sympy.stats.PowerFunction() in Python Last Updated : 08 Jun, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report With the help of sympy.stats.PowerFunction() method, we can get the continuous random variable which represents the Power Function distribution. Syntax : sympy.stats.PowerFunction(name, alpha, a, b) Where, a, b and alpha are real number. Return : Return the continuous random variable. Example #1 : In this example we can see that by using sympy.stats.PowerFunction() method, we are able to get the continuous random variable representing power function distribution by using this method. Python3 1=1 # Import sympy and PowerFunction from sympy.stats import PowerFunction, density from sympy import Symbol, pprint z = Symbol("z") alpha = Symbol("alpha", positive = True) a = Symbol("a", positive = True) b = Symbol("b", positive = True) # Using sympy.stats.PowerFunction() method X = PowerFunction("x", alpha, a, b) gfg = density(X)(z) print(gfg) Output : (-2*a + 2*z)/(-a + b)**2 Example #2 : Python3 1=1 # Import sympy and PowerFunction from sympy.stats import PowerFunction, density, variance from sympy import Symbol, pprint z = Symbol("z") alpha = 2 a = 0 b = 1 # Using sympy.stats.PowerFunction() method X = PowerFunction("x", alpha, a, b) gfg = density(X)(z) pprint(variance(gfg)) Output : 1/18 Comment More infoAdvertise with us Next Article sympy.stats.Logistic() in python J jitender_1998 Follow Improve Article Tags : Python SymPy Python SymPy-Stats Practice Tags : python Similar Reads sympy.stats.FiniteRV() function in Python With the help of sympy.stats.FiniteRV() method, we can create a random variable gives a dictionary of density by using sympy.stats.FiniteRV() method. Syntax : sympy.stats.FiniteRV(name, dict) Return : Return the variable having dictionary of density. Example #1 : In this example, we can see that by 1 min read sympy.stats.Poisson() in Python With the help of sympy.stats.Poisson() method, we can get the random variable representing the poisson distribution. Syntax : sympy.stats.Poisson(name, lambda)Return : Return the random variable. Example #1 :In this example we can see that by using sympy.stats.Poisson() method, we are able to get th 1 min read sympy.stats.Pareto() in python With the help of sympy.stats.Pareto() method, we can get the continuous random variable which represents the Pareto distribution. Syntax : sympy.stats.Pareto(name, xm, alpha) Where, xm and alpha are real number and xm, alpha > 0. Return : Return the continuous random variable. Example #1 : In thi 1 min read sympy.stats.Binomial() function in Python With the help of sympy.stats.Binomial() method, we can create a Finite Random Variable representing a binomial distribution. A binomial distribution is the probability of a SUCCESS or FAILURE outcome in an experiment or survey that is repeated multiple times. Syntax: sympy.stats.Binomial(name, n, p 1 min read sympy.stats.Logistic() in python With the help of sympy.stats.Logistic() method, we can get the continuous random variable which represents the logistic distribution. Syntax : sympy.stats.Logistic(name, mu, s) Where, mu and s are real number and mu, s > 0. Return : Return the continuous random variable. Example #1 : In this exam 1 min read sympy.stats.Logarithmic() in Python With the help of sympy.stats.Logarithmic() method, we can get the random variable representing the logarithmic distribution. Syntax : sympy.stats.Logarithmic(name, p) Return : Return the random variable. Example #1 : In this example we can see that by using sympy.stats.Logarithmic() method, we are a 1 min read Like