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This document provides detailed derivation for the re-
sults used in the paper and additional quantitative experi-
ments to validate the robustness of CCNN algorithm.

In the paper, we optimize constraints on CNN output by
introducing latent probability distribution P (X). Recall the
overall main objective as follows:

minimize
θ,P

−HP −EX∼P [logQ(X|θ)]︸ ︷︷ ︸
HP |Q

subject to A~P ≥ ~b,
∑
X

P (X) = 1, (1)

where HP = −
∑
X P (X) logP (X) is the entropy of la-

tent distribution,HP |Q is the cross entropy and ~P is the vec-
torized version of P (X). In this supplementary material,
we will show how to minimize the objective with respect to
P . For the complete block coordinate descent minimization
algorithm with respect to both P and θ, see the main paper.

Note that the objective function in (1) is KL Divergence
of network output distribution Q(X|θ) from P (X), which
is convex. Equation (1) is convex optimization problem,
since all constraints are linear. Furthermore, Slaters condi-
tion holds as long as the constraints are satisfiable and hence
we have strong duality [1]. First, we will use this strong du-
ality to show that the minimum of (1) is a fully factorized
distribution. We then derive the dual function (Equation (4)
in the main paper), and finally extend the analysis for the
case when objective is relaxed by adding slack variable.

1. Latent Distribution

In this section, we show that the latent label distribu-
tion P (X) can be modeled as the product of independent
marginals without loss of generality. This is equivalent to
showing that the latent distribution that achieves the global
optimal value factorizes, while keeping the network param-
eters θ fixed. First, we simplify the cross entropy term in

the objective function in (1) as follows:

HP |Q = −EX∼P [logQ(X|θ)]

= −EX∼P

[
n∑
i=1

log qi(xi|θ)

]

= −
n∑
i=1

EX∼P [log qi(xi|θ)]

= −
n∑
i=1

Exi∼P [log qi(xi|θ)]

= −
n∑
i=1

∑
l∈L

P (xi = l) log qi(l|θ) (2)

We used the linearity of expectation and the fact that qi
is independent of any variable Xj for j 6= i to sim-
plify the objective, as shown above. Here, P (xi = l) =∑
X:xi=l

P (X) is the marginal distribution.
Let’s now look at the Lagrangian dual function

L(P, λ, ν) =−HP +HP |Q

+ λ>(~b−A~P ) + ν

(∑
X

P (X)− 1

)
=−HP +HP |Q −

∑
i,l

λ>Ai;l ~P (xi = l)

+ λ>~b+ ν

(∑
X

P (X)− 1

)

=−HP −
n∑
i=1

∑
l∈L

P (xi = l)
(
log qi(l|θ) +ATi;lλ

)
︸ ︷︷ ︸

H̃P |Q

+ λT~b+ ν

(∑
X

P (X)− 1

)
, (3)

where H̃P |Q is a biased cross entropy term and Ai;l is the
column of A corresponding to pi(l).. Here we use the fact
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that the linear constraints are formulated on the marginals to
rephrase the dual objective. We will now show this objec-
tive can be rephrased as a KL-divergence between a biased
distribution Q̃ and P .

The biased cross entropy term can be rephrased
as a cross entropy between a distribution
Q̃(X|θ, λ) =

∏
i q̃i(xi|θ, λ), where q̃i(xi|θ, λ) =

1
Z̃i
qi(xi|θ) exp(A>i;xi

λ) is the biased CNN distribution and

Z̃i is a local partition function ensuring q̃i sums to 1. This
partition function is defined as

Z̃i =
∑
l

exp
(
log qi(l|θ) +A>i;lλ

)
The cross entropy between P and Q̃ is then defined as

HP |Q̃ = −
∑
X

P (X) log Q̃(X|θ, λ)

= −
∑
i

∑
l

P (xi= l) log q̃i(l|θ, λ)

= −
∑
i

∑
l

P (xi= l)(log qi(l|θ, λ)+A>i;lλ−log Z̃i)

= H̃P |Q +
∑
i

log Z̃i (4)

This allows us to rephrase (3) in terms of a KL-
divergence between P and Q̃

L(P, λ, ν)

=−HP +HP |Q̃ −
∑
i

log Z̃i+λ
T~b+ν

(∑
X

P (X)− 1

)

=D(P ||Q̃)− C + λT~b+ ν

(∑
X

P (X)− 1

)
, (5)

whereC =
∑
i log Z̃i is a constant that depends on the local

partition functions of Q̃.
The primal objective (1) can be phrased as

minP maxλ≥0,ν L(P, λ, ν) which is equivalent to the
dual objective maxλ≥0,ν minP L(P, λ, ν), due to strong
duality.

Maximizing the dual objective can be phrased as maxi-
mizing a dual function

L(λ) =λ>~b−C+max
ν

min
P

D(P‖Q̃)+ν

(∑
X

P (X)− 1

)
=λ>~b−C+ min

P :
∑

X P (X)=1
D(P‖Q̃)︸ ︷︷ ︸

0

=λ>~b−
∑
i

log
∑
l

exp
(
log qi(l|θ) +A>i;lλ

)
, (6)

where the maximization of ν can be rephrased as a con-
straint on P i.e.

∑
X P (X) = 1. Maximizing (6) is equiv-

alent to minimizing the original constraint objective (1).

Factorization The KL-divergenceD(P ||Q̃) is minimized
at P = Q̃ =

∏
i q̃i, hence the minimal value of P fully

factorizes over all variables for any assignment to the dual
variables λ.

Dual function Using the definition qi(l|θ) =
1
Zi

exp(fi(l; θ)) we can define the dual function with
respect to fi

L(λ)=λ>~b−
∑
i

log
∑
l

exp(fi(l; θ)+A
>
i;lλ) +

∑
i

logZi︸ ︷︷ ︸
const.

,

where the log partition function is constant and falls out in
the optimization.

2. Optimizing Constraints with Slack Variable

The slack relaxed loss function is given by

minimize
θ,P,ξ

−HP −EX∼P [logQ(X|θ)]︸ ︷︷ ︸
HP |Q

+β>ξ (7)

subject to A~P ≥ ~b− ξ, ξ ≥ 0,
∑
X

P (X) = 1

For any β ≤ 0, a value of ξ → ∞ will minimize the ob-
jective and hence invalidate the corresponding constraints.
Thus, for the remainder of the section we assume that
β > 0. The Lagrangian dual to this loss is defined as

L(P, λ, ν, γ) =−HP +HP |Q + β>ξ + λ>(~b−A~P − ξ)

+ ν

(∑
X

P (X)− 1

)
− γ>ξ. (8)

We know that the dual variable γ ≥ 0 is strictly non-
negative, as well as

∂

∂ξ
L(P, λ, ν, γ) = β − λ− γ = 0. (9)

This leads to the following constraint on λ:

0 ≤ γ = β − λ.

Hence the slack weight forms an upper bound on λ ≤ β.
Substituting Equation (9) into Equation (8) reduces the dual
objective to the non-slack objective in Equation (3), and the
rest of the derivation is equivalent.



3. Ablation Study for Parameter Selection
In this section, we present results to analyze the sensitiv-

ity of our approach with respect to the constraint parameters
i.e. the upper and lower bounds. We performed line search
along each of the bounds while keeping others fixed. The
method is quite robust with a standard deviation of 0.73%
in accuracy, averaged over all parameters, as shown in Ta-
ble 1. These experiments are performed in the setting where
image-level tag and 1-bit size supervision is available dur-
ing training, as discussed in the paper. We attribute this ro-
bustness to the slack variables that are learned per constraint
per image.

Fgnd lower Bgnd lower Bgnd upper mIoU
al a0 b0 w/o CRF

0.1 0.2 0.7 40.5

0.2 0.2 0.7 40.6
0.3 0.2 0.7 40.6
0.4 0.2 0.7 39.6

0.1 0.1 0.7 40.5
0.1 0.3 0.7 40.4
0.1 0.4 0.7 40.5
0.1 0.5 0.7 40.4

0.1 0.2 0.5 36.6
0.1 0.2 0.6 38.9
0.1 0.2 0.8 39.7

Table 1: Ablation study for sensitivity analysis of the
CCNN optimization with respect to the chosen parameters.
The paramters mentioned here are defined in Equations (8)
and (9) in the main paper. Parameter values used in all other
experiments are shown in bold.

4. Ablation Study for Semi-Supervised Setting
In this section, we experiment by incorporating fully su-

pervised images in addition to our weak objective. The ac-
curacy curve is depicted in Figure 1.

Figure 1: Ablation study with varying amount of fully su-
pervised images. Our model makes good use of the addi-
tional supervision.
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