent updates to the query model [13].

Irrespective of the learning algorithm used to update the
query model, the basic idea is to favor terms from documents
that the user marked as relevant and down-weight the terms
from irrelevant documents. However, such a scheme biases
the query model towards specific documents seen by the
user, and hence, towards specific terms that occurred in
those documents. Therefore, the system will try to retrieve
new documents that contain those same terms, and hence,
the same information.

Consider the following snippet — “..Parker reported that
over 120 people have died in various shootings and explosions
in Baghdad and Diwaniyah. 36 of them...”. If the user
marks this snippet as relevant, a naive approach would be to
add terms like “Parker”; “120”, “people”, “died”, “shooting”,
“explosions”, “baghdad”, “diwaniyah” and “36” into the query
model. However, it is unlikely that the user is interested in
the person named “Parker”, or specific numbers like “120”
and “36”. If words like “120” and “36” are annotated as
CARDINAL (numeric) entities, “shootings” and “explosions”
are annotated as VIOLENCE-EVENT entities, and “baghdad”
and “diwaniyah” are annotated as LOCATION entities, then
the system has a better chance of inferring that the user
is interested in casualty counts (as CARDINAL entities), acts
of violence (as VIOLENCE-EVENT entities), in the above-
mentioned or other locations (as LOCATION entities).

Consider another snippet — “..the oil tanker, named
Jessica, was 30 years old and...”. If the user marks this
snippet as relevant, and has also marked other snippets in
the past that contained the word “Jessica”, it is likely that
the user is interested in knowing more about this oil tanker.
Hence, instead of memorizing words like “30”, “years”, and
“old”, the system should try to find passages that contain
other “facts” about Jessica, e.g. its LOCATION and owning



ORGANIZATION.

These examples suggest a pattern-based approach to
adaptive filtering — instead of memorizing words, induce
generic patterns from documents marked as relevant and
use these patterns to find other documents that are likely
to be of interest. Our patterns, as evident from the
above examples, are based on named entity wildcards that
favor documents containing entities that the user would be
interested in.

2. RELATED WORK

Neither the automatic induction of patterns from text
nor the use of named entities to generalize beyond lexical
terms are new ideas. However, these ideas have not been
combined to improve performance on ad-hoc retrieval and
adaptive filtering tasks. Moreover, recent advances in
tagging accuracy and the rich set of entities and events
that can be identified by modern taggers provide an
excellent opportunity to explore their impact on information
retrieval tasks like adaptive filtering that have mostly been
approached using the traditional “bag-of-words” model.

2.1 Question Answering

Named entity annotations have found significant use in
question answering (QA) where a majority of questions
(such as who-, where-, and when- questions) have answers in
the form of PERSON, LOCATION, DATE and TIME entities [11,
4]. QA systems take advantage of this fact by using surface
patterns based on part-of-speech tags or named entities
e.g. “<PERSON> was born on <DATE>” to answer common
questions e.g. “When was <PERSON> born?”. Such patterns
can also be used to extract information from a corpus offline
so that frequent question types can be answered efficiently
[3].

However, users in AF settings often start with vague
queries instead of specific questions that cannot be classified
neatly into specific question types. In fact, a user might not
even have specific information needs until he or she reads a
few articles delivered by the retrieval system. For instance,
a user might start with a query like “Galapagos oil spill”
to learn more about the oil spill accident. After reading a
few relevant documents, the user might get more interested
in details about the tanker (how old it was, who owned it)
and about the Galapagos islands (their location). Thus, the
system must infer the kind of questions that might be of
interest to the user, and hence, induce patterns accordingly
from the documents marked as relevant by the user.

2.2 Information Extraction

Automatic induction of patterns for information extrac-
tion is an important task with applications in many other
fields. AutoSlog-TS [5] automatically extracts candidate
patterns from untagged documents labeled as relevant or
irrelevant to a given domain. The extracted patterns,
e.g. attack on <mnp>, can be seen as wildcards (<np>) with
context (attack on) that can capture phrases like “attack
on embassy”.

However, these patterns are more restrictive and will not
match variations like “the embassy was attacked”. This
is not an issue if enough training data is available in
which case all such variations can be learned. Omne of
the main challenges in AF systems is limited training
data. Our wildcards are more flexible in the way they

place restrictions on the context. Moreover, we use a
richer set of annotations that can differentiate entities like
people, locations, organizations, etc., as well as events like
violence, demonstrations, disasters, etc., so that fine-grained
information needs can be captured effectively.

2.3 Text Categorization

The idea of using generic patterns that match words
in context has also been applied to text categorization.
Riloff used a training set of documents to induce relevancy
signatures [6] that consisted of a trigger word and certain lin-
guistic constraints (e.g. presence of “bomb” as active verb).
These signatures were matched against test documents to
predict their category. Relevancy signatures were further
augmented with domain-specific semantic constraints, e.g.
the subject must be tagged as TERRORIST ORGANIZATION.

While they use such semantic roles as additional con-
straints to improve precision, we use named entity tags
as wildcards to allow other related terms to match, as a
means of improving recall. Moreover, instead of requiring
the presence of a single word as a contextual constraint, we
represent the context as a vector of terms with associated
weights and compute a “soft-match” between the patterns
and given documents, so that documents can be ranked by
their relevance.

2.4 Thesaurus-based Query Expansion

Thesaurus-based query expansion approaches can also be
seen as ways of generalizing the query model. Augmenting
the query with synonyms can retrieve documents that
contain words semantically related to the terms in the query.

Such an approach does not help when the user is looking
for other information related to the event, in the form of
other entities like persons, organizations, dates, etc. These
“other entities” are not synonymous with entities already
retrieved by the system.

3. OUR APPROACH

We wish to explore a pattern-based approach to the
adaptive filtering task — given a set of documents that the
user marked as relevant, extract patterns from them that
will help in finding other documents that the user might
be interested in. However, these other documents should
contain information that has not already been seen by the
user in the past. Hence, instead of memorizing words from
documents marked as relevant by the user, the system must
infer more generic patterns about the user’s interests.

Information that is related to the query but previously
unseen by the user can be of two types:

1. Other facts of the same type. For example, if the user
has expressed interest in the COUNTRY that reacted to
an event, the user might also be interested in other
COUNTRYs that have reacted to this event. Similarly,
user’s interest in one VIOLENCE-EVENT in Iraq can
be assumed to suggest interest in other mentions of
VIOLENCE-EVENT in Iraq.

2. Facts of other types. For example, if the user has
expressed interest in the AGE of a person, the user is
likely to be interested in knowing other facts about
this person, e.g. his or her COUNTRY, the ORGANIZATION
that this person belongs to, and so on. Similarly, user’s
interest in an oil tanker called “Jessica” can be assumed



Table 1: Examples of Wildcards

| Type | Wildcard | Description
S-Wildcard | (COUNTRY){Cuba, trade, embargo} | Matches country names close to the terms
“Cuba”, “trade”, “embargo”
S-Wildcard | (VIOLENCE-EVENT){Iraq} Matches violence-related terms close to “Iraq”
A-Wildcard | (ANY){Jessica} Matches any terms tagged as entities close to “Jessica”
A-Wildcard | (ANY){Cheney} Matches any terms tagged as entities close to “Cheney”

to suggest interest in other details about Jessica, e.g.
AGE of the vessel, owning ORGANIZATION, etc.

Hence we must use wildcards that can match any words
that are tagged with appropriate entity types. It is obvious
that two different kinds of wildcards are needed to capture
the two kinds of information as described above. The first
type of wildcards should match entities of a specific type. We
call these as S-Wildcards (Specific entity type Wildcards).
The second type of wildcards can match against all types
of entities. We call these as A-Wildcards (Any entity type
Wildcards).

However, these wildcards would simply match against
entities irrespective of their context. For example, a
wildcard that matches AGE entities will match against any
mention of age — be it age of the person of interest, some
other person, or even the age of a monument. Hence, we
must anchor the wildcards to the context in which they
should be triggered.

Table 1 shows some example wildcards of both types. We
give details of how these wildcards are induced and how they
are anchored to their contexts in section 6. First we describe
in section 4 the adaptive filtering framework that we use and
how it is crucially different from traditional adaptive filtering
setups explored in TREC and TDT forums. In section 5, we
give an overview of our various system components.

4. NUGGET-LEVEL ADAPTIVE
FILTERING

In real life, the information need of a user is not satisfied
by “relevant documents” as such. Instead, it is satisfied by
relevant facts, i.e. nuggets of information, or simply nuggets.
These nuggets can come from entire documents, passages, or
even individual sentences. Moreover, two documents that
contain the same nuggets provide no more utility than a
single document. In fact, a user wastes time and effort by
reading a redundant document presented by the system.

Nugget-level adaptive filtering is a framework that eval-
uates a filtering system at the nugget-level. Thus a
system receives credit for presenting spans of text that
contain relevant and novel information, and is penalized for
presenting redundant or otherwise irrelevant information.

Nugget-level Adaptive Filtering has important implica-
tions on the filtering task:

1. Given a nugget-level evaluation, the user is assumed to
be looking for specific facts. Such information needs
are more likely to be met by relatively shorter passages
rather than full news articles that place an undue
burden on the user to extract the relevant facts. Hence,
the system must present short passages to the user that
are most likely to contain useful information.

2. Since redundant information is penalized, the system
must determine the novelty of each candidate passage
with respect to passages delivered to the user in the
past. Passages that are very similar to the ones
previously seen by the user should be suppressed by
the system.

3. Relevance feedback at the passage level might be too
specific to learn from — when the user marks a passage
as relevant, he or she is not looking for other passages
containing the same information, but instead, wants
to see passages containing related information. While
novelty detection can help in suppressing redundant
passages, the system still needs to be able to generalize
from the feedback to determine what other passages
the user would be interested in. In the traditional
document-level adaptive filtering, this is less of an issue
since it is usually enough to retrieve other documents
that are topically related to the document selected by
the user. However, in nugget-level adaptive filtering,
documents that are on topic provide no utility to the
user unless they contain new facts about the topic.

S. SYSTEM OVERVIEW

Our system consists of two major components — 1)
Adaptive Filtering, and 2) Novelty Detection. The adaptive
filtering component is responsible for maintaining a query
model, retrieving relevant passages, and updating the model
based on user feedback. The novelty detection component
determines the novelty of each passage selected by the
adaptive filtering component, and suppresses any passage
that is too similar to a passage presented to the user in the
past.

5.1 Adaptive Filtering Component

The adaptive filtering component maintains a query
model for each query or information need of the user. This
query model is used to rank new passages, and the most
relevant ones are passed to the novelty detection component,
which selects a subset of novel passages to be presented
to the user. When the user marks some of these passages
as relevant, the system updates its query model by adding
new words or adjusting the weights of existing words in the
model.

We use the Vector Space Model [10], where queries and
documents are represented using vectors whose dimensions
correspond to individual words weighted using the TF-IDF
(Term Frequency-Inverse Document Frequency) scheme [9]
so that words that occur multiple times in a query or
document, but are relatively uncommon otherwise, receive
more importance.

We use the logistic regression classifier which is considered
to be the state of the art algorithm for incrementally



learning the query model in adaptive filtering [13]. Each
query is considered to be a class; membership to this class
corresponds to the relevance of a passage with respect to
the query. For training the classifier, the initial user query
as well as the positive feedback given by the user are used
as positive examples, while negative feedback is used for
negative examples. Initially, when only the user query is
present as positive example, and no negative feedback is
available, a background corpus is used to generate negative
examples to train the classifier for the first time. The
logistic regression model is regularized with a Gaussian prior
to avoid over-fitting on the training data. Further details
of using logistic regression for adaptive filtering as well as
computational issues are described in [13, 14].

The class model W™ learned by Logistic Regression is a
vector whose dimensions are individual words and whose
elements are the regression coeflicients, indicating how
influential each term is in the query profile. All passages
are ranked using this class model as follows:

1
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(1)
and passages with scores above a threshold (tuned on
a training set) are passed on to the novelty detection
component.

5.2 Novelty Detection Component

The system maintains a user history H of all passages
presented to the user in the past. Each candidate passage
T selected by the adaptive filtering component is compared
with past passages to ensure that it is sufficiently different
in terms of cosine similarity.

The novelty score of a candidate passage & is computed
as:

fvp(#) = 1 = max {cos(7, h)} (2)

The novelty score of each passage is compared to a pre-
specified threshold (tuned on a training set) and any passage
with a score below this threshold is dropped.

6. GENERALIZING FROM FEEDBACK

In this section, we describe how we extend our adaptive
filtering component by augmenting the bag-of-words query
models with named entity based wildcards. As mentioned
before, we induce two types of wildcards that focus on
retrieving slightly different types of information that is
related to the user’s information need.

6.1 Specific Entity Type Wildcards

The goal of Specific-Entity-type wildcards (S-Wildcards)
is to look for other facts of the same type — if the user selected
a passage containing a country name, organization name, or
mention of a violent act, then look for passages that mention
other countries, organizations, or violent acts, respectively.

An S-Wildcard S; consists of a named entity type e; and
an associated context ¢; that determines when the wildcard
should match. We use the notation S; = (e;){c;} to denote
the i*" S-Wildcard.

Given a passage marked as relevant by the user, an S-
Wildcard is induced for each type of entities present in the
passage. These are added to the query model and matched
against future passages to predict whether they contain
information that the user would be interested in.

For instance, consider the following snippet from a user-
selected passage with named entity annotations shown for
ease of understanding;:

.. .<PERSON>Parker</PERSON> reported that over
<CARDINAL>120</CARDINAL> people have died in
various <VIOLENCE-EVENT>shootings</VIOLENCE-EVENT>
and <VIOLENCE-EVENT>explosions</VIOLENCE-EVENT>

in <LOCATION>Baghdad</LOCATION> and
<LOCATION>Diwaniyah</LOCATION>.
<CARDINAL>36</CARDINAL> of them...

Each entity type is used to create an S-Wildcard, whose
context is created using the lexical terms that surround the
entity. The following S-Wildcards can be induced from this
passage:

e S; = (PERSON){reported}
e S; = (CARDINAL){reported, people, died}

e S3 = (VIOLENCE-EVENT){died, explosions, shoot-
ings, Baghdad}

e 54 = (LOCATION){shootings, diwaniyah, baghdad}

For simplicity, here we define context using a three-word
window around each entity. Stop-words like “that”, “have”,
“and”, “in”, etc. are ignored. Also note that only one S-
Wildcard is created for each entity type — the contexts of
multiple entities with the same type are merged together.

Once we have a set of S-Wildcards for a query, we must
be able to match these against future passages to predict
how relevant they are to the user. To do so, we extract
S-wildcards from the future passages in the same way, and
determine how similar they are to the wildcards in the query.
If wildcards from the query and passage are highly similar,
the passage is likely to contain information that the user
would be interested in. The degree of similarity between a
wildcard S; in the query and a wildcard S; from a passage
is computed as:

sim(ci,cj), e =e;

sim(S;, Sj) = { (3)

0, otherwise
Thus, the similarity between two wildcards is equal to the
similarity between their contexts, given both wildcards are
associated with the same entity type.
The similarity sim(c;,c;) between contexts can be com-
puted using the following matching rules:

1. Always-match — assume contexts always match,
effectively, only counting the number of entity-types
that are common in the query and the passage. This is
the baseline approach which does not anchor wildcards
to their context. We include this to determine the role
played by context when using entity-based wildcards.

2. Phrase-match — represent the context using the
exact sequence of surrounding words e.g. “reported-
that-over-<CARDINAL>- people-have-died”. Thus, two
contexts either match completely or do not match
at all. However, it is unlikely that future passages
will contain phrases that can match exactly with such
patterns.



Table 2: Four context matching rules applied to different snippet pairs

Snippet Pairs

Always

people in Iraq

7 people died 0.0

7 people died
34 people died

1.0

7 people died
3 died

1.0

7 people died
4000 troops deployed

1.0

7 people died
35000 people voted

1.0

Matching rule

Phrase | Boolean | Soft
0.0 0.0 0.0
1.0 1.0 1.0
0.0 1.0 0.78
0.0 0.0 0.0
0.0 1.0 0.25

3. Boolean-match — contexts are represented as bags of
words and are said to match if they have at least one
word in common, i.e. ¢ Nc¢; # ¢. e.g. a CARDINAL
in a future passage must have at least one of the
words “reported”;, “people”, or “died” in its vicinity
to match against So. However, certain words are less
important (“reported” is very common in news articles)
and hence should receive lesser credit when matched,
as compared to words like “died”.

4. Soft-match — instead of a binary match, compute the
degree of match between the two contexts using cosine
similarity cos(c;, ;). This allows the use of weighing
schemes (e.g. TF-IDF) to give more importance
to content-bearing words in the context. Thus, So
will have a greater match against the snippet “45
more people died in...”; than “7 people are reported
missing...”; and no match against “5000 troops have
been deployed...”.

—

The total S-Wildcard-based score of a passage & with
respect to a query ¢ can be computed by adding the
similarities between each wildcard in the query and each
wildcard in the passage:

fsw@ =)

S;€4q,S; €T

szm(Sz, S]) (4)

Table 2 shows how different snippet pairs receive different
similarity scores when using the above-mentioned matching
rules. Note how the first snippet pair receives zero similarity
score for all matching rules since the snippets do not
contain a common entity type (they contain a number and
location, respectively). Also note how soft-matching using
cosine similarity favors the overlap of important words like
“died” compared to words like “people” which are relatively
common and hence less content-bearing.

6.2 Any Entity Type Wildcards

The goal of Any-Entity-type Wildcards (A-Wildcards)
is to look for other facts about terms that the user has
previously expressed interest in. Since most facts are tagged
as entities (e.g. person names, organizations, locations,
dates, events), A-Wildcards simply need to find passages
containing many entities close to the terms denoting the
user’s interest, e.g. find passages containing entities close to
the word “Cheney”, if the user has marked many passages
in the past containing the word “Cheney”.

Table 3: Terms with highest regression coefficients
for the query “Galapagos oil spill”
| Term | Regression Coefficient |

galapagos | 0.763179
tanker | 0.587772
ecuador | 0.556614
island | 0.551921
fuel | 0.498486

spill | 0.455319

leak | 0.327691
gallon | 0.325236
ecosystem | 0.312904
wildlife | 0.259604

An Any-Entity-type Wildcard (A-Wildcard) A; is repre-
sented only by a context ¢;, which corresponds to the specific
terms that the user is interested in. A-Wildcards do not have
an associated entity type, since they match against entities
of any type. However, for consistency, we write A-Wildcards
as (ANY){c:}.

Unlike S-Wildcards, which are induced from each user-
selected passage and added to the query, each query g only
contains one A-Wildcard: A; = (ANY){cq}, where ¢, is the
set of all lexical terms with a positive regression coefficient
in the logistic regression model for query g. Terms with
positive regression coefficients are indicators of relevance,
while the magnitude of the coefficients denotes the degree of
relevance. Thus, by favoring entities close to such terms, Aq
finds passages that contain more information about things
that the user seems to be interested in.

As the user provides feedback on passages, logistic
regression updates the query model so that terms that are
most related to the user’s query receive large regression
coefficients, while unrelated terms receive small or negative
coefficients. Table 3 shows ten terms with the highest
coefficients in the logistic regression model for the query
“Galapagos oil spill”. Since terms like “Galapagos” (name
of the island) and “tanker” are highly relevant to the query,
it is reasonable to present passages to the user that contain
more information (in the form of entities) closely related to
the island or the tanker. The following passage, for instance,
is a good candidate:

...an oil tanker carrying <CARDINAL>240,000</CARDINAL>

gallons of fuel products...the galapagos islands



are <CARDINAL>600</CARDINAL> miles off
the coast of ecuador...

where only entities close to “galapagos” and “tanker” are
shown for the sake of explanation.

The A-Wildcard A4 is matched against a new passage by
computing its similarity with S-Wildcards extracted from
the passage as described in the previous section. Since Aq
places no restriction on the entity type, similarity between
Aq and a S-Wildcard S; from the passage is simply defined
as:

sim(Aq, Sj) = sim(cq, ¢;) (5)

Again, similarity sim(cq,c;) between contexts can be
computed using the following matching rules:

1. Always-match — assume contexts always match,
effectively, only counting the number of entities present
in a passage. This is a baseline approach which simply
favors passages that contain more entities.

2. Boolean-match — contexts are said to match if they
have at least one word in common, i.e. ¢q Nc; # ¢.
Note that this gives equal credit to entities that appear
close to highly relevant terms, as well as entities that
appear close to only slightly relevance terms.

3. Soft-match — sum of the logistic regression weights of
terms common in ¢4 and c;. Thus, entities that appear
close to highly relevant terms receive higher credit.

We do not include Phrase-match since A,’s context vector
¢cq is a bag of words with no ordering information.

The total A-Wildcard-based score of a passage Z with
respect to a query ¢ can be computed by adding the
similarities between A, and each S-wildcard in the passage:

faw (@) = > sim(Ay, S;) (6)

5;ex

6.3 Combining scores

For each passage ¥, we can compute three scores that
determine its relevance to the user’s information need:

1. The logistic regression score frer(Z) (equation 1) that
favors passages containing terms topically related to
the query.

2. The S-Wildcard score fsw (Z) (equation 4) that favors
passages containing other information of the “same
type” that the user might be interested in.

3. The A-Wildcard score faw (Z) (equation 6) that
favors passages containing information of “other types”
related to terms that the user has expressed interest
in.

We compute a single relevance score for a passage using a
weighted combination of the above scores:

f(@) = frec(T) + o fsw(Z) + 8- faw (T) (7)

The optimum values of a and (3 are tuned on the training
set of queries.

7. EXPERIMENTS

7.1 Data and Experimental Setup

TDT4 was the benchmark corpus in the TDT2002 and
TDT2003 evaluations. The corpus consists of over 90,000
news articles from multiple newswire sources published
between October 2000 and January 2001, in the languages
of Arabic, English and Mandarin. In this paper, we restrict
our evaluation to the 23,000 English documents.

We use the 120 queries and associated answer keys as
described in [12] as our evaluation corpus. We divide the
120 queries into a training and test set of 60 queries each.
The training set is used to tune the relevance threshold,
novelty threshold, and the score combination weights o
and B (equation 7) using cross-validation. For our corpus,
the optimal values when using soft-match rules for both
wildcards were found to be as follows: relevance threshold
(0.62), novelty threshold (0.5), a (1.0), and 3 (0.1). Note
the small value for 8 which compensates for the relatively
larger scores (faw) generated when using soft-match rule
for A-Wildcards.

We divide the four-month corpus into chunks of 5 days.
The AF system is supposed to return a ranked list of 3-
sentence passages at the end of each chunk, receive feedback,
and then produce new ranked lists for the next chunk, and
so on. We believe this is more realistic than a system
that returns documents for the user’s attention at arbitrary
times and expects feedback before it moves on to the next
document. Instead, a user might choose to go through
the system’s output after every n days, where n can be
controlled by the user.

7.2 Evaluation

The system is evaluated on the test set using two metrics
— 1) Nugget recall, which simply counts the number of
unique nuggets that the system was able to retrieve, and 2)
Normalized Discounted Cumulated Utility (NDCU), which
estimates the total utility derived by the user after going
through each system-returned passage.

Nugget Recall: The answer keys for the queries in
the test set consist of 705 nuggets. Nugget Recall simply
calculates the fraction of these nuggets that the system was
able to retrieve. Since we only count unique nuggets, the
system does not receive more credit for presenting passages
that contain previously seen nuggets. Thus, Nugget Recall is
a good indicator of whether the system was able to generalize
from past feedback and retrieve new nuggets that might not
share common words with previously seen nuggets.

NDCU: Normalized Discounted Cumulated Utility is a
new metric that we proposed in [12], which measures the
utility of a retrieval system as the difference between how
much the user gained in terms of useful information and how
much the user lost in terms of time and energy. The gain
derived from a system-returned passage is defined as the
number of unseen nuggets contained in the passage, while
the loss is defined as a constant cost of reading the passage.
NDCU takes into account — 1) number of unseen nuggets
contained in each passage, 2) the rank of the passage, and 3)
the number of passages returned by the system (to penalize
long ranked lists). The reader is referred to [12] for a detailed
description of NDCU.



Table 4: System performance obtained using various feedback settings

| Feedback Setting

| Nugget Recall | NDCU Score |

No Feedback 0.54 0.37
Logistic Regression (LR) based feedback | 0.60 0.41
LR + S-Wildcards
using Always-match 0.54 0.37
using Phrase-match 0.61 0.43
using Boolean-match 0.62 0.43
using Soft-match 0.63 0.45
LR + A-Wildcards
using Always-match 0.36 0.25
using Boolean-match 0.51 0.36
using Soft-match 0.65 0.46
Best combination 0.66 0.48
LR +
S-Wildcards (Soft-match) +
A-Wildcards (Soft-match)
8. RESULTS LR
In Table 4, we report the performance of the system under 705
the following feedback settings:
e No feedback — Only the initial user query is used for
retrieval. Passages are ranked by the cosine similarity
of their TF-IDF vectors with the TF-IDF vector of
the user query. %’
e Logistic Regression (LR) based feedback —
Based on passages marked as relevant or irrelevant by
the user, the query model is updated using logistic
regression, as described in section 5.1.
e LR 4+ S-Wildcards — In addition to updating the ; ;
query model using logistic regression, S-Wildcards are S-Wildcards A-Wildcards

induced from user feedback, which are added to the
query and matched against future passages. Multiple
ways of matching the contexts are reported.

¢ LR 4+ A-Wildcards — In addition to updating the
query model using logistic regression, A-Wildcards are
induced from user feedback, which are added to the
query and matched against future passages. Multiple
ways of matching the contexts are reported.

e Best combination — All the three methods of
applying feedback are used with the best-performing
settings.

8.1 Effect of Wildcards

It is evident that both types of wildcards improve per-
formance over the bag-of-words based feedback mechanism
that only uses logistic regression (LR) for updating the query
model. These improvements are statistically significant
when compared with LR based feedback (p-values of 1073
and 2 % 107° for S-Wildcards soft-match and A-Wildcards
soft-match, respectively) under sign test for nugget recall.

The best performance obtained from A-Wildcards is
greater than that from S-Wildcards. More analysis is needed
to determine whether this is due to the nature of this
particular set of queries and the answer keys, or whether our
hypothesis about “facts of other types” is stronger than our

ypothesis about “other facts of the same type” (cf. Section

3).

Figure 1: Nuggets retrieved by the three feedback
mechanisms when used individually.

To further analyze the contribution of each of the feedback
mechanisms, figure 1 shows the Venn diagram of the nuggets
retrieved by each of the feedback mechanisms when used
alone with the best settings (soft-matching rules). Of
the 705 nuggets, there were 401 common nuggets that
could be retrieved by any of the feedback techniques when
used individually. While 421 (401+4+3+13) nuggets could
be retrieved by using LR based feedback, it missed 62
(5432+25) nuggets that could be retrieved if wildcards
were employed. Also, while both wildcards could retrieve
a common set of 433 (4014-32) nuggets, S-Wildcards could
retrieve an additional 9 nuggets which A-Wildcards could
not. On the other hand, A-Wildcards could retrieve 28
nuggets which S-Wildcards could not. This reinforces the
fact that the contribution of A-Wildcards was larger than
that of S-Wildcards. The contributions were not completely
overlapping and using both types of wildcards yielded better
performance than either of the wildcard types used alone.

8.2 Effect of Context Matching Rules

For both types of wildcards, the best performance
was obtained when the soft-matching rule was used for



Table 5: Most frequent entity types in two news
events (descending order)

“Gujarat earthquake” | “Texas prison break”
LOCATION LOCATION

CARDINAL PERSON
ORGANIZATION CARDINAL

PERSON FACILITY
COMMUNICATION-EVENT | ORGANIZATION

DATE DATE

COUNTRY COMMUNICATION-EVENT
FACILITY OCCUPATION
OCCUPATION VIOLENCE-EVENT
DISASTER-EVENT WEAPON

VEHICLE VEHICLE

DURATION CUSTODY-EVENT

comparing the contexts. Always-matching rule ignores
context altogether. However, it does not seem to hurt
the performance of S-Wildcards as much as A-Wildcards
because in the case of S-Wildcards, the entity types from
the passage must still match against those in the query. On
the other hand, A-Wildcards place no restrictions on the
entity types, causing passages containing more entities of
any type to be favored blindly.

9. DISCUSSION AND FUTURE WORK

Two types of wildcards — Although our analysis (figure
1) indicates that both types of wildcards are useful and
overall provide the highest performance when used together,
we do not expect that both of them are meaningful (or
equally meaningful) for every query. Currently, it is not
clear how to choose (or favor) one type of wildcard based
on the nature of the user’s query. Moreover, it might not
be essential, after all, to explicitly define the two types of
wildcards as we have proposed in this paper — one might be
able to create a single abstraction that can model both types
of wildcards, and dynamically adjust their relative weights
as more feedback is received from the user.

Better use of entity types — In this work, we haven’t
fully leveraged the rich set of entity and event types that
are identified by our tagger. Certain entity types might be
more important depending on the nature of the user’s query.
For instance, table 5 shows the most frequent entity types
in two very dissimilar news events. While certain entity
types like DISASTER-EVENT and DURATION are more frequent
in articles about the Gujarat earthquake, entity types like
VIOLENCE-EVENT, VEHICLE and CUSTODY-EVENT are more
frequent in articles about the Texas prison break. Based
on such observations, one can assign an a-priori distribution
on the entity types conditioned on the user’s query e.g.
giving higher weights to CRIME-EVENT, VIOLENCE-EVENT, and
WEAPON entities if the user’s query is predicted to be in the
“violence/crime” category. User queries can be categorized
based on the words in the query itself and the top few
documents retrieved by the system for that query.

Also, based on the semantic relationships that hold
between certain entity and event types, user’s interest
in entities of one type could be taken as indication
of interest in certain other entity types. For exam-
ple, user’s interest in an ORGANIZATION could trigger a
search for CORPORATE-EVENT entities as well; similarly,

POLITICAL-EVENT entities might also indicate interest in
VIOLENCE-EVENT and DEMONSTRATION-EVENT entities.

Representation of Context — Currently, the context of
each wildcard is represented by a collection of words that
occurred in the proximity of the entity. We could also allow
entity wildcards as part of the context of another wildcard,
to capture patterns like “find VIOLENCE-EVENTs mentioned
close to any ORGANIZATION entity”.

10. CONCLUSIONS

This paper explores new ways of generalizing from
relevance feedback through a pattern-based approach to
adaptive filtering. Our patterns are essentially named
entity wildcards that are anchored to their context. We
proposed two types of wildcards that are targeted towards
slightly different kinds of information that the user might
be interested in. We analyzed different ways in which these
wildcards can be anchored to their contexts, and showed
that soft-matching rules consistently perform the best. We
tested our new approach in a nugget-level adaptive filtering
system, and evaluated it in terms of both relevance and
novelty of the presented information. Encouraging results
were obtained when both kinds of wildcards were used in
addition to the traditional bag-of-words feedback mechanism
based on a logistic regression classifier.
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