This document discusses MapReduce and its suitability for processing large datasets across distributed systems. It describes challenges like node failures, network bottlenecks and the motivation for a simple programming model that can handle massive computations and datasets across thousands of machines. MapReduce provides a programming model using map and reduce functions that hides complexities of parallelization, fault tolerance and load balancing. It has been widely adopted for applications involving log analysis, indexing large datasets, iterative graph processing and more.