A The Lagrangian of a free particle ##L=-m \, ds/dt##

  • Thread starter Thread starter Kostik
  • Start date Start date
Click For Summary
Dirac's formulation of the Lagrangian for a free particle, given as L = -m ds/dt, is derived under the assumption of flat spacetime in special relativity. He confirms that the coefficient -m is correct by demonstrating that the expression for the relativistic 4-momentum, p^k, aligns with the derivative of the Lagrangian with respect to velocity. However, concerns arise regarding the validity of this relationship for relativistic particles, as it appears to rely on non-relativistic assumptions. Landau-Lifshitz provide an alternative approach that reinforces the conclusion that kappa must equal -m by deriving the non-relativistic limit from their formulation. The discussion highlights the importance of distinguishing between relativistic and non-relativistic contexts when establishing the relationship between momentum and the Lagrangian.
Kostik
Messages
274
Reaction score
32
TL;DR
How to show that ##L=-m \, ds/dt## for a free particle.
In Dirac's "General Theory of Relativity" (p. 52), he postulates that the action for a free particle of mass ##m## is $$I=-m \int ds$$ hence the Lagrangian is $$L=-m\frac{ds}{dt} = -m\frac{\sqrt{\eta_{\mu\nu}dx^\mu dx^\nu}}{dt}
\, .$$ To confirm that ##-m## is the correct coefficient, he assumes flat spacetime (special relativity) and calculates $$\frac{\partial L}{\partial \dot{x}^k} = -m\frac{\partial}{\partial \dot{x}^k}\left( \frac{ds}{dt}\right) = m\frac{ \dot{x}^k }{ ds/dt } = m \frac{dx^k}{ds}$$ which is the correct formula for relativistic 4-momentum ##p^k##. ("As it ought to be", says Dirac.)

##\qquad## But doesn't this assume that $$p^k = \frac{\partial L}{\partial \dot{x}^k} \quad ?$$ This is true for the non-relativistic Lagrangian for a free particle $$L=T-U = \frac{1}{2}mv^2 \qquad (*)$$ but is it true for a relativistic particle?

##\qquad## (Landau-Lifshitz give what seems to be a more convincing confirmation. They also postulate that ##L= \kappa \, ds/dt##, and assume flat spacetime (special relativity) where ##ds^2 = \eta_{\mu\nu}dx^\mu dx^\nu##. Then $$L=\kappa \frac{ds}{dt}=\kappa \sqrt{1-v^2} \, .$$ Hence, for velocities ##v \ll 1##, we have $$L = \kappa - \frac{1}{2}\kappa v^2 + O(v^4) \, .$$ The nonrelativistic Lagrangian is shown above in ##(*)##, so to get the correct kinetic energy term, we must have ##\kappa = -m##.)

##\qquad## I'd like to understand Dirac's confirmation that ##\kappa = -m##. How does he know in advance that $$p^k = \frac{\partial L}{\partial \dot{x}^k} $$ for a relativistic particle? It seems like he's using circular reasoning.

##\qquad## I think what Dirac forgot to add was "Since ##p^k = \partial L / \partial \dot{x}^k## in the case ##v \ll 1##, we see that ##\kappa = -m##."
 
Last edited:
Physics news on Phys.org
IIRC, Dirac uses Greek for 0-3, while Latin for 1-3, unlike L-L who use Greek for 1-3, and Latin for 0-3.

So if we try to switch from the Lagrangian density \mathcal{L} to the Hamiltonian formalism, we define the 4-momentum as

\begin{equation} p_\mu =: \frac{\partial \mathcal{L} \left(x,\dot{x}\right)}{\partial \dot{x}^\mu}\end{equation},

where the dot is the worldline parameter (most commonly chosen as the proper time).

Why would going Greek > Latin be circular reasoning?
 
I think it's circular reasoning because ##p^k = \partial L / \partial \dot{x}^k## is derived for a non-relativistic free particle, where ##L=mv^2/2##. But, otherwise, ##p^k \equiv \partial L / \partial \dot{x}^k## is the definition of the "conjugate momentum". We cannot simultaneously define ##p^k \equiv \partial L / \partial \dot{x}^k## and ##p^k \equiv m\, dx^k/ds = mv^k##.

I think Dirac needs to reduce to the non-relativistic case (like L-L) in order to determine ##\kappa##.

##\qquad## I think what Dirac should have done is this: Consider the case ##v \ll 1##, where ##L = T = mv^2/2##. Then we confirm by calculation that $$\frac{\partial L}{\partial \dot{x}^k} = \frac{m}{2}\frac{\partial v^2}{\partial \dot{x}^k}=m\dot{x}^k \,. $$ Comparing this with $$\frac{\partial L}{\partial \dot{x}^k} = -\kappa \frac{dx^k}{ds} $$ and using ##ds=dt## when ##v \ll 1##, we obtain ##\kappa = -m##.
 
Last edited:
Kostik said:
TL;DR Summary: How to show that ##L=-m \, ds/dt## for a free particle.

But doesn't this assume that pk=∂L∂x˙k? This is true for the non-relativistic Lagrangian for a free particle
This is also true for SR Lagrangian. For SR Lagrangian pk has the factor \frac{1}{\sqrt{1-v^2/c^2}} as we see in experiments. Analytical mechanics holds also in special relativity only by changing the Lagrangian functions.
 
Last edited:
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
53
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K