
Prof. Kavita Bala and Prof. Hakim Weatherspoon

CS 3410, Spring 2014

Computer Science

Cornell University

See P&H Appendix B.8 (register files) and B.9

Make sure to go to your Lab Section this week
Completed Lab1 due before winter break, Friday, Feb 14th
Note, a Design Document is due when you submit Lab1 final circuit
Work alone

Save your work!
• Save often. Verify file is non-zero. Periodically save to Dropbox, email.
• Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Homework1 is out
Due a week before prelim1, Monday, February 24th
Work on problems incrementally, as we cover them in lecture (i.e. part 1)
Office Hours for help
Work alone

Work alone, BUT use your resources

• Lab Section, Piazza.com, Office Hours
• Class notes, book, Sections, CSUGLab

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2014sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, March 4th

• Thursday, May 1th

Schedule is subject to change

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,
 cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 25% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to regrade.

PC

imm

memory

target

offset cmp control

=?

new

pc

memory

din dout

addr

register
file

inst

extend

+4 +4

A Single cycle processor

alu

Review

• Finite State Machines

Memory

• Register Files

• Tri-state devices

• SRAM (Static RAM—random access memory)

• DRAM (Dynamic RAM)

(A) In a Moore Machine output depends on both
current state and input

(B) In a Mealy Machine output depends on current
state and input

(C) In a Mealy Machine output depends on next
state and input
(D) All the above are true

(E) None are true

(A) In a Moore Machine output depends on both
current state and input

(B) In a Mealy Machine output depends on current
state and input

(C) In a Mealy Machine output depends on next
state and input
(D) All the above are true

(E) None are true

General Case: Mealy Machine

 Outputs and next state depend on both
current state and input

Next State

Current
State

Input

Output
R

eg
is

te
rs

Comb.
Logic

Special Case: Moore Machine

 Outputs depend only on current state

Next State

Current
State

Input

Output
R

eg
is

te
rs

 Comb.
Logic

Comb.
Logic

Digital Door Lock

Inputs:
• keycodes from keypad

• clock

Outputs:
• “unlock” signal

• display how many keys pressed so far

Assumptions:

• signals are synchronized to clock

• Password is B-A-B

K
A
B

K A B Meaning

0 0 0 Ø (no key)

1 1 0 ‘A’ pressed

1 0 1 ‘B’ pressed

Assumptions:

• High pulse on U unlocks door

U
D3D2D1D0

4 LED
dec

8

Strategy:
(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

any

any else else

B3
”3”

else

(1) Draw a state diagram (e.g. Moore Machine)

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else

(1) Draw a state diagram (e.g. Moore Machine)

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else
Cur.

State
Output

(2) Write output and next-state tables

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else
Cur.

State
Output

Cur.
State

Output

Idle “0”
G1 “1”
G2 “2”
G3 “3”, U
B1 “1”
B2 “2”

(2) Write output and next-state tables

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else

Cur. State Input Next State Cur. State Input Next State

(2) Write output and next-state tables

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else

Cur. State Input Next State Cur. State Input Next State

Idle Ø Idle

Idle “B” G1

Idle “A” B1

G1 Ø G1

G1 “A” G2

G1 “B” B2

G2 Ø B2

G2 “B” G3

G2 “A” Idle

G3 any Idle

B1 Ø B1

B1 K B2

B2 Ø B2

B2 K Idle

(2) Write output and next-state tables

(3) Encode states, inputs, and outputs as bits

Cur. State Output

Idle “0”

G1 “1”

G2 “2”

G3 “3”, U

B1 “1”

B2 “2”

U
D3D2D1D0

4
dec

8

D3 D2 D1 D0 U

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 0 0 1 0

0 0 1 0 0

K
A
B

S2 S1 S0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

K A B Meaning

0 0 0 Ø (no key)

1 1 0 ‘A’ pressed

1 0 1 ‘B’ pressed

State S2 S1 S0

Idle 0 0 0

G1 0 0 1

G2 0 1 0

G3 0 1 1

B1 1 0 0

B2 1 0 1

Cur. State Input Next State

Idle Ø Idle

Idle “B” G1

Idle “A” B1

G1 Ø G1

G1 “A” G2

G1 “B” B2

G2 Ø B2

G2 “B” G3

G2 “A” Idle

G3 any Idle

B1 Ø B1

B1 K B2

B2 Ø B2

B2 K Idle

S2 S1 S0 S’2 S’1 S’0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 0 1 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 1 0 1

1 0 1 1 0 1

1 0 1 0 0 0

K A B

0 0 0

1 0 1

1 1 0

0 0 0

1 1 0

1 0 1

0 0 0

1 0 1

1 1 0

x x x

0 0 0

1 x x

0 0 0

1 x x

4

d
e

c

3bit
Reg

clk

U

D3-0 S2-0

S’2-0

S2-0

K
A

B

D3 D2 D1 D0 U

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 0 0 1 0

0 0 1 0 0

S2 S1 S0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

(4) Determine logic equations for next state and outputs

U = S2 S1S0
D0 = S2S1S0 + S2 S1S0 + S2 S1S0
D1 = S2 S1S0 + S2 S1S0 + S2 S1S0

4

d
e

c

3bit
Reg

clk

U

D3-0 S2-0

S’2-0

S2-0

K
A

B

S2 S1 S0 S’2 S’1 S’0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 0 1 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 1 0 1

1 0 1 1 0 1

1 0 1 0 0 0

K A B

0 0 0

1 0 1

1 1 0

0 0 0

1 1 0

1 0 1

0 0 0

1 0 1

1 1 0

x x x

0 0 0

1 x x

0 0 0

1 x x
S0’ = ?
S1’ = ?
S2’ = S2S1S0KAB + S2S1S0KA B + S2S1S2KAB + S2 S1S0K + S2 S1 S0 KAB

4

d
e

c

3bit
Reg

clk

U

D3-0 S2-0

S’2-0

S2-0

K
A

B

Strategy:
(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

Strategy:
(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

Next State

Current
State

Input

Output
R

eg
is

te
rs

 Comb.
Logic

Comb.
Logic

Moore Machine

Review

• Finite State Machines

Memory

• CPU: Register Files (i.e. Memory w/in the CPU)

• Scaling Memory: Tri-state devices

• Cache: SRAM (Static RAM—random access memory)

• Memory: DRAM (Dynamic RAM)

How do we store results from ALU computations?

How do we use stored results in subsequent
operations?

 Register File

How does a Register File work? How do we design it?

PC

imm

memory

target

offset cmp control

=?

new

pc

memory

din dout

addr

register
file

inst

extend

+4 +4

A Single cycle processor

alu

Register File

• N read/write registers

• Indexed by
register number

Dual-Read-Port
Single-Write-Port

32 x 32
Register File

QA

QB

DW

RW RA RB W

32

32

32

1 5 5 5

Recall: Register

•D flip-flops in parallel

•shared clock

•extra clocked inputs:
write_enable, reset, …

clk

D0

D3

D1

D2

4 4
4-bit

reg

clk

Register File

• N read/write registers

• Indexed by
register number

How to write to one register in the register file?

• Need a decoder

Reg 0

….
Reg 30
Reg 31

Reg 1

5-to-32
decoder

5
RW W

D

32

Register File

• N read/write registers

• Indexed by
register number

How to write to one register in the register file?

• Need a decoder

Reg 0

….
Reg 30
Reg 31

Reg 1

5-to-32
decoder

5
RW W

D

32

Register File

• N read/write registers

• Indexed by
register number

How to read from two registers?

• Need a multiplexor

32
Reg 0
Reg 1
….

Reg 30
Reg 31

M
U
X

M
U
X

32
QA

32
QB

5 5

RB
RA

….

….

Register File

• N read/write registers

• Indexed by
register number

Implementation:

• D flip flops to store bits

• Decoder for each write port

• Mux for each read port

32
Reg 0
Reg 1
….

Reg 30
Reg 31

M
U
X

M
U
X

32
QA

32
QB

5 5

RB
RA

….

….

5-to-32
decoder

5

RW W

D

32

Register File

• N read/write registers

• Indexed by
register number

Implementation:

• D flip flops to store bits

• Decoder for each write port

• Mux for each read port

Dual-Read-Port
Single-Write-Port

32 x 32
Register File

QA

QB

DW

RW RA RB W

32

32

32

1 5 5 5

Register File

• N read/write registers

• Indexed by
register number

Implementation:

• D flip flops to store bits

• Decoder for each write port

• Mux for each read port

What happens if same
register read and written
during same clock cycle?

Register File tradeoffs

+ Very fast (a few gate delays for

 both read and write)

+ Adding extra ports is

 straightforward

– Doesn’t scale

 e.g. 32Mb register file with

 32 bit registers

 Need 32x 1M-to-1 multiplexor

 and 32x 20-to-1M decoder

 How many logic gates/transistors?

a

b

c

d

e

f

g

h

s2 s1 s0

8-to-1 mux

Register files are very fast storage (only a few gate
delays), but does not scale to large memory sizes.

Review

• Finite State Machines

Memory

• CPU: Register Files (i.e. Memory w/in the CPU)

• Scaling Memory: Tri-state devices

• Cache: SRAM (Static RAM—random access memory)

• Memory: DRAM (Dynamic RAM)

How do we scale/build larger memories?

Need a shared bus (or shared bit line)

• Many FlipFlops/outputs/etc. connected to single wire

• Only one output drives the bus at a time

• How do we build such a device?

S0 D0

shared line

S1 D1 S2 D2 S3 D3 S1023 D1023

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

Q

Vsupply

Gnd

D

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

D
Q

E Vsupply

Gnd

D

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

D
Q

E Vsupply

Gnd

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

0

0

1

0

off

off
z

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A B AND NAND

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

D
Q

E Vsupply

Gnd

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

1

1

1

1

off

on
0

0

0
A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A B AND NAND

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

0

D
Q

E Vsupply

Gnd

E

E D Q

0 0 z

0 1 z

1 0 0

1 1 1

D Q

Tri-State Buffers
• If enabled (E=1), then Q = D
• Otherwise, Q is not connected (z = high impedance)

1

1

0

0 off

on

1
1

1
A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

A B AND NAND

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

1

S0 D0

shared line

S1 D1 S2 D2 S3 D3 S1023 D1023

Register files are very fast storage (only a few gate
delays), but does not scale to large memory sizes.

Tri-state Buffers allow scaling since multiple
registers can be connected to a single output, while
only one register actually drives the output.

Review

• Finite State Machines

Memory

• CPU: Register Files (i.e. Memory w/in the CPU)

• Scaling Memory: Tri-state devices

• Cache: SRAM (Static RAM—random access memory)

• Memory: DRAM (Dynamic RAM)

How do we build large memories?

Use similar designs as Tri-state Buffers to connect
multiple registers to output line. Only one register
will drive output line.

Static RAM (SRAM)—Static Random Access Memory

• Essentially just D-Latches plus Tri-State Buffers

• A decoder selects which line of memory to access

 (i.e. word line)

• A R/W selector determines the

 type of access

• That line is then coupled to

 the data lines

Data

A
d

d
re

ss

D
ec

o
d

er

Static RAM (SRAM)—Static Random Access Memory

• Essentially just D-Latches plus Tri-State Buffers

• A decoder selects which line of memory to access

 (i.e. word line)

• A R/W selector determines the

 type of access

• That line is then coupled to

 the data lines

Din

8

Dout

8

22
Address

Chip Select

Write Enable
Output Enable

SRAM

4M x 8

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

4 x 2 SRAM

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

Bit line

Word line

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

Typical SRAM Cell

B B

word line b
it

 li
n

e

Each cell stores one bit, and requires 4 – 8 transistors (6 is typical)

Pass-Through
Transistors

Disabled (wordline = 0)

Typical SRAM Cell

B B

word line b
it

 li
n

e

Each cell stores one bit, and requires 4 – 8 transistors (6 is typical)
Read:
• pre-charge B and B to Vsupply/2
• pull word line high
• cell pulls B or B low, sense amp detects voltage difference

1 0

on on

2) Enable (wordline = 1)

1) Pre-charge
 B = Vsupply/2

off off
3) Cell pulls B low
 i.e. B = 0

1) Pre-charge
 B = Vsupply/2

3) Cell pulls B high
 i.e. B = 1

Disabled (wordline = 0)

Typical SRAM Cell

B B

word line b
it

 li
n

e

Each cell stores one bit, and requires 4 – 8 transistors (6 is typical)
Read:
• pre-charge B and B to Vsupply/2
• pull word line high
• cell pulls B or B low, sense amp detects voltage difference
Write:
• pull word line high
• drive B and B to flip cell

1 0

on on

1) Enable (wordline = 1)

off off
2) Drive B high
 i.e. B = 1

2) Drive B low
 i.e. B = 0

1 0 → →

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

Bit line

Word line

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

2-to-4
decoder

2
Address

D Q D Q

D Q D Q

D Q D Q

D Q D Q

Dout[1] Dout[2]

Din[1] Din[2]

enable enable

enable enable

enable enable

enable enable

0

1

2

3

Write Enable
Output Enable

4 x 2 SRAM

E.g. How do we design
a 4 x 2 SRAM Module?

(i.e. 4 word lines that are
 each 2 bits wide)?

22
Address

Dout

Din

Write Enable
Output Enable

4M x 8 SRAM

8

8

E.g. How do we design
a 4M x 8 SRAM Module?

(i.e. 4M word lines that
are each 8 bits wide)?

Chip Select

12
Address [21-10]

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

12 x
 4096
decoder

mux

1024

mux

1024

mux

1024

mux

1024

mux mux

1024 1024

mux

1024

mux

1024

Dout[7]

1

Dout[6]

1

Dout[5]

1

Dout[4]

1

Dout[3]

1

Dout[2]

1

Dout[1]

1

Dout[0]

1

Address [9-0]

10

4M x 8 SRAM

E.g. How do we design
a 4M x 8 SRAM Module?

12
Address [21-10]

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

4k x
 1024
SRAM

Row
decoder

1024 1024 1024 1024 1024 1024 1024 1024

Address [9-0]

10

4M x 8 SRAM

column selector, sense amp, and I/O circuits

Shared Data Bus

Chip Select (CS)

R/W Enable

8

E.g. How do we design
a 4M x 8 SRAM Module?

A21-0

Bank 2

Bank 3

Bank 4

4M x 8
SRAM

4M x 8
SRAM

4M x 8
SRAM

4M x 8
SRAM

R/W

msb lsb

CS

CS

CS

CS

SRAM

•A few transistors (~6) per cell

•Used for working memory (caches)

•But for even higher density…

Dynamic-RAM (DRAM)
• Data values require constant refresh

Gnd

word line b
it

 li
n

e

Capacitor

Each cell stores one bit, and requires 1 transistors

Dynamic-RAM (DRAM)
• Data values require constant refresh

Gnd

word line b
it

 li
n

e

Capacitor

Pass-Through
Transistors

Each cell stores one bit, and requires 1 transistors

on

Dynamic-RAM (DRAM)

Gnd

word line b
it

 li
n

e

Capacitor

Disabled (wordline = 0)

Each cell stores one bit, and requires 1 transistors
Read:
• pre-charge B and B to Vsupply/2
• pull word line high
• cell pulls B low, sense amp detects voltage difference

0

2) Enable (wordline = 1)

1) Pre-charge
 B = Vsupply/2

off
3) Cell pulls B low
 i.e. B = 0

Dynamic-RAM (DRAM)

on

Gnd

word line b
it

 li
n

e

Capacitor

Disabled (wordline = 0)

Each cell stores one bit, and requires 4 – 8 transistors (6 is typical)
Read:
• pre-charge B and B to Vsupply/2
• pull word line high
• cell pulls B or B low, sense amp detects voltage difference
Write:
• pull word line high
• drive B charges capacitor

0

1) Enable (wordline = 1)

off
2) Drive B high
 i.e. B = 1
 Charges capacitor

1 →

Single transistor vs. many gates
• Denser, cheaper ($30/1GB vs. $30/2MB)

• But more complicated, and has analog sensing

Also needs refresh
• Read and write back…

• …every few milliseconds

• Organized in 2D grid, so can do rows at a time

• Chip can do refresh internally

Hence… slower and energy inefficient

Register File tradeoffs
+ Very fast (a few gate delays for both read and write)
+ Adding extra ports is straightforward
– Expensive, doesn’t scale
– Volatile

Volatile Memory alternatives: SRAM, DRAM, …

– Slower
+ Cheaper, and scales well
– Volatile

Non-Volatile Memory (NV-RAM): Flash, EEPROM, …

+ Scales well
– Limited lifetime; degrades after 100000 to 1M writes

We now have enough building blocks to build
machines that can perform non-trivial
computational tasks

Register File: Tens of words of working memory

SRAM: Millions of words of working memory

DRAM: Billions of words of working memory

NVRAM: long term storage
 (usb fob, solid state disks, BIOS, …)

Next time we will build a simple processor!

