Mahotas - Speeded-Up Robust Features Last Updated : 23 Apr, 2021 Comments Improve Suggest changes 1 Likes Like Report In this article we will see how we can get the speeded up robust features of image in mahotas. In computer vision, speeded up robust features (SURF) is a patented local feature detector and descriptor. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction. It is partly inspired by the scale-invariant feature transform (SIFT) descriptor. For this we are going to use the fluorescent microscopy image from a nuclear segmentation benchmark. We can get the image with the help of command given below mahotas.demos.nuclear_image() Below is the nuclear_image In order to do this we will use surf.surf method Syntax : surf.surf(img)Argument : It takes image object as argumentReturn : It returns numpy.ndarray Example 1 : Python3 # importing various libraries import mahotas import mahotas.demos import mahotas as mh import numpy as np from pylab import imshow, show from mahotas.features import surf # loading nuclear image nuclear = mahotas.demos.nuclear_image() # filtering image nuclear = nuclear[:, :, 0] # adding gaussian filter nuclear = mahotas.gaussian_filter(nuclear, 4) # showing image print("Image") imshow(nuclear) show() # getting Speeded-Up Robust Features spoints = surf.surf(nuclear) print("No of points: {}".format(len(spoints))) Output : No of points: 217 Example 2 : Python3 # importing required libraries import numpy as np import mahotas from pylab import imshow, show from mahotas.features import surf # loading image img = mahotas.imread('dog_image.png') # filtering the image img = img[:, :, 0] # setting gaussian filter gaussian = mahotas.gaussian_filter(img, 5) # showing image print("Image") imshow(gaussian) show() # getting Speeded-Up Robust Features spoints = surf.surf(gaussian) print("No of points: {}".format(len(spoints))) Output : No of points: 364 Create Quiz Comment R rakshitarora Follow 1 Improve R rakshitarora Follow 1 Improve Article Tags : Python Python-Mahotas Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 3 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 3 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 3 min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Build a REST API using Flask - Python 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like