Given an integer n, place n queens on an n × n chessboard such that no two queens attack each other. A queen can attack another queen if they are placed in the same row, the same column, or on the same diagonal.
Find all possible distinct arrangements of the queens on the board that satisfy these conditions.
The output should be an array of solutions, where each solution is represented as an array of integers of size n, and the i-th integer denotes the column position of the queen in the i-th row. If no solution exists, return an empty array.
Examples:
Input: n = 4
Output: [[2, 4, 1, 3], [3, 1, 4, 2]]
Explanation: Below is Solution for 4 queen problem
Input: n = 3
Output: []
Explanation: There are no possible solutions for n = 3
[Naive Approach] - Using Backtracking
The idea is to use backtracking to place queens on an n × n chessboard. We can proceed either row by row or column by column. For each row (or column), try placing a queen in every column (or row) and check if it is safe (i.e., no other queen in the same column, row, or diagonals). If safe, place the queen and move to the next row/column. If no valid position exists, backtrack to the previous step and try a different position. Continue until all queens are placed or all possibilities are explored.
Below is a sample part of the recursive tree for the above approach (shown using column-by-column placement of queens).
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to check if it is safe to place
int isSafe(vector<vector<int>>& mat,
int row, int col) {
int n = mat.size();
int i, j;
// Check this col on upper side
for (i = 0; i < row; i++)
if (mat[i][col])
return 0;
// Check upper diagonal on left side
for (i = row-1, j = col-1; i >= 0 && j >= 0; i--, j--)
if (mat[i][j])
return 0;
// Check upper diagonal on right side
for (i = row-1, j = col+1; j < n && i >= 0; i--, j++)
if (mat[i][j])
return 0;
return 1;
}
// Recursive function to place queens
void placeQueens(int row, vector<vector<int>>& mat, vector<vector<int>>&result) {
int n = mat.size();
// base case: If all queens are placed
if(row == n) {
// store current solution
vector<int> ans;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(mat[i][j]){
ans.push_back(j + 1);
}
}
}
result.push_back(ans);
return;
}
// Consider the row and try placing
// queen in all columns one by one
for(int i = 0; i < n; i++){
// Check if the queen can be placed
if(isSafe(mat, row, i)){
mat[row][i] = 1;
placeQueens(row + 1, mat, result);
// backtrack
mat[row][i] = 0;
}
}
}
// Function to find all solutions
vector<vector<int>> nQueen(int n) {
// Initialize the board
vector<vector<int>> mat(n, vector<int>(n, 0));
vector<vector<int>> result;
// Place queens
placeQueens(0, mat, result);
return result;
}
int main() {
int n = 4;
vector<vector<int>> result = nQueen(n);
for(auto &ans : result){
for(auto i: ans){
cout << i << " ";
}
cout << endl;
}
return 0;
}
Java
import java.util.ArrayList;
class GFG {
// Function to check if it is safe to place
static int isSafe(int[][] mat, int row, int col) {
int n = mat.length;
int i, j;
// Check this col on upper side
for (i = 0; i < row; i++)
if (mat[i][col] == 1)
return 0;
// Check upper diagonal on left side
for (i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--)
if (mat[i][j] == 1)
return 0;
// Check upper diagonal on right side
for (i = row - 1, j = col + 1; j < n && i >= 0; i--, j++)
if (mat[i][j] == 1)
return 0;
return 1;
}
// Recursive function to place queens
static void placeQueens(int row, int[][] mat,
ArrayList<ArrayList<Integer>> result) {
int n = mat.length;
// base case: If all queens are placed
if (row == n) {
// store current solution
ArrayList<Integer> ans = new ArrayList<>();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (mat[i][j] == 1) {
ans.add(j + 1);
}
}
}
result.add(ans);
return;
}
// Consider the row and try placing
// queen in all columns one by one
for (int i = 0; i < n; i++) {
// Check if the queen can be placed
if (isSafe(mat, row, i) == 1) {
mat[row][i] = 1;
placeQueens(row + 1, mat, result);
// backtrack
mat[row][i] = 0;
}
}
}
// Function to find all solutions
static ArrayList<ArrayList<Integer>> nQueen(int n) {
// Initialize the board
int[][] mat = new int[n][n];
ArrayList<ArrayList<Integer>> result = new ArrayList<>();
// Place queens
placeQueens(0, mat, result);
return result;
}
public static void main(String[] args) {
int n = 4;
ArrayList<ArrayList<Integer>> result = nQueen(n);
for (ArrayList<Integer> ans : result) {
for (int i : ans) {
System.out.print(i + " ");
}
System.out.println();
}
}
}
Python
def isSafe(mat, row, col):
n = len(mat)
# Check this col on upper side
for i in range(row):
if mat[i][col]:
return 0
# Check upper diagonal on left side
i, j = row - 1, col - 1
while i >= 0 and j >= 0:
if mat[i][j]:
return 0
i -= 1
j -= 1
# Check upper diagonal on right side
i, j = row - 1, col + 1
while i >= 0 and j < n:
if mat[i][j]:
return 0
i -= 1
j += 1
return 1
# Recursive function to place queens
def placeQueens(row, mat, result):
n = len(mat)
# base case: If all queens are placed
if row == n:
# store current solution
ans = []
for i in range(n):
for j in range(n):
if mat[i][j]:
ans.append(j + 1)
result.append(ans)
return
# Consider the row and try placing
# queen in all columns one by one
for i in range(n):
# Check if the queen can be placed
if isSafe(mat, row, i):
mat[row][i] = 1
placeQueens(row + 1, mat, result)
# backtrack
mat[row][i] = 0
# Function to find all solutions
def nQueen(n):
# Initialize the board
mat = [[0] * n for _ in range(n)]
result = []
# Place queens
placeQueens(0, mat, result)
return result
if __name__ == "__main__":
n = 4
result = nQueen(n)
for ans in result:
print(" ".join(map(str, ans)))
C#
using System;
using System.Collections.Generic;
class GFG {
// Function to check if it is safe to place
static int isSafe(int[,] mat, int row, int col) {
int n = mat.GetLength(0);
int i, j;
// Check this col on upper side
for (i = 0; i < row; i++)
if (mat[i, col] == 1)
return 0;
// Check upper diagonal on left side
for (i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--)
if (mat[i, j] == 1)
return 0;
// Check upper diagonal on right side
for (i = row - 1, j = col + 1; j < n && i >= 0; i--, j++)
if (mat[i, j] == 1)
return 0;
return 1;
}
// Recursive function to place queens
static void placeQueens(int row, int[,] mat, List<List<int>> result) {
int n = mat.GetLength(0);
// base case: If all queens are placed
if (row == n)
{
// store current solution
List<int> ans = new List<int>();
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (mat[i, j] == 1)
{
ans.Add(j + 1);
}
}
}
result.Add(ans);
return;
}
// Consider the row and try placing
// queen in all columns one by one
for (int i = 0; i < n; i++)
{
// Check if the queen can be placed
if (isSafe(mat, row, i) == 1)
{
mat[row, i] = 1;
placeQueens(row + 1, mat, result);
// backtrack
mat[row, i] = 0;
}
}
}
// Function to find all solutions
static List<List<int>> nQueen(int n) {
// Initialize the board
int[,] mat = new int[n, n];
List<List<int>> result = new List<List<int>>();
// Place queens
placeQueens(0, mat, result);
return result;
}
public static void Main()
{
int n = 4;
List<List<int>> result = nQueen(n);
foreach (var ans in result)
{
foreach (var i in ans)
{
Console.Write(i + " ");
}
Console.WriteLine();
}
}
}
JavaScript
// Function to check if it is safe to place
function isSafe(mat, row, col) {
let n = mat.length;
let i, j;
// Check this col on upper side
for (i = 0; i < row; i++)
if (mat[i][col])
return 0;
// Check upper diagonal on left side
for (i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--)
if (mat[i][j])
return 0;
// Check upper diagonal on right side
for (i = row - 1, j = col + 1; j < n && i >= 0; i--, j++)
if (mat[i][j])
return 0;
return 1;
}
// Recursive function to place queens
function placeQueens(row, mat, result) {
let n = mat.length;
// base case: If all queens are placed
if (row === n) {
// store current solution
let ans = [];
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
if (mat[i][j]) {
ans.push(j + 1);
}
}
}
result.push(ans);
return;
}
// Consider the row and try placing
// queen in all columns one by one
for (let i = 0; i < n; i++) {
// Check if the queen can be placed
if (isSafe(mat, row, i)) {
mat[row][i] = 1;
placeQueens(row + 1, mat, result);
// backtrack
mat[row][i] = 0;
}
}
}
// Function to find all solutions
function nQueen(n) {
// Initialize the board
let mat = Array.from({ length: n }, () => Array(n).fill(0));
let result = [];
// Place queens
placeQueens(0, mat, result);
return result;
}
// Driver code
let n = 4;
let result = nQueen(n);
for (let ans of result) {
console.log(ans.join(' '));
}
Time Complexity: O(n!)
For the first queen, we have n columns to choose from. Each subsequent queen has fewer valid positions because previous queens block their columns and diagonals, roughly reducing choices to n−2, n−4, and so on, giving an approximate O(n!) time.
Auxiliary Space: O(n2), We use an n × n board to track queen placements, which requires O(n²) space, plus O(n) space for the recursion stack during backtracking.
[Optimized Approach] Using Column and Diagonal Hashing
Instead of checking every row and diagonal, use three arrays to track occupied columns and diagonals. A queen can be placed at a cell only if its column and both diagonals are free. This reduces the safe-check from O(n) to O(1).
We use three arrays to efficiently check if a queen can be placed at (i, j) without conflicts:
- cols[] – Tracks if a queen is already placed in a column.
cols[j] = 1 means column j is occupied. - rightDiagonal[] – Tracks diagonals where i + j is constant.
On a chessboard, all cells on the same top-left to bottom-right diagonal have the same sum of row and column indices (i + j).
So we use rightDiagonal[i + j] to quickly check if that diagonal is occupied. - leftDiagonal[] – Tracks diagonals where i - j is constant.
All cells on the same top-right to bottom-left diagonal have the same difference (i - j).
To avoid negative indices, we shift by n - 1: leftDiagonal[i - j + n - 1].
This lets us represent all diagonals with non-negative indices in the array.
A queen can be placed at (i, j) only if all three arrays are 0. Mark them when placing a queen, and unmark when backtracking.
C++
#include <iostream>
#include<vector>
using namespace std;
// Recursive function to place queens
void placeQueens(int i, vector<int> &cols, vector<int> &leftDiagonal,
vector<int> &rightDiagonal, vector<int> &cur,
vector<vector<int>> &result) {
int n = cols.size();
// base case: If all queens are placed
if(i == n) {
result.push_back(cur);
return;
}
// Consider the row and try placing
// queen in all columns one by one
for(int j = 0; j < n; j++){
// Check if the queen can be placed
if(cols[j] || rightDiagonal[i + j] ||
leftDiagonal[i - j + n - 1])
continue;
// mark the cell occupied
cols[j] = 1;
rightDiagonal[i+j] = 1;
leftDiagonal[i - j + n - 1] = 1;
cur.push_back(j+1);
placeQueens(i + 1, cols, leftDiagonal, rightDiagonal, cur, result);
// remove the queen from current cell
cur.pop_back();
cols[j] = 0;
rightDiagonal[i+j] = 0;
leftDiagonal[i - j + n - 1] = 0;
}
}
// Function to find the solution
// to the N-Queens problem
vector<vector<int>> nQueen(int n) {
// array to mark the occupied cells
vector<int> cols(n, 0);
vector<int> leftDiagonal(n*2, 0);
vector<int> rightDiagonal(n*2, 0);
vector<int> cur;
vector<vector<int>> result;
// Place queens
placeQueens(0, cols, leftDiagonal, rightDiagonal, cur, result);
return result;
}
int main() {
int n = 4;
vector<vector<int>> ans = nQueen(n);
for(auto &a: ans){
for(auto i: a){
cout << i << " ";
}
cout << endl;
}
return 0;
}
Java
import java.util.ArrayList;
class GFG {
// Recursive function to place queens
static void placeQueens(int i, int[] cols, int[] leftDiagonal,
int[] rightDiagonal, ArrayList<Integer> cur,
ArrayList<ArrayList<Integer>> result) {
int n = cols.length;
// base case: If all queens are placed
if (i == n) {
result.add(new ArrayList<>(cur));
return;
}
// Consider the row and try placing
// queen in all columns one by one
for (int j = 0; j < n; j++) {
// Check if the queen can be placed
if (cols[j] == 1 || rightDiagonal[i + j] == 1 ||
leftDiagonal[i - j + n - 1] == 1)
continue;
// mark the cell occupied
cols[j] = 1;
rightDiagonal[i + j] = 1;
leftDiagonal[i - j + n - 1] = 1;
cur.add(j + 1);
placeQueens(i + 1, cols, leftDiagonal, rightDiagonal, cur, result);
// remove the queen from current cell
cur.remove(cur.size() - 1);
cols[j] = 0;
rightDiagonal[i + j] = 0;
leftDiagonal[i - j + n - 1] = 0;
}
}
// Function to find the solution
// to the N-Queens problem
static ArrayList<ArrayList<Integer>> nQueen(int n) {
// array to mark the occupied cells
int[] cols = new int[n];
int[] leftDiagonal = new int[n * 2];
int[] rightDiagonal = new int[n * 2];
ArrayList<Integer> cur = new ArrayList<>();
ArrayList<ArrayList<Integer>> result = new ArrayList<>();
// Place queens
placeQueens(0, cols, leftDiagonal, rightDiagonal, cur, result);
return result;
}
public static void main(String[] args) {
int n = 4;
ArrayList<ArrayList<Integer>> ans = nQueen(n);
for (ArrayList<Integer> a : ans) {
for (int i : a) {
System.out.print(i + " ");
}
System.out.println();
}
}
}
Python
# Recursive function to place queens
def placeQueens(i, cols, leftDiagonal, rightDiagonal, cur, result):
n = len(cols)
# base case: If all queens are placed
if i == n:
result.append(cur[:])
return
# Consider the row and try placing
# queen in all columns one by one
for j in range(n):
# Check if the queen can be placed
if cols[j] or rightDiagonal[i + j] or leftDiagonal[i - j + n - 1]:
continue
# mark the cell occupied
cols[j] = 1
rightDiagonal[i + j] = 1
leftDiagonal[i - j + n - 1] = 1
cur.append(j + 1)
placeQueens(i + 1, cols, leftDiagonal, rightDiagonal, cur, result)
# remove the queen from current cell
cur.pop()
cols[j] = 0
rightDiagonal[i + j] = 0
leftDiagonal[i - j + n - 1] = 0
# Function to find the solution
# to the N-Queens problem
def nQueen(n):
# array to mark the occupied cells
cols = [0] * n
leftDiagonal = [0] * (2 * n)
rightDiagonal = [0] * (2 * n)
cur = []
result = []
# Place queens
placeQueens(0, cols, leftDiagonal, rightDiagonal, cur, result)
return result
if __name__ == "__main__":
n = 4
ans = nQueen(n)
for a in ans:
print(" ".join(map(str, a)))
C#
using System;
using System.Collections.Generic;
class GFG {
// Recursive function to place queens
static void placeQueens(int i, int[] cols, int[] leftDiagonal, int[] rightDiagonal,
List<int> cur, List<List<int>> result) {
int n = cols.Length;
// base case: If all queens are placed
if (i == n) {
result.Add(new List<int>(cur));
return;
}
// Consider the row and try placing
// queen in all columns one by one
for (int j = 0; j < n; j++) {
// Check if the queen can be placed
if (cols[j] == 1 || rightDiagonal[i + j] == 1 ||
leftDiagonal[i - j + n - 1] == 1)
continue;
// mark the cell occupied
cols[j] = 1;
rightDiagonal[i + j] = 1;
leftDiagonal[i - j + n - 1] = 1;
cur.Add(j + 1);
placeQueens(i + 1, cols, leftDiagonal, rightDiagonal, cur, result);
// remove the queen from current cell
cur.RemoveAt(cur.Count - 1);
cols[j] = 0;
rightDiagonal[i + j] = 0;
leftDiagonal[i - j + n - 1] = 0;
}
}
// Function to find the solution
// to the N-Queens problem
static List<List<int>> nQueen(int n) {
// array to mark the occupied cells
int[] cols = new int[n];
int[] leftDiagonal = new int[2 * n];
int[] rightDiagonal = new int[2 * n];
List<int> cur = new List<int>();
List<List<int>> result = new List<List<int>>();
// Place queens
placeQueens(0, cols, leftDiagonal, rightDiagonal, cur, result);
return result;
}
static void Main() {
int n = 4;
List<List<int>> ans = nQueen(n);
foreach (var a in ans) {
Console.WriteLine(string.Join(" ", a));
}
}
}
JavaScript
// Recursive function to place queens
function placeQueens(i, cols, leftDiagonal, rightDiagonal, cur, result) {
const n = cols.length;
// base case: If all queens are placed
if (i === n) {
result.push([...cur]);
return;
}
// Consider the row and try placing
// queen in all columns one by one
for (let j = 0; j < n; j++) {
// Check if the queen can be placed
if (cols[j] || rightDiagonal[i + j] || leftDiagonal[i - j + n - 1]) {
continue;
}
// mark the cell occupied
cols[j] = 1;
rightDiagonal[i + j] = 1;
leftDiagonal[i - j + n - 1] = 1;
cur.push(j + 1);
placeQueens(i + 1, cols, leftDiagonal, rightDiagonal, cur, result);
// remove the queen from current cell
cur.pop();
cols[j] = 0;
rightDiagonal[i + j] = 0;
leftDiagonal[i - j + n - 1] = 0;
}
}
// Function to find the solution
// to the N-Queens problem
function nQueen(n) {
// array to mark the occupied cells
const cols = new Array(n).fill(0);
const leftDiagonal = new Array(2 * n).fill(0);
const rightDiagonal = new Array(2 * n).fill(0);
const cur = [];
const result = [];
// Place queens
placeQueens(0, cols, leftDiagonal, rightDiagonal, cur, result);
return result;
}
// Driven Code
const n = 4;
const ans = nQueen(n);
ans.forEach(a => {
console.log(a.join(" "));
});
Time Complexity: O(n!) – we try placing a queen in every row recursively, pruning invalid positions using the arrays.
Auxiliary Space: O(n)
Related Articles:
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem