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Make sure to go to your Lab Section this week 
Completed Lab1 due before winter break, Friday, Feb 14th 
Note, a Design Document is due when you submit Lab1 final circuit 
Work alone 
 

Save your work! 
• Save often.  Verify file is non-zero.  Periodically save to Dropbox, email. 
• Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard) 

 

Homework1 is out 
Due a week before prelim1, Monday, February 24th 
Work on problems incrementally, as we cover them in lecture (i.e. part 1) 
Office Hours for help 
Work alone 
 
Work alone, BUT use your resources 

• Lab Section, Piazza.com, Office Hours 
• Class notes, book, Sections, CSUGLab 



Check online syllabus/schedule  

• http://www.cs.cornell.edu/Courses/CS3410/2014sp/schedule.html 

Slides and Reading for lectures 

Office Hours 

Homework and Programming Assignments 

Prelims (in evenings):  
• Tuesday, March 4th  

• Thursday, May 1th  

 

Schedule is subject to change 



“Black Board” Collaboration Policy 
• Can discuss approach together on a “black board” 
• Leave and write up solution independently 
• Do not copy solutions 

 

Late Policy 
• Each person has a total of four “slip days” 
• Max of two slip days for any individual assignment 
• Slip days deducted first for any late assignment,  
    cannot selectively apply slip days 
• For projects, slip days are deducted from all partners  
• 25% deducted per day late after slip days are exhausted 

 

Regrade policy 
• Submit written request to lead TA,  
 and lead TA will pick a different grader  
• Submit another written request,  
 lead TA will regrade directly  
• Submit yet another written request for professor to regrade. 
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Review 

• Finite State Machines 

Memory 

• Register Files 

• Tri-state devices 

• SRAM (Static RAM—random access memory) 

• DRAM (Dynamic RAM) 



(A) In a Moore Machine output depends on both 
current state and input 

(B) In a Mealy Machine output depends on current 
state and  input 

(C) In a Mealy Machine output depends on next 
state and input 
(D) All the above are true 

(E) None are true 



(A) In a Moore Machine output depends on both 
current state and input 

(B) In a Mealy Machine output depends on current 
state and  input 

(C) In a Mealy Machine output depends on next 
state and input 
(D) All the above are true 

(E) None are true 



General Case: Mealy Machine 
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Special Case: Moore Machine 
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Digital Door Lock 

Inputs:  
• keycodes from keypad 

• clock 

Outputs:  
• “unlock” signal 

• display how many keys pressed so far 



Assumptions: 

• signals are synchronized to clock 

• Password is B-A-B 

K 
A 
B 

K A B Meaning 

0 0 0 Ø  (no key) 

1 1 0 ‘A’ pressed 

1 0 1 ‘B’ pressed 



Assumptions: 

• High pulse on U unlocks door 

U 
D3D2D1D0 

4 LED 
dec 

8 

Strategy: 
(1) Draw a state diagram (e.g. Moore Machine) 
(2) Write output and next-state tables 
(3) Encode states, inputs, and outputs as bits 
(4) Determine logic equations for next state and outputs 
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(1) Draw a state diagram (e.g. Moore Machine) 
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(2) Write output and next-state tables  
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(2) Write output and next-state tables  
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(2) Write output and next-state tables  
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G1 
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Idle Ø Idle 

Idle “B” G1 

Idle “A” B1 

G1 Ø G1 

G1 “A” G2 

G1 “B” B2 

G2 Ø B2 

G2 “B” G3 

G2 “A” Idle 

G3 any Idle 

B1 Ø B1 

B1 K B2 

B2 Ø B2 

B2 K Idle 

(2) Write output and next-state tables  



(3) Encode states, inputs, and outputs as bits 

Cur. State Output 

Idle “0” 

G1 “1” 

G2 “2” 

G3 “3”, U 

B1 “1” 

B2 “2” 

U 
D3D2D1D0 

4 
dec 

8 

D3 D2 D1 D0 U 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 0 0 1 0 

0 0 1 0 0 

K 
A 
B 

S2 S1 S0 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

K A B Meaning 

0 0 0 Ø (no key) 

1 1 0 ‘A’ pressed 

1 0 1 ‘B’ pressed 

State S2 S1 S0 

Idle 0 0 0 

G1 0 0 1 

G2 0 1 0 

G3 0 1 1 

B1 1 0 0 

B2 1 0 1 

Cur. State Input Next State 

Idle Ø Idle 

Idle “B” G1 

Idle “A” B1 

G1 Ø G1 

G1 “A” G2 

G1 “B” B2 

G2 Ø B2 

G2 “B” G3 

G2 “A” Idle 

G3 any Idle 

B1 Ø B1 

B1 K B2 

B2 Ø B2 

B2 K Idle 

S2 S1 S0 S’2 S’1 S’0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 0 1 0 1 0 

0 0 1 1 0 1 

0 1 0 0 1 0 

0 1 0 0 1 1 

0 1 0 0 0 0 

0 1 1 0 0 0 

1 0 0 1 0 0 

1 0 0 1 0 1 

1 0 1 1 0 1 

1 0 1 0 0 0 

K A B 

0 0 0 

1 0 1 

1 1 0 

0 0 0 

1 1 0 

1 0 1 

0 0 0 

1 0 1 

1 1 0 

x x x 

0 0 0 

1 x x 

0 0 0 

1 x x 
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U 
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A 
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D3 D2 D1 D0 U 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 0 0 1 0 

0 0 1 0 0 

S2 S1 S0 

0 0 0 

0 0 1 

0 1 0 
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1 0 0 

1 0 1 

(4) Determine logic equations for next state and outputs 

U  = S2 S1S0 
D0 = S2S1S0 + S2 S1S0  + S2 S1S0 
D1 = S2 S1S0 + S2 S1S0  + S2 S1S0 
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S2 S1 S0 S’2 S’1 S’0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 0 1 0 1 0 

0 0 1 1 0 1 

0 1 0 0 1 0 

0 1 0 0 1 1 

0 1 0 0 0 0 

0 1 1 0 0 0 

1 0 0 1 0 0 

1 0 0 1 0 1 

1 0 1 1 0 1 

1 0 1 0 0 0 

K A B 

0 0 0 

1 0 1 
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0 0 0 
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1 0 1 

0 0 0 

1 0 1 

1 1 0 

x x x 

0 0 0 

1 x x 

0 0 0 

1 x x 
S0’ = ? 
S1’ = ? 
S2’  = S2S1S0KAB  + S2S1S0KA B + S2S1S2KAB + S2 S1S0K + S2 S1 S0 KAB 
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Strategy: 
(1) Draw a state diagram (e.g. Moore Machine) 
(2) Write output and next-state tables 
(3) Encode states, inputs, and outputs as bits 
(4) Determine logic equations for next state and outputs 
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Review 

• Finite State Machines 

Memory 

• CPU: Register Files (i.e. Memory w/in the CPU) 

• Scaling Memory: Tri-state devices 

• Cache: SRAM (Static RAM—random access memory) 

• Memory: DRAM (Dynamic RAM) 



How do we store results from ALU computations? 
 

How do we use stored results in subsequent 
operations? 

  

 Register File 

 

How does a Register File work? How do we design it? 
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Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

 

Dual-Read-Port 
Single-Write-Port 

32 x 32  
Register File 

QA 

QB 

DW 

RW RA RB W 

32 

32 

32 

1 5 5 5 



Recall: Register 

•D flip-flops in parallel  

•shared clock 

•extra clocked inputs: 
write_enable, reset, … 

clk 

D0 

D3 

D1 

D2 

4 4 
4-bit 

reg 

clk 



Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

 

How to write to one register in the register file? 

• Need a decoder 
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5-to-32 
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Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

 

How to write to one register in the register file? 

• Need a decoder 
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5-to-32 
decoder 
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Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

 

How to read from two registers? 

• Need a multiplexor 

32 
Reg 0 
Reg 1 
…. 

Reg 30 
Reg 31 

M 
U 
X 

M 
U 
X 

32 
QA 

32 
QB 

5 5 

RB 
RA 

…. 

…. 



Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

Implementation: 

• D flip flops to store bits 

• Decoder for each write port 

• Mux for each read port 
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Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

Implementation: 

• D flip flops to store bits 

• Decoder for each write port 

• Mux for each read port 
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Register File 

• N read/write registers 

• Indexed by  
register number 

 

 

Implementation: 

• D flip flops to store bits 

• Decoder for each write port 

• Mux for each read port 

 

What happens if same 
register read and written 
during same clock cycle? 



Register File tradeoffs 

+ Very fast (a few gate delays for  

  both read and write) 

+ Adding extra ports is  

  straightforward 

–  Doesn’t scale 

 e.g. 32Mb register file with  

     32 bit registers 

  Need 32x 1M-to-1 multiplexor  

     and 32x 20-to-1M decoder 

     How many logic gates/transistors? 

  

a 

b 

c 

d 

e 

f 

g 

h 

s2 s1 s0 

8-to-1 mux 



Register files are very fast storage (only a few gate 
delays), but does not scale to large memory sizes. 



Review 

• Finite State Machines 

Memory 

• CPU: Register Files (i.e. Memory w/in the CPU) 

• Scaling Memory: Tri-state devices 

• Cache: SRAM (Static RAM—random access memory) 

• Memory: DRAM (Dynamic RAM) 



How do we scale/build larger memories? 



Need a shared bus (or shared bit line) 

• Many FlipFlops/outputs/etc. connected to single wire 

• Only one output drives the bus at a time 

 

 

 

 

 

 

 

• How do we build such a device? 

 

S0 D0 
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S1 D1 S2 D2 S3 D3 S1023 D1023 
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Tri-State Buffers 
• If enabled (E=1), then Q = D 
• Otherwise, Q is not connected (z = high impedance)  
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shared line 

S1 D1 S2 D2 S3 D3 S1023 D1023 



Register files are very fast storage (only a few gate 
delays), but does not scale to large memory sizes. 

 

Tri-state Buffers allow scaling since multiple 
registers can be connected to a single output, while 
only one register actually drives the output. 



Review 

• Finite State Machines 

Memory 

• CPU: Register Files (i.e. Memory w/in the CPU) 

• Scaling Memory: Tri-state devices 

• Cache: SRAM (Static RAM—random access memory) 

• Memory: DRAM (Dynamic RAM) 



How do we build large memories? 

 

Use similar designs as Tri-state Buffers to connect 
multiple registers to output line.  Only one register 
will drive output line. 



Static RAM (SRAM)—Static Random Access Memory 

• Essentially just D-Latches plus Tri-State Buffers 

• A decoder selects which line of memory to access  

 (i.e. word line) 

• A R/W selector determines the  

 type of access 

• That line is then coupled to  

 the data lines 
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Static RAM (SRAM)—Static Random Access Memory 

• Essentially just D-Latches plus Tri-State Buffers 

• A decoder selects which line of memory to access 

 (i.e. word line) 

• A R/W selector determines the  

 type of access 

• That line is then coupled to  

 the data lines 
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Output Enable 

SRAM 

4M x 8 



E.g. How do we design  
a 4 x 2 SRAM Module? 
 
(i.e. 4 word lines that are 
 each 2 bits wide)? 
 

2-to-4 
decoder 
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Write Enable 
Output Enable 

4 x 2 SRAM 
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E.g. How do we design  
a 4 x 2 SRAM Module? 
 
(i.e. 4 word lines that are 
 each 2 bits wide)? 
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Dout[1] Dout[2] 

Din[1] Din[2] 
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Output Enable 
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Word line 

E.g. How do we design  
a 4 x 2 SRAM Module? 
 
(i.e. 4 word lines that are 
 each 2 bits wide)? 
 



Typical SRAM Cell 
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Each cell stores one bit, and requires 4 – 8 transistors (6 is typical) 

Pass-Through 
Transistors 



Disabled (wordline = 0) 

Typical SRAM Cell 

B B  

word line b
it
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Each cell stores one bit, and requires 4 – 8 transistors (6 is typical) 
Read: 
• pre-charge B and B  to Vsupply/2 
• pull word line high 
• cell pulls B or B  low, sense amp detects voltage difference 

1 0 

on on 

2) Enable (wordline = 1) 

1) Pre-charge 
         B = Vsupply/2 

off off 
3) Cell pulls B low 
          i.e. B = 0 

1) Pre-charge  
        B  = Vsupply/2 

3) Cell pulls B  high 
          i.e. B  = 1 



Disabled (wordline = 0) 

Typical SRAM Cell 

B B  
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Each cell stores one bit, and requires 4 – 8 transistors (6 is typical) 
Read: 
• pre-charge B and B  to Vsupply/2 
• pull word line high 
• cell pulls B or B  low, sense amp detects voltage difference 
Write: 
• pull word line high 
• drive B and B  to flip cell 

1 0 

on on 

1) Enable (wordline = 1) 

off off 
2) Drive B high 
          i.e. B = 1 

2) Drive B  low 
          i.e. B  = 0 

1 0 → → 



2-to-4 
decoder 

2 
Address 

D Q D Q 

D Q D Q 

D Q D Q 

D Q D Q 

Dout[1] Dout[2] 

Din[1] Din[2] 

enable enable 

enable enable 

enable enable 

enable enable 

0 

1 

2 

3 

Write Enable 
Output Enable 

Bit line 

Word line 

E.g. How do we design  
a 4 x 2 SRAM Module? 
 
(i.e. 4 word lines that are 
 each 2 bits wide)? 
 



2-to-4 
decoder 

2 
Address 

D Q D Q 

D Q D Q 

D Q D Q 

D Q D Q 

Dout[1] Dout[2] 

Din[1] Din[2] 

enable enable 

enable enable 

enable enable 

enable enable 

0 

1 

2 

3 

Write Enable 
Output Enable 

4 x 2 SRAM 
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E.g. How do we design  
a 4M x 8 SRAM Module? 
 
(i.e. 4M word lines that  
are each 8 bits wide)? 
 

Chip Select 



12 
Address [21-10] 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

12 x  
 4096 
decoder 

mux 

1024 

mux 

1024 

mux 

1024 

mux 

1024 

mux mux 

1024 1024 

mux 

1024 

mux 

1024 

Dout[7] 

1 

Dout[6] 

1 

Dout[5] 

1 

Dout[4] 

1 

Dout[3] 

1 

Dout[2] 

1 

Dout[1] 

1 

Dout[0] 

1 

Address [9-0] 

10 

4M x 8 SRAM 

E.g. How do we design  
a 4M x 8 SRAM Module? 
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Address [21-10] 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

4k x  
 1024 
SRAM 

Row  
decoder 

1024 1024 1024 1024 1024 1024 1024 1024 

Address [9-0] 

10 

4M x 8 SRAM 

column selector, sense amp, and I/O circuits 

Shared Data Bus 

Chip Select (CS) 

R/W Enable 

8 

E.g. How do we design  
a 4M x 8 SRAM Module? 
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4M x 8 
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4M x 8 
SRAM 

4M x 8 
SRAM 

R/W 
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CS 

CS 

CS 
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SRAM 

•A few transistors (~6) per cell 

•Used for working memory (caches) 

 

•But for even higher density… 



Dynamic-RAM (DRAM) 
• Data values require constant refresh 
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Capacitor 

Each cell stores one bit, and requires 1 transistors 



Dynamic-RAM (DRAM) 
• Data values require constant refresh 
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Capacitor 

Pass-Through 
Transistors 

Each cell stores one bit, and requires 1 transistors 



on 

Dynamic-RAM (DRAM) 

Gnd 

word line b
it

 li
n
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Capacitor 

Disabled (wordline = 0) 

Each cell stores one bit, and requires 1 transistors 
Read: 
• pre-charge B and B  to Vsupply/2 
• pull word line high 
• cell pulls B low, sense amp detects voltage difference 

0 

2) Enable (wordline = 1) 

1) Pre-charge 
         B = Vsupply/2 

off 
3) Cell pulls B low 
          i.e. B = 0 



Dynamic-RAM (DRAM) 

 

on 

Gnd 

word line b
it

 li
n

e 

Capacitor 

Disabled (wordline = 0) 

Each cell stores one bit, and requires 4 – 8 transistors (6 is typical) 
Read: 
• pre-charge B and B  to Vsupply/2 
• pull word line high 
• cell pulls B or B  low, sense amp detects voltage difference 
Write: 
• pull word line high 
• drive B charges capacitor 

0 

1) Enable (wordline = 1) 

off 
2) Drive B high 
          i.e. B = 1 
         Charges capacitor 

1 → 



Single transistor vs. many gates 
• Denser, cheaper ($30/1GB vs. $30/2MB) 

• But more complicated, and has analog sensing 

 

Also needs refresh 
• Read and write back… 

• …every few milliseconds 

• Organized in 2D grid, so can do rows at a time 

• Chip can do refresh internally 

 

Hence… slower and energy inefficient 



Register File tradeoffs 
+ Very fast (a few gate delays for both read and write) 
+ Adding extra ports is straightforward 
–  Expensive, doesn’t scale 
–  Volatile 

 
Volatile Memory alternatives: SRAM, DRAM, … 

–  Slower 
+ Cheaper, and scales well 
–  Volatile 

 
Non-Volatile Memory (NV-RAM): Flash, EEPROM, … 

+ Scales well 
–  Limited lifetime; degrades after 100000 to 1M writes 



We now have enough building blocks to build 
machines that can perform non-trivial 
computational tasks 

 

Register File: Tens of words of working memory 

SRAM: Millions of words of working memory 

DRAM: Billions of words of working memory 

NVRAM: long term storage  
 (usb fob, solid state disks, BIOS, …) 

 

Next time we will build a simple processor! 

 


