Open In App

sympy.stats.PowerFunction() in Python

Last Updated : 08 Jun, 2020
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report
With the help of sympy.stats.PowerFunction() method, we can get the continuous random variable which represents the Power Function distribution.
Syntax : sympy.stats.PowerFunction(name, alpha, a, b) Where, a, b and alpha are real number. Return : Return the continuous random variable.
Example #1 : In this example we can see that by using sympy.stats.PowerFunction() method, we are able to get the continuous random variable representing power function distribution by using this method. Python3 1=1
# Import sympy and PowerFunction
from sympy.stats import PowerFunction, density
from sympy import Symbol, pprint

z = Symbol("z")
alpha = Symbol("alpha", positive = True)
a = Symbol("a", positive = True)
b = Symbol("b", positive = True)

# Using sympy.stats.PowerFunction() method
X = PowerFunction("x", alpha, a, b)
gfg = density(X)(z)

print(gfg)
Output :
(-2*a + 2*z)/(-a + b)**2
Example #2 : Python3 1=1
# Import sympy and PowerFunction
from sympy.stats import PowerFunction, density, variance
from sympy import Symbol, pprint

z = Symbol("z")
alpha = 2
a = 0
b = 1

# Using sympy.stats.PowerFunction() method
X = PowerFunction("x", alpha, a, b)
gfg = density(X)(z)

pprint(variance(gfg))
Output :
1/18

Practice Tags :

Similar Reads