B General form of electromagnetic vertex function in QFT

Click For Summary
The discussion focuses on the derivation of the general form of the electromagnetic vertex function, Γ, in quantum field theory (QFT). The authors present a normalized expression for the current matrix element involving the vertex function and emphasize the role of various Dirac matrices and electromagnetic form factors. It is noted that the general form of Γ can be constructed using combinations of γ matrices and γ5, which form a complete basis for 4-dimensional matrices. The importance of Lorentz invariance in deriving this expression is also highlighted. Understanding these concepts is crucial for grasping the underlying principles of QFT.
Wrichik Basu
Science Advisor
Insights Author
Gold Member
Messages
2,180
Reaction score
2,720
TL;DR
How did the authors write the general form of the electromagnetic vertex function out of nowhere?
I am studying a beginner's book on QFT.

In a chapter on electromagnetic form factors, the authors have written, using normalized states,
$$\begin{eqnarray}
\langle \vec{p'}, s'| j_\mu (x) |\vec{p}, s \rangle \ = \ \exp(-i \ q \cdot x) \langle \vec{p'}, s'| j_\mu (0) |\vec{p}, s \rangle \nonumber \\
\Rightarrow \ \langle \vec{p'}, s'| j_\mu (x) |\vec{p}, s \rangle \ = \ \dfrac{\exp(-i \ q \cdot x)}{\sqrt{2 E_p V} \sqrt{2 E_{p'} V}} \bar{u}_{s'} (\vec{p'}) e \Gamma_\mu(p, p') u_s(\vec{p}) \nonumber
\end{eqnarray}$$
where ##q = p - p'##, ##E_p = p^0##, ##E_{p'} = p'^0##, ##\Gamma## is the vertex function, ##u_s## is the plane wave solution of the Dirac Equation, ##\bar{u}_s## is the Dirac conjugate of ##u_s##, and other symbols have their usual meanings.

After this, the authors have said that the most general form of ##\Gamma## is $$ \Gamma_\mu \ = \ \gamma_\mu(F_1 + \tilde{F}_1 \gamma_5) \ + (\ i F_2 + \tilde{F}_2 \gamma_5) \sigma_{\mu \nu} q^\nu \ + \tilde{F}_3 q_\mu \not\!q\gamma_5 \ + \ q_\mu (F_4 + \tilde{F}_4\gamma_5),$$ where ##\sigma_{\mu \nu} \ = \ \frac{i}{2} \left[\gamma_\mu, \ \gamma_\nu\right]## and ##\gamma_5 \ = \ \frac{i}{4!} \epsilon_{\mu\nu\lambda\rho} \gamma^\mu \gamma^\nu \gamma^\lambda \gamma^\rho##, all the ##F##'s are the electromagnetic form factors and other symbols have their usual meanings.

I understand that the book is for beginners, but how did the authors, out of nowhere, write down the general form for ##\Gamma##?
 
Last edited:
Physics news on Phys.org
The products of one or more ##\gamma## and ##\gamma_5##, forms a basis for all matrices of dimension 4. ##\Gamma## can thus be written in a basis of them. You need then also to take into account e.g. Lorentz invariance in order to arrive at the expression for ##\Gamma##.
 
Last edited by a moderator:
  • Like
Likes Wrichik Basu
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
5K
Replies
1
Views
2K