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ABSTRACT

Single-cell RNA sequencing has transformed our understanding of cellular diversity, yet current single-
cell foundation models (scFMs) remain limited in their scalability, flexibility across diverse tasks, and
ability to natively integrate textual information. In this work, we build upon the Cell2Sentence (C2S)
framework, which represents scRNA-seq profiles as textual “cell sentences,” to train Large Language
Models (LLMs) on a corpus comprising over one billion tokens of transcriptomic data, biological text,
and metadata. By scaling model size to 27 billion parameters, we observe consistent improvements in
predictive and generative capabilities, as well as the capacity for advanced downstream tasks requiring
synthesis of information across multicellular contexts. Through targeted fine-tuning supported
by modern reinforcement learning techniques, our approach excels in tasks such as perturbation
response prediction, natural language interpretation, and complex biological reasoning. By unifying
transcriptomic and textual data at unprecedented scales, this approach not only surpasses both
specialized single-cell models and general-purpose LLMs, but also establishes a powerful platform
for next-generation single-cell analysis, paving the way for the development of “virtual cells.”
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Figure 1: Scaling LLM-based single-cell analysis. A multidimensional expansion of the C2S [14] framework,
demonstrating advances in model capacity, dataset size, multimodality, multi-cell support, and integration across
biological scales, from single cells to organism-wide insights in natural language. This framework bridges computational
innovation with biological discovery, accelerating next-generation single-cell analysis.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity by enabling
the profiling of gene expression at single-cell resolution [1]. This technology has generated massive data atlases such as
CellxGene [2] and the Human Cell Atlas [3], offering unparalleled opportunities for computational methods to extract
biological insights from this data. Recent transcriptomic foundation models (FMs), such as scGPT [4], Geneformer
[5], scFoundation [6], and scGenePT [7] have shown promise in modeling single-cell transcriptomic data at scale.
Despite these advances, current models are often constrained by bespoke architectures, hindering their scalability to
larger model sizes, integration of different data modalities, and ability to perform diverse generative and predictive
tasks. These limitations restrict the ability of expression-only foundation models to synthesize insights across datasets,
modalities, and biological contexts, and highlight the need for an alternative approach capable of addressing these
challenges while maintaining flexibility and scalability.

Large Language Models (LLMs) [8, 9, 10], offer a promising solution to these challenges. Widely used in Natural
Language Processing (NLP), LLMs exhibit robust scaling behavior in performance over diverse downstream tasks
[11, 12]. Their ability to process vast text corpora and generalize effectively to new applications makes them well-suited
for addressing the limitations of current expression-only models. Cell2Sentence (C2S) [13, 14] leverages the capabilities
of LLMs through data engineering, transforming high-dimensional single-cell data into a textual format compatible
with these models. By converting scRNA-seq profiles into “cell sentences” — sequences of gene names ordered
by expression level — C2S positions single-cell data within the LLM framework, providing better scalability and
infrastructure advantages than specialized model architectures. This data transformation strategy simplifies model
development and deployment, and enables easy integration of transcriptomic data with diverse modalities, including
metadata, experimental conditions, and textual descriptions from biological publications.

Here, we introduce the next generation of C2S models, C2S-Scale, which significantly improves the C2S paradigm in
terms of: (a) model capacity, (b) model performance, (c) dataset size and multimodality, (d) context length and diversity,
and (e) downstream applications, highlighted in Figure 1. The C2S-Scale model family establishes scaling laws in
single-cell analysis and represents a significant step towards next-generation, language-powered tools for biological
discovery, paving the way for virtual cell platforms that integrate transcriptomic data, natural language, and contextual
information.
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Our contributions can be summarized as follows:

1. Scaling Single-Cell Analysis with LLMs: We introduce C2S-Scale, a new family of LLMs designed to robustly
scale single-cell analysis across multiple axes:

(a) Larger Model Capacity: C2S-Scale comprises models ranging from 410 million to 27 billion parameters
(410M, 1B, 2B, 9B, and 27B), based on the Gemma-2 [15] and Pythia [16] LLM architectures. This represents
a substantial increase in model capacity compared to existing single-cell foundation models, enabling the
capture of more complex relationships within the data.

(b) Increased Performance at Scale: We establish performance scaling laws for LLMs in single-cell analysis,
demonstrating significant improvements in both predictive and generative tasks with increasing model size from
410 million to 27 billion parameters. Evaluation on held-out test sets demonstrates improved generalization
across diverse single-cell tasks with larger models. These scaling trends are observed in both full fine-tuning
and parameter-efficient regimes, highlighting the practical utility of scaling even with limited computational
resources.

(c) Data Size and Multimodality: C2S-Scale models are trained on a massive, 1-billion token multimodal
corpus encompassing more than 50 million human and mouse cells with associated metadata and annotations,
collected from publicly available single-cell atlases such as the Human Cell Atlas [3] and CellxGene [2]. By
training on both transcriptomic data along with corresponding biological text (e.g. paper abstracts), C2S aligns
single-cell transcriptomic data with natural language and biological context. This corpus is formatted into a set
of 150 million multi-task training samples (detailed in Table 1), allowing the LLM to learn diverse tasks while
simultaneously integrating annotations and free-text information.

(d) Long-Context, Multi-Cell Capabilities: C2S-Scale models support extended context lengths up to 8192
tokens, enabling more comprehensive multimodal and multi-cell input. Importantly, C2S-Scale can process
and generate data for multiple cells simultaneously, enabling analysis of cellular interactions and complex
biological processes. The extended context also allows for the integration of diverse contextual information,
including biological annotations, manuscript text, perturbation conditions, and more detailed task-specific
instructions.

(e) Diverse Downstream Applications: C2S-Scale models are fine-tuned and evaluated on a significantly broader
range of downstream tasks than previous models, encompassing challenging biological reasoning tasks such
as perturbation prediction, nuanced natural language interpretation of single-cell data, and complex question
answering, showcasing the versatility and applicability of our approach.

2. Reinforcement Learning for Enhanced Performance: Inspired by the use of reinforcement learning in NLP to
align LLMs with user preferences, we leverage Group Relative Policy Optimization (GRPO) [17] to further refine C2S
for targeted single-cell tasks. We quantify the performance improvements achieved with GRPO on challenging question
answering benchmarks as well as perturbation response prediction.

3. A Novel Metric for Evaluating Single-Cell Generative Models: We introduce the single-cell Fréchet Inception
Distance (scFID), an adaptation of the widely used Fréchet Inception Distance (FID) for evaluating image generative
models. Unlike expression-level metrics, which can be dominated by high-dimensional noise and outlier genes, scFID
leverages a single-cell foundation model embedding space to assess the quality of generated cells in a biologically
meaningful way.

4. Open-Source Models and Resources: We release our code and model weights to the community to facilitate
broader adoption and further development of LLM-based single-cell analysis. This includes resources for constructing
transcriptomic-language integrated datasets and prompts for LLM-based analysis.

2 Results

In this section, we demonstrate the broad capabilities of C2S-Scale on a diverse range of single-cell tasks, highlighting
the benefits of scaling LLM-based single-cell analysis. First, we evaluate trained C2S-Scale models ranging from 410
million to 27 billion parameters, demonstrating scaling laws in performance across predictive and generative tasks. We
then present key results for natural language interpretation of scRNA-seq data, spatial reasoning, question answering,
and perturbation response prediction tasks.
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Figure 2: C2S-Scale bridges scRNA-seq data and natural language by training LLMs to perform single-cell analysis
tasks on diverse, multimodal data. (A) A multimodal corpus of over 50 million human and mouse transcriptomes is
gathered from public data atlases, encompassing cellular expression from a diverse range of tissues, textual annotations,
papers, gene sets, and disease labels from scRNA-seq studies. (B) C2S rank-orders genes by expression and converts
them to natural language “cell sentences”, leveraging powerful LLM architectures without the need for custom
modifications. (C) C2S supports diverse downstream use cases, including perturbation prediction, generative tasks, and
advanced biological reasoning tasks such as question answering.

2.1 LLM Framework and Training

C2S-Scale uses an LLM-based framework for single-cell analysis, illustrated in Figure 2, building upon and scaling up
the original Cell2Sentence framework [13, 14]. To represent cells in natural language, C2S-Scale ranks the expressed
genes of each cell in descending order of expression and concatenates their gene names, separated by spaces, creating a
“cell sentence” (Figure 2B). This representation preserves relative gene expression while enabling the LLM to leverage
its pre-existing knowledge associated with gene names acquired during large-scale pre-training on natural language data.
The transformation from expression to cell sentence representation is reversible with minimal information loss due to
the strong relationship between relative position and original gene expression [13, 14] (examples provided in Figure 9).

Training C2S-Scale consists of two phases: a self-supervised general pre-training phase on our large-scale corpus,
followed by additional tuning for specific tasks. To assemble the pre-training corpus, we collected over 50 million
human and mouse transcriptomes from a diverse range of tissues gathered from the CellxGene [2] and Human Cell
Atlas [3] data atlases, along with associated annotations, papers, and metadata. We pretrain C2S-Scale on a variety of
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Figure 3: C2S-Scale outperforms both transcriptomic and natural language foundation models across diverse predictive
and generative single-cell tasks. Tasks include standard single-cell analysis tasks such as cell type annotation (red) and
cell embedding (green), a generative perturbation response prediction task (orange), and natural language interpretation
tasks including cluster captioning, dataset interpretation, and question answering tasks (blue). Raw performance
numbers are available in the Supplement. C2S-Scale is the only model capable of spanning the entire range of single-
cell analysis tasks, and demonstrates competitive performance on all tasks.

tasks constructed using samples from the raw corpus, encompassing predictive and generative tasks on both single and
multi-cell context (Table 1). This allows the LLM to learn to model cell sentences while simultaneously learning to
follow prompt instructions for common scRNA-seq analysis tasks. During the fine-tuning phase, the pretrained model
is specialized for a particular task on a new dataset.

2.2 State-of-the-art Predictive and Generative Capabilities

C2S-Scale demonstrates strong performance across a diverse spectrum of single-cell transcriptomic tasks, outperforming
or matching existing state-of-the-art transcriptomic and natural language foundation models (Figure 3). For traditional
single-cell analysis tasks like cell type annotation, C2S-Scale is provided with a cell sentence and prompted to predict
the corresponding cell type label in natural language. On these tasks, C2S-Scale achieves results competitive with other
specialized scFMs such as scGPT [4] and Geneformer [5] on immune tissue [18] and lung tissue [19] datasets. For cell
embedding tasks, we leverage the pretrained C2S-Scale models to generate rich cell embeddings given a cell sentence
as input. C2S-Scale produces informative cell embeddings that capture both transcriptional and contextual information
from natural language. We also construct a multi-modal integration task where we assess the zero-shot similarity of
embeddings from paired single-cell and bulk data. We find that C2S has the most consistent embeddings despite none
of the models being pre-trained on bulk data, suggesting that C2S innately captures a more biologically meaningful
representation of cellular states, likely due to the nature of the cell sentence transformation.

Additionally, C2S-Scale excels in generative tasks without requiring task-dependent architectural modifications, a
feature absent in most other transcriptomic foundation models. For perturbation response prediction, C2S-Scale
generates accurate predictions of cellular transcriptional responses to various perturbations, generalizing even to
combinatorial and previously unseen conditions. This task is described further in Section 2.7. On natural language
tasks involving reasoning about scRNA-seq data, C2S-Scale sets a new standard by outperforming state-of-the-art
(SOTA) and open-source LLMs such as Llama [20, 21], GPT-4o [22] and Gemini [23] at cluster captioning, dataset
interpretation, and question answering tasks. Remarkably, C2S-Scale generalizes effectively to completely unseen
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Figure 4: Cell2Sentence demonstrates consistent scaling in performance with increasing model capacity across diverse
single-cell analysis tasks. (A) Examples of predictive and generative tasks on single-cell data. (B) Natural language
prompts and responses for tasks in (A), colored by expression generation (red), predictive (blue), and language
generation (green) tasks. (C) Performance scaling of full-finetuned C2S models on conditional sample generation,
cell type annotation, tissue sample annotation, and dataset interpretation. (D) LoRA-finetuned C2S-Scale-2B and
27B models demonstrate performance scaling with increased model capacity in the parameter-efficient regime. (E)
Performance scaling by number of training samples seen by C2S-Scale-27B.

scRNA-seq studies (Figure 3), demonstrating its robust interpretative capabilities for novel data. The ability to generate
biologically meaningful insights in natural language makes C2S-Scale a uniquely powerful and accessible tool for
interacting with and interpreting single-cell data. Detailed description of each task and evaluation methodology can be
found in Section 5.

Importantly, C2S-Scale is the only model capable of spanning this entire range of single-cell analysis tasks, encompass-
ing both predictive and generative tasks, as well as integrating single-cell data with natural language understanding and
reasoning. This positions C2S-Scale as a universal and comprehensive tool for next-generation single-cell analysis.

2.3 Scaling Laws for LLMs in Single-Cell Analysis

Large language models (LLMs) are known to exhibit predictable scaling behavior in natural language tasks [11, 12].
We find that similar scaling laws emerge in the context of single-cell analysis when LLMs are trained on natural
language representations of transcriptomic data. As model capacity increases, C2S-Scale models demonstrate consistent
improvements across predictive and generative tasks, including cell type annotation, tissue inference, and conditional
cell generation (Figure 4C).
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These scaling trends are observed in both fully fine-tuned and parameter-efficient training regimes (Figure 4D). In
addition to model scaling, we find that performance also improves consistently with increased training data for a fixed
model size, as shown for the 27B model in Figure 4E. Together, these results suggest that scaling LLMs—both in
capacity and dataset size—can significantly enhance biological reasoning capabilities, mirroring the benefits seen in
general NLP.

2.4 Natural Language Interpretation at Multiple Scales of Biology

Natural language interpretation is a underexplored aspect of single-cell analysis, enabling researchers to bridge
experimental scRNA-seq data with existing biological literature and providing a user-friendly tool for biologists to
interact with and interpret their data. Existing LLM-based single-cell models such as GenePT [24] and scGenePT [7]
offered limited integration of natural language and single-cell data, focusing primarily on using language embeddings
in single-cell architectures and tasks. C2S-Scale bridges large-scale training on transcriptomic data with the natural
language pre-training and generative capabilities of LLMs, enabling natural language interpretation of scRNA-seq data
at multiple scales of biology, illustrated in Figure 5A.

We benchmark C2S-Scale on a series of natural language interpretation tasks at various scales of biology, evaluating
its ability to reason about and generate meaningful descriptions about data. At the individual cell level, C2S-Scale is
able to accurately annotate cell types in natural language given cell sentences as input. The model is first fine-tuned
on a diverse immune tissue dataset [18] to predict cell type labels in natural language. C2S-scale is able to correctly
classify almost all cell types on a held-out partition of the immune tissue data (Figure 5B), demonstrating C2S-Scale’s
effectiveness at standard single-cell analyses.

At the cluster level, we introduce a novel task called Cluster Captioning, where the goal is to generate biologically
meaningful descriptions for groups of cells from the same tissue and batch within a scRNA-seq dataset. To create
training data for this task, we use GPT-4o [22] to generate natural language captions for cell clusters derived from
annotated datasets (Methods Section 5.6). C2S-Scale is fine-tuned to predict these captions given multiple input cell
sentences from each cluster and is evaluated on held-out clusters not seen during training. Performance is measured
using BioBERTScore [25], which quantifies semantic similarity between generated and ground-truth captions. As
shown in Figure 5C, C2S-Scale outperforms all baseline LLMs on this task, demonstrating its ability to interpret and
summarize expression patterns at the cluster level.

At the dataset level, we further evaluate interpretive ability through a Dataset Interpretation task, where the model
receives multiple cell sentences from a scRNA-seq dataset and is tasked with generating a high-level summary in
the style of a biological abstract. These summaries are expected to describe key features of the dataset, including
dominant cell types, tissues, disease states, or perturbations (examples provided in Figure 10). Figure 5D shows that
C2S-Scale achieves the highest BERTScore among all evaluated models—including LLaMA [20, 21, 26], Meditron
[27], BioMistral [28], Gemini [23], and GPT-4o [22]. Notably, C2S-Scale generalizes well to entirely unseen datasets,
producing summaries that remain relevant and informative (Figure 5E), highlighting its robust natural language
understanding of scRNA-seq data.

Overall, C2S-Scale enables natural language interpretation at multiple scales, spanning single cells, clusters, and
datasets. Its ability to integrate textual and biological data unlocks new opportunities for biologists to explore, annotate,
and generate insights from scRNA-seq data in natural language.

2.5 C2S-Scale Learns Spatial Reasoning from Multi-cell Context and Interaction Data

Understanding spatial organization in tissues is fundamental to uncovering the mechanisms that govern cellular
interactions, particularly in how they drive disease progression and tissue homeostasis [29, 30, 31]. Cellular niches,
defined by their specific cell types, signaling molecules, and extracellular matrix components, play a crucial role in
regulating these processes. Accurately predicting spatial relationships among cells from transcriptomic data alone
is challenging, as traditional approaches often rely on explicitly structured spatial models or predefined interaction
networks [32, 33, 34].

Although C2S-Scale was not explicitly designed for spatial reasoning, its ability to incorporate multi-cellular context
provides a natural mechanism for modeling spatial organization. We hypothesize that by sampling and encoding cells
from shared neighborhoods, C2S-Scale can infer spatial relationships without requiring architectural modifications.
To test this, we evaluate the model’s performance in predicting spatial neighborhoods using a human liver spatial
RNA-seq dataset [35]. Additionally, we simultaneously train C2S-Scale on related tasks aimed at improving its spatial
understanding: niche label prediction, neighbor cell generation, and determining whether multiple cells belong to the
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Figure 5: C2S-Scale enables natural language interpretation of scRNA-seq data at multiple scales, from single cells to
entire datasets. (A) Different scales of biological data interpretation, from single cells to organism and dataset-level
annotation. (B) Ground truth and predicted cell types for immune cells extracted from 16 different tissues of adult
human donors [18], demonstrating the ability of C2S-Scale to annotate data at the single-cell level. (C) Performance
and example prompts for C2S-Scale on predicting cell-cell interaction in a lymph tissue spatial dataset. (D) Cluster
captioning performance on unseen scRNA-seq data clusters. Models are given multi-cell context from unseen data
clusters and tasked with captioning the data, measured by BERTScore. (E) Performance of C2S-Scale models on natural
language interpretation of entire scRNA-seq datasets on held-out cells and held-out studies. Error bars for (D) - (E)
represent standard deviation across test set samples.
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Figure 6: C2S-Scale can interpret multicellular spatial context and predict niche neighborhoods. (A) We fine-tune
C2S-Scale on a variety of single and multi-cellular spatial tasks designed to enable C2S-Scale to perform spatial
reasoning, including predicting niche labels, generating spatial neighbors, and identifying whether cells belong to the
same neighborhood or niche. A “neighborhood” is defined to be cells within a fixed radius from a central cell. (B) We
use publicly available gene interaction databases including BioGRID and CellPhoneDB to construct natural language
interaction prompts about gene interactions. To maximize relevance, BioGRID is filtered to include only genes expressed
in the CosMx dataset and restricted to extracellular proteins. (C) C2S outperforms scGPT and GPT-4o in spatial
neighborhood identification accuracy. Additionally, integrating gene interactions from BioGRID and CellPhoneDB
individually improves performance, and their combination provides the greatest improvement. These results highlight
the multi-task transfer learning potential of C2S-Scale for spatially-aware biological modeling.

same niche (Figure 6A). By training on these complementary tasks, C2S-Scale learns robust representations of spatial
organization, significantly outperforming both scGPT and GPT-4o in neighborhood prediction (Figure 6C).

We further hypothesize that incorporating external biological knowledge—specifically, gene interaction networks—can
enhance spatial reasoning. Receptor-ligand and other protein-protein interactions are central to cell-cell communication,
yet many scFMs are unable to integrate this information. Instead of imposing predefined rules, we simply expose
C2S-Scale to receptor-ligand interactions from CellPhoneDB [36] and protein interaction data from BioGRID [37],
formatted as natural language prompts (Figure 6B). This approach allows the model to implicitly integrate prior
knowledge while maintaining flexibility in how it applies this information.

Fine-tuning with gene interaction data further improves C2S-Scale’s ability to predict spatial relationships, reinforc-
ing the hypothesis that external molecular context enhances spatial reasoning (Figure 6B). Notably, adding either
CellPhoneDB or BioGRID data individually improves performance, demonstrating that both receptor-ligand and
protein-protein interaction knowledge contribute to spatial reasoning (Figure 6C). Moreover, combining both datasets
results in the greatest improvement, suggesting that integrating diverse biological interaction sources allows LLMs to
develop a richer understanding of multicellular organization and interaction.

A key advantage of C2S-Scale is its ability to integrate diverse data sources without requiring explicitly structured
incorporation of external knowledge. Unlike traditional methods that rely on predefined pathways or manually curated
interaction models, C2S-Scale implicitly learns to incorporate relevant information during training. This highlights a
fundamental strength of C2S: rather than designing bespoke architectures for specific tasks, we can provide relevant
data, and the model autonomously determines how to utilize it. This capability extends beyond spatial reasoning and
suggests broad applicability for integrating multimodal biological data.

2.6 Single-Cell Question Answering (QA) through Reinforcement Learning

QA tasks form a core part of NLP, providing a standard test to measuring a model’s ability to understand information
and apply reasoning [38, 39, 40, 41]. In biomedical research, QA tasks are particularly valuable for assessing advanced
reasoning in domain-specific contexts, as evidenced by the development of numerous specialized QA datasets for
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Figure 7: C2S-Scale demonstrates superior single-cell question answering performance compared to state-of-the-art
(SOTA) LLMs. (A) Example QA scenario based on scRNA-seq data. (B) Overview of the GRPO framework [17],
which further refines model performance by training on preference data. (C) Empirical comparison of C2S-Scale and
SOTA LLMs on single-cell QA tasks, highlighting C2S-Scale’s advantage in domain-specific reasoning. Error bars
represent standard deviation across test set QA samples.

medical [42, 43] and biological [44] applications. Building on this foundation, we introduce a single-cell Question
Answering (scQA) task to assess the ability of foundation models to reason about and interpret single-cell transcriptomic
data.

The scQA dataset consists of two thousand question answer pairs, each containing: (i) an associated biological context,
(ii) relevant scRNA-seq data sampled from clusters or cell type annotations, (iii) a main question, and (iv) a final answer.
Additionally, each answer is annotated with keywords to help evaluate response quality. To construct the dataset,
we sample cells from scRNA-seq datasets, provide the sampled data along with associated biological manuscripts to
GPT-4.5 [22], and prompt it to generate meaningful questions (Figure 7A).

After supervised fine-tuning (SFT), C2S-Scale surpasses the performance of state-of-the-art LLMs on scQA (Figure 7C),
demonstrating the advantages of specialized training on transcriptomic data paired with natural language. To further
improve C2S-Scale’s question answering capabilities, we employ Reinforcement Learning (RL) [45] through Group
Relative Policy Optimization (GRPO) to further optimize the model to generated preferred responses to questions
(Figure 7B). By using BioBERT Score as the reward function, we guide C2S-Scale toward producing higher-quality
answers aligned with biological insights. Following GRPO training, C2S-Scale significantly outperforms the SFT
baseline on the scQA dataset, highlighting the potential of RL techniques to optimize LLMs for specialized single-cell
applications.

2.7 Perturbation Response Prediction

Single-cell foundation models offer remarkable opportunities for conducting large-scale virtual perturbation experiments
that would otherwise be infeasible or prohibitively expensive in a laboratory setting. Here, we demonstrate C2S-Scale’s
flexibility and accuracy in predicting responses to previously unseen perturbations across diverse settings (Figure 8A).

The prompts used to train C2S-Scale are illustrated in Figure 8C. Training proceeds in two stages: supervised fine-
tuning (SFT) followed by reinforcement learning (RL). During SFT, the model is trained to predict gene expression
profiles from untreated cells under target perturbation conditions. In the second stage, we apply GRPO [17], an online
reinforcement learning algorithm, to optimize perturbation responses with respect to biologically relevant objectives.

10
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While C2S-Scale generates full expression profiles, screening experiments often focus on specific phenotypes rather
than all genes. GRPO addresses this by targeting gene programs of interest—apoptosis for the L1000 dataset [46],
reflecting the goal of inducing programmed cell death in cancer cells as a therapeutic mechanism, and interferon
response for the Dong et al. dataset [47], to capture inflammatory responses to cytokine stimulation. The reward signal
is computed over these subsets of genes (Figure 8F), enabling targeted optimization and improving generalization to
out-of-distribution settings (Figure 8G).

We introduce a new metric, scFID (Figure 8B), an adaptation of the FID metric [48] widely used in computer vision to
evaluate the realism of generated images. scFID replaces the Inception-v3 model [49] with a single-cell foundation
model to embed transcriptomic data, enabling biologically meaningful comparisons between real and generated cells.
Unlike expression-level metrics, which are sensitive to noise and outliers, scFID offers a robust evaluation in the learned
feature space. See Methods (Section 5.7) for details and theoretical connections to Wasserstein distance.

C2S-Scale outperforms existing methods on the Dong et al. dataset, accurately predicting responses to unseen cytokine
perturbations on entire gene expression profiles. It generalizes to novel combinations of cell type, cytokine, and
exposure duration, producing responses that closely match ground truth (Figure 8E). Compared to scGen, CellOT, and
scGPT, C2S-Scale performs best on fully unseen combinatorial perturbations, capturing nonlinear synergistic effects.
Quantitative results (Figure 8F) show superior MMD, Wasserstein, and scFID scores. GRPO further reduces scFID on
interferon-related genes, improving biological fidelity on immune pathways (Figure 8G).

The L1000 results further underscore C2S-Scale’s versatility in modeling perturbation responses across both single-cell
and bulk transcriptomic data. We evaluate performance on a subset of apoptosis-related genes, focusing on the model’s
ability to generalize to unseen compound treatments. Figure 8G shows a consistent performance gain when applying
GRPO, with notable improvements in both Kendall’s τ and Pearson’s r for models of 410M and 1B parameters. These
results demonstrate that reinforcement learning not only improves alignment with biologically meaningful responses
but also enhances the model’s generalization to perturbations outside the training distribution.

3 Discussion

Our work introduces C2S-Scale, a family of LLMs for single-cell analysis that leverages the benefits of state-of-the-art
LLMs out of the box. By converting transcriptomic profiles into “cell sentences,” C2S-Scale avoids the need for bespoke
model architectures while readily integrating contextual information from annotations, metadata, and biological texts.
This data engineering paradigm yields a flexible system capable of predictive and generative single-cell tasks, and our
results demonstrate that scaling C2S-Scale up to 27 billion parameters systematically boosts performance, mirroring
similar scaling phenomena observed in the broader field of NLP.

Moreover, we show that C2S-Scale bridges the gap between raw transcriptomic information and natural language-
based interpretation by supporting tasks at multiple scales, ranging from cell type annotation to entire dataset-level
summarization. We propose new evaluation datasets for these interpretation tasks and demonstrate that LLMs trained in
the C2S-Scale framework provide meaningful captions and summarizations of single-cell data, even in cases where
the dataset is completely new to the model. By aligning expression data with rich textual metadata and biological
domain knowledge, our approach highlights the potential of language-based modeling to offer biologically informed
explanations and generate insights unavailable to purely expression-only systems.

Higher-capacity models and more diverse training corpora can unlock advanced capabilities, such as the integration
of epigenomic, proteomic, and clinical data into a single multimodal model. In parallel, increasing transparency and
explainability in LLM decision making will be essential for building trust and accelerating adoption of these tools in
single-cell research. Reinforcement Learning and other innovations in LLM alignment will provide a path forward
for aligning LLMs to preferred responses in the context of biological tasks. By directly linking natural language
and transcriptomic data, C2S sets the stage for transformative innovations in biological discovery and personalized
medicine.

4 Limitations

4.1 Addressing Limitations of Causal Attention in Gene Expression Modeling

While our approach demonstrates strong empirical performance in modeling single-cell gene expression using autore-
gressive language models, we acknowledge that causal attention’s inherent unidirectionality—favoring high-to-low
gene expression dependencies—could theoretically limit the modeling of true causal biological interactions that flow
from low- to high-expression genes. However, we contend that this constraint does not significantly impede our
objectives and can be mitigated through several complementary strategies. First, our approach aligns with successful
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Figure 8: C2S-Scale models outperform existing methods in predicting cellular responses to unseen perturbations. (A)
Overview of the C2S-Scale perturbation prediction framework, which supports diverse perturbation types including
drugs, cytokines, and genetic knockouts. (B) Diagram of the scFID metric, computed in foundation model latent space,
analogous to FID in computer vision. (C) Prompt and response example for perturbation prediction. (D) UMAPs
comparing predicted vs. ground-truth responses for unseen perturbations across four models. Rows show: (1) all
combinatorial perturbations, (2) CD4 T cells under IFN-γ, (3) B cells under the held-out IFN-β + IL-6 stimulation.
C2S-Scale aligns closely with ground truth in all cases. (E) Benchmark metrics show C2S-Scale outperforms scGen,
scGPT, and CellOT across all evaluation criteria. (F) GRPO framework for perturbation prediction: models generate
perturbed responses and receive rewards based on gene program similarity. (G) GRPO improves over SFT on L1000
(apoptosis response) and cytokine stimulation (interferon response) tasks, with gains in Kendall’s τ , Pearson’s r, and
scFID.
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paradigms from vision-language models, where arbitrary tokenization orders paired with causal attention still achieve
state-of-the-art performance [50]. Similar to hybrid vision architectures that combine causal and non-causal attention
layers, our framework could incorporate indirect bidirectional context through auxiliary reasoning tokens or non-causal
gene interactions.

Multi-cell context and reasoning as a corrective mechanism The model’s reasoning capabilities provide additional
corrective potential. Emerging evidence from language modeling demonstrates that explicit reasoning steps can
compensate for causal attention limitations [51, 52, 53]. In our context, intermediate tokens representing biological
pathways or gene interactions enable iterative prediction refinement, effectively circumventing strict unidirectionality.
Furthermore, our multi-cell training framework enables implicit bidirectionality—low-expression genes in one cell can
influence high-expression genes in the following cell, approximating bidirectional attention across a multi-cell context.

Correlation, not causation It is important to emphasize that our model is designed to capture predictive correlations
over inferring causal gene relationships. This mirrors natural language processing, where autoregressive models
successfully capture statistical correlations despite occasional misalignment between word order and true causal
relationships (e.g. passive constructions) [54, 55]. Our results confirm that expression correlations provide sufficient
predictive power for key biological analysis tasks.

Architectural enhancements Looking forward, we propose three architectural enhancements to further mitigate
this limitation: (1) bidirectional attention by partitioning gene sequences, (2) variable gene ordering during training
to induce order invariance, and (3) hybrid attention architectures blending causal and non-causal attention layers.
While our current approach already demonstrates that sequential modeling of gene expression—despite lacking natural
ordering—leverages pre-trained LLMs without requiring custom architectures, these enhancements aim to further
improve biological fidelity and predictive power.

In summary, while causal attention restricts bidirectionality within individual cells, its ability to capture correlations
aligns with our predictive objectives. The combined effects of multi-cell context, reasoning mechanisms, and prospective
architectural improvements position this approach as a robust foundation for single-cell analysis, with multiple pathways
available for extending its biological fidelity.

4.2 Hallucination and Interpretability

A known challenge with large language models is their tendency to generate plausible but incorrect outputs, often
referred to as hallucinations. While our benchmarking focuses on structured biological tasks with ground-truth labels,
more open-ended interpretation tasks—such as abstract generation or cluster captioning—may be susceptible to such
errors. Developing domain-specific safeguards, such as biological fact-checking mechanisms or constrained decoding
strategies, remains an important direction for improving interpretability and reliability in high-stakes settings.

5 Methods

The following section details the data collection, processing, and and formatting for multi-task samples, as well as the
model architecture for Large Language Models.

5.1 Data Collection

To construct the C2S-Scale pre-training corpus, we assembled a large-scale dataset encompassing over 50 million
single-cell transcriptomic profiles from human and mouse tissues. These scRNA-seq datasets were sourced from
established public repositories, including the CellxGene [2] and Human Cell Atlas [3] data portals. The datasets span
a broad range of biological contexts, and include associated annotations and textual data such as cell type and tissue
annotations, disease states, experimental conditions, and associated biological papers and abstracts. We applied standard
preprocessing pipelines for scRNA-seq data, including quality control, normalization, and log-transformation, following
established conventions [56]. For each dataset, any available annotations, including cell type, tissue type, disease
state, donor ID, development stage, species, and associated paper were kept for constructing natural language prompts
after converting the raw transcriptomic data into cell sentences. This forms a multimodal training corpus with linked
transcriptomic and natural language data.

5.2 Cell Sentence Transformation

To adapt high-dimensional single-cell gene expression data into a format compatible with natural language processing,
we converted expression profiles into textual representations termed “cell sentences.” For each cell, let X ∈ RD be the
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expression vector, where Xk denotes the normalized expression value of gene k in that cell. The cell sentence for X is
constructed by rank-ordering the genes within a cell by their expression levels and taking the K most highly expressed
genes. If S is a list of indices from 1 to D sorted in descending order based on expression level in X , then

cell sentence(X) := “gene(S[1]) gene(S[2]) . . . gene(S[K])”. (1)

The gene names are in natural language, forming a sentence interpretable by language models (exemplified in Figure 2).
Under this framework, there is no need to extend or modify the vocabulary of the language model, and it allows any
LLM architecture to tokenize gene names according to their existing vocabulary. This has two primary benefits: (i)
by avoiding architectural modifications, the C2S framework is immediately applicable to any LLM architecture or
innovation, and (ii) the LLM is able to recognize gene names and associate prior knowledge about that gene obtained
during self-supervised pre-training on natural language data, which has been shown to be significant for large-scale
pretrained LLMs [24].

The cell sentence transformation into textual sequences retains the underlying biological information by preserving the
rank-order of gene expression. We find there is a strong linear relationship (in log space) between a gene’s rank in the cell
sentence and the (normalized) expression level, validating the fidelity of this transformation. This relationship is shown
in Supplementary Figure 9 for two scRNA-seq datasets. A linear model fitted between rank and original expression
can predict the original gene expression values given a gene’s rank with an R2 of 85% (Figure 9), demonstrating that
minimal information is lost during conversion to cell sentences. This interchangeability allows us to utilize the strength
of LLMs in natural language processing while retaining the ability to convert back to gene expression vectors for
traditional single-cell analysis methods. The parameters of the linear model for each scRNA-seq dataset used during
training are saved to enable reversible transformation from cell sentences back to expression values during inference.

Multi-Task Prompt Formatting. By operating in natural language, C2S-Scale enables diverse input and output context
for predictive and generative single-cell analysis tasks, including cell type and tissue annotation, multi-cell generation
tasks, and dataset interpretation tasks. The full list of pre-training tasks, inputs, and outputs of the model are detailed
in Table 1. To construct prompts for specific tasks, each prompt combines the cell sentence representation of one or
multiple cells with task-specific instructions to guide the model to perform the specific task. For predictive tasks, the
cell sentence information is given as part of the input prompt, and the response contains the metadata label of interest.
For example, for the cell type annotation task, the input would contain the cell sentence and a natural language prompt
such as “Predict the cell type of this cell:”, and the output would be the cell type label. For generative tasks this is
reversed; metadata conditions are given in the input prompt, and the output response contains the cell sentence(s).
Metadata given in natural language prompts can include cell type, tissue annotations, perturbation conditions, biological
abstracts and text, and disease states, to provide additional biological context or conditions. This approach ensures
that C2S-Scale learns to interpret and perform complex biological tasks within the framework of natural language, and
enables it to generalize to diverse applications.

5.3 C2S-Scale Architecture and Pre-training

Word Embedding in Transformers. The C2S-Scale framework uses LLMs, which are based on the Transformer
architecture [8], to model cell sentences and perform single-cell analysis in natural language. Language models
represent input sequences of text as sequences of high-dimensional vectors known as “word embeddings”, suitable
for processing by neural networks. Each word in a cell sentence corresponds to a gene name, which is further split
into tokens using the pretrained tokenizer associated with the model’s backbone architecture. By reusing the existing
tokenizer associated with the LLM, we avoid introducing new vocabulary and maintain compatibility with the model’s
pre-training knowledge.

The tokenized gene names are embedded into vector spaces by means of an embedding layer trained alongside the
model. These embeddings capture the semantic information of genes, informed by both biological context and the
language model’s prior knowledge. This representation enables the Transformer to interpret and process complex gene
expression patterns encoded in cell sentences.

Attention Mechanism. Central to modern language model architectures is the attention mechanism [57], which allows
the model to identify and focus on key components of input sequences. Self-attention, the predominant method used
in Transformer models [8], is employed to compute attention scores between tokens. This mechanism enables the
model to dynamically weigh the importance of different genes within a cell sentence, depending on the task. For
example, the model may emphasize lineage-defining marker genes for cell type classification tasks while focusing on
perturbation-associated genes for prediction tasks.

The attention mechanism also facilitates the integration of additional contextual metadata, such as cell type or tissue
labels, by attending to these features alongside the cell sentences. This ensures that the model considers both the textual
representation of gene expression and the accompanying biological context during processing.
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Table 1: Pre-training task inputs and outputs for C2S-Scale multi-task training. For multi-cell tasks, multiple cells are
sampled from the same donor sample with the same tissue label.

Task name Type Input information Target output Metric

Single cell language modeling Single-cell – Single cell sentence Overlap %
Cell type annotation Single-cell Single cell sentence Cell type BertScore
Conditional cell generation Single-cell Cell type of one cell Single cell sentence Overlap %
Multiple cell language modeling Multi-cell – Multiple cell sentences Overlap %
Tissue sample annotation Multi-cell Multiple cell sentences Tissue label BertScore
Sample cell type(s) annotation Multi-cell Multiple cell sentences Cell types of multiple cells BertScore
Conditional sample generation (tissue) Multi-cell Tissue annotation Multiple cell sentences Overlap %
Conditional sample generation (cell type) Multi-cell Cell types of multiple cells Multiple cell sentences Overlap %
Conditional sample generation (abstract) Multi-cell Paper abstract Multiple cell sentences Overlap %
Natural language interpretation Multi-cell Multiple cell sentences Paper abstract BertScore
Gene set enumeration Gene set Gene set name List of genes in gene set Overlap %
Gene set naming Gene set List of genes in gene set Gene set name BertScore

Transformer Architecture. LLMs are decoder-only Transformer architectures, chosen for its proven capabilities in
sequential data modeling and generative tasks [22]. The Transformer consists of stacked blocks, each comprising a
self-attention layer followed by a feedforward network with residual connections and layer normalization [8]. This
modular design enables scalable and efficient learning across a wide range of tasks.

Key architectural components include:

1. Self-Attention Layers: These layers compute relationships between all tokens in the input sequence, allowing
the model to capture long-range dependencies in gene expression data.

2. Feedforward Networks: Each attention layer is followed by a feedforward network, which applies non-linear
transformations to enhance feature extraction.

3. Residual Connections and Layer Normalization: These components stabilize training and facilitate gradient
flow, enabling the model to scale effectively to large parameter sizes.

Pre-training Objectives. The pre-training objective of LLMs is next token prediction [58], a foundational task in
generative language modeling introduced . In this setup, the model learns to predict the next token in a sequence given
all preceding tokens, enabling it to capture complex dependencies and semantic relationships within the input data.
For cell sentences, this objective involves predicting the next gene name in the rank-ordered sequence based on the
expression levels of preceding genes, while incorporating contextual metadata, such as cell type or tissue annotations,
when provided. While prior work such as Geneformer [5] also rank-orders genes and uses a masked modeling objective
to predict genes in the sequence, their formulation is not in natural language and lacks the autoregressive framing
central to generative LLMs. In contrast, our approach trains the model to understand gene expression patterns and their
hierarchical organization through natural language modeling, conditioning it to integrate biological context naturally via
autoregressive generation. The sequential nature of next token prediction aligns seamlessly with downstream generative
tasks, such as cell sentence generation and annotation, ensuring that the model can generate coherent and biologically
meaningful outputs when applied to single-cell analyses.

Training Setup. The pre-training was conducted on a corpus of over 50 million single-cell transcriptomes and associated
metadata and textual annotations, as described in the previous section. We employed multi-task learning to jointly
optimize the model across predictive and generative tasks described in Table 1, allowing it to develop a comprehensive
understanding of single-cell data linked with natural language. The training utilized modern optimizers and techniques,
such as AdamW and gradient checkpointing, to efficiently manage computational resources for models ranging from
1 billion to 27 billion parameters. We used Huggingface [59] and PyTorch [60] to train LLM models up to the 1B
parameter scale, and afterwards used Jax and TPU-based compute resources to train models from 2B to 27B capacity.

5.4 Scaling Evaluation

To evaluate scaling behavior in C2S-Scale models, we benchmarked models ranging from 410 million to 27 billion
parameters, based on the Gemma 2 [15] and Pythia [16] architectures. We assessed performance on a held-out set of
500 test samples spanning multiple single-cell tasks listed in Table 1, including cell type annotation, tissue classification,
dataset interpretation, and conditional sample generation. Both fully fine-tuned and LoRA-finetuned variants [61] were
evaluated to assess scaling behavior under different computational budgets.
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Performance was measured using BERTScore [25] between generated and reference outputs for predictive tasks such as
cell type annotation and dataset interpretation, providing a semantic measure of response quality. For generative tasks
like conditional cell generation, we evaluated performance by measuring gene overlap between generated and target
cell sentences.

5.5 Post-training Methods

Supervised fine-tuning. After pre-training, C2S-Scale is fine-tuned on task-specific datasets to adapt the model to
downstream applications in single-cell analysis. During this stage, the model is trained using labeled data for tasks such
as cell type annotation, tissue-level classification, and cell generation. Next-token-prediction [58] is again used for the
supervised fine-tuning phase, with natural language prompts formatted for the downstream task.

To maintain efficiency and minimize overfitting, we employ parameter-efficient fine-tuning techniques, including LoRA
(Low-Rank Adaptation) and lightweight adapter layers. These methods allow fine-tuning a subset of model parameters
while keeping the majority of the pretrained weights frozen. This approach enables rapid adaptation to specific tasks
without requiring extensive computational resources or large labeled datasets.

Reinforcement Learning. To further enhance performance on generative and interpretative tasks, we draw on RL
techniques aimed at aligning LLM outputs to preferred standards using reward modeling 45. Specifically, we employ
GRPO, a reward-based method that directly updates the model parameters based on gradient signals tied to task-specific
criteria, thereby aligning C2S outputs with biological accuracy and interpretability.

The GRPO process starts with generating multiple candidate outputs for each training example using the SFT model.
These candidates are then ranked by quality; in conventional NLP settings, human preference rankings are often used.
However, in C2S-Scale, we rely on domain-specific criteria and automated metrics such as BERTScore [25] to assess
semantic similarity to reference answers, as well as the biological plausibility of responses for tasks like question
answering. By optimizing against these ranked outputs, GRPO fine-tunes the model to favor higher-scoring (i.e.,
higher-quality and more biologically aligned) answers.

Compared to other RL methods, such as Proximal Policy Optimization (PPO) [62], GRPO offers a more streamlined
workflow: rather than requiring a separate reward model, it directly incorporates the reward signals—here, bioBERT-
based or domain-specific metrics—into the gradient updates. This direct integration simplifies the alignment process,
making it particularly efficient for large-scale models like C2S-Scale. By focusing the optimization on biologically
relevant metrics, GRPO enables consistent improvements in specialized single-cell tasks, ensuring that C2S-Scale
steadily refines its outputs in a manner consistent with expert expectations and high-quality biological insights.

5.6 Downstream Tasks

Cell type annotation. For the cell type annotation task, we fine-tune the model to predict cell type labels on an
immune tissue dataset [63] and a lung dataset [19]. We use 80% of cells from each dataset for training and reserve
20% for evaluation. C2S-Scale is provided with a cell sentence and a natural language prompt, such as “Predict the
cell type of this cell:”. C2S-Scale is fine-tuned for this task using the same next-token prediction objective [58] as the
pre-training step, predicting cell type labels in natural language. Other scFMs are tuned using prediction heads on top
of the pretrained transformer weights in accordance with the recommended strategies for each model.

Cell generation. For cell generation tasks, we finetune the model to unconditionally or conditionally generate cell
expression on the immune tissue and lungdatasets. The model is given a natural language prompt containing relevant
metadata for conditional generation, or no information in the case of unconditional generation, and is tasked with
generating a cell sentence of K genes representing the expression of the cell under that condition. For instance, to
conditionally generate a B cell, the model might be given a prompt such as: "Generate a list of 1000 genes in order of
descending expression which represent a Homo sapiens cell of cell type B cell."

Cell embedding. For cell embedding, we use trained C2S-Scale foundation models (e.g. C2S-Scale 1B) trained on
the C2S multimodal corpus to embed cells without any dataset-specific fine-tuning. To embed cells, we first format
input prompts for C2S-Scale in the same manner as in cell type prediction tasks. However, instead of decoding token
predictions, we take the last hidden state from the last layer of the C2S-Scale model, and average pool the latents in
order to form our embedding of the input prompt. We note that this procedure can be done for multi-cell contexts
as well as contexts that involve different metadata and condition components in natural language prompts, making
C2S-Scale a diverse embedding model for transcriptomic and language inputs.

Single-cell bulk integration. Multimodal integration is essential for capturing the complexity of biological systems, as
different data modalities provide complementary perspectives on cellular function. Each modality has its own strengths
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and limitations — some offer high resolution at the cost of sparsity, while others provide broader coverage but lack
single-cell detail. Therefore, models that can integrate modalities can provide a more complete and robust understanding
of cellular behavior, improving both interpretability and predictive power in biological analysis.

To assess this, we design a simple single-cell and bulk RNA seq integration task. Using the single-cell lung tissue data
from [19], we construct pseudo-bulk samples by aggregating over donor, cell type, and batch. For each pseudobulk
sample, we randomly sample ten single-cell samples from the same conditions to construct pairs. We embed each
single-cell and pseudobulk sample individually using each model and compute the cosine similarity between the paired
single-cell and bulk samples. Following [64], we use the “fraction of samples closer than the true match” (FOSCTTM)
to evaluate the performance of each model. A FOSCTTM of 0 corresponds to a perfect model (the cosine similarity of
matched pairs is higher than any other pair), whereas a FOSCTTM close to 0.5 means the cosine similarity between the
matched pairs is about as good as the cosine similarity between random pairs.

Cluster captioning. To generate the cluster captioning dataset, we select 30 scRNA-seq datasets and perform standard
preprocessing, clustering, and differential expression analysis. We then prompt GPT-4o [22] to generate five captions
for a cluster based on the cell type, tissue type, organism, disease, top three differentially expressed genes, and the full
text of the associated paper. This resulted in a total dataset of 1,723 captions from 345 distinct clusters. To produce
the final training data, we randomly sample two cells from a cluster to construct the training prompt, and a caption
from that cluster as the target. The C2S-Scale models were fine-tuned using supervised fine-tuning with a next-token
prediction learning objective with a learning rate of 1× 10−5, weight decay of 0.01, and a batch size of 64. All models
were evaluated on the same holdout test set consisting of clusters unseen in the training data.

Dataset interpretation. For the dataset-level interpretation task, we create two test sets for dataset-level interpretation:
(i) a training distribution dataset interpretation test set, where scRNA-seq data and paper abstracts come from 613
of the scRNA-seq datasets gathered from CellxGene [2] as a part of the C2S-Scale training corpus, and (ii) a out-
of-distribution (OOD) evaluation set where the papers and data are completely unseen by the C2S-Scale model. By
evaluating dataset-level interpretation on scRNA-seq studies from both the training corpus and out of distribution data,
we create a challenging generalization benchmark for writing meaningful interpretations of scRNA-seq data.

Each dataset interpretation sample was created by sampling between 5 and 20 cells from the same tissue and donor in a
given scRNA-seq dataset, and formatting a prompt with the multi-cell context that tasked the model with generating a
biological abstract summary to describe the data. The ground truth for the abstract summary of the data was obtained by
taking the abstract of the paper associated with the scRNA-seq study; to create more diversity in the biological abstracts
seen across samples, we create 500 variations of each dataset abstract using GPT-3.5-Turbo-1106, to prevent the model
from simply memorizing a few hundred dataset abstracts. For each multi-cell context, we choose one of the abstract
summaries as the ground truth target summary. Example abstract summaries can be found in Figure 10.

To create the training corpus distribution dataset interpretation test set, we first gather held-out abstract generation
samples from the training corpus. These are multi-cell contexts and samples which the model had not seen during
training since they were a part of held-out validation and test sets of the C2S-Scale corpus, however since each dataset
only contains 1 abstract, the held-out samples will still contain similar information to training set abstract generation
samples that the model has seen. We sample 5 held-out abstract generation samples from 613 datasets gathered from
CellxGene [2], yielding a total test set of 3065 dataset interpretation samples.

For the out-of-distribution dataset interpretation test set, we constructed new abstract generation samples by dowloading
two new datasets from CellxGene that were either published recently (after the initial C2S-Scale corpus gathering
period) or verified to not be a part of the C2S-Scale training corpus: (i) a pancreas tissue [65] and a human retina [66]
dataset. We constructed 200 samples from each dataset, again creating 50 variations of the abstract of each dataset to
again provide more diversity in summary language.

Spatial niche prediction. We utilized the CosMx Spatial Molecular Imager Human Liver dataset [35], which provides
annotated spatially-resolved single-cell data from both normal and hepatocellular carcinoma liver tissues from two
different donors. This dataset encompasses over 800,000 single cells across a total of approximately 180mm2 of liver
tissue, with expression measured on a set of 1,000 curated genes. The dataset was processed to filter out genes expressed
in fewer than three cells and cells expressing fewer than 50 genes. It was then normalized to a total count of 1× 104

and the base 10 logarithm was applied. Spatial coordinates were saved to define neighborhoods and faciliate spatial
analyses. We define a neighborhood to be a radius of 0.02 pixels (approximately 20µm), chosen to maximize the
number of cells we can fit into the model’s context. The dataset was split into training and test sets based on spatial
coordinates to prevent spatial leakage between sets.

To train C2S-Scale on spatial and multi-cellular relationships, we designed the following tasks:

1. Niche label prediction: Given a cell sentence for a single cell, predict the niche label annotation for that cell.
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2. Conditional Neighbor Generation: Given multiple cell sentences from a neighborhood, generate a novel cell
sentence that would belong to the same neighborhood.

3. Spatial neighborhood prediction: Given multiple cell sentences, predict whether these cells come from the
same neighborhood.

4. Same niche prediction: Give multiple cell sentences, predict whether all of these cells have the same niche
label or different niches.

To construct prompts, cell sentences were randomly sampled from the appropriate data split. Multi-cell contexts were
created by taking all cells in the sampled cell’s neighborhood for positive samples, or an equivalent number of randomly
sampled cells outside the neighborhood as negative samples.

Additionally, to enhance the model’s understanding of cell communication, we included gene interaction metadata from
CellPhoneDB [36] and BioGRID [37]. We restricted the data to only retain interactions involving the 1,000 genes in the
CosMx data, and also only to genes coding for extra-cellular proteins (determined using MatrixDB [67]).

Question answering. We begin by using the GPT-4.5 model to generate question–answer pairs from three sections of
each manuscript—abstracts, discussions, and results—as well as data sampled from that study. Each scRNA-seq study
contributes 20 QA pairs, for a total of approximately 1600 QA pairs used for SFT. We conduct SFT with a learning rate
of 1× 10−5 and 100 warmup steps.

Following SFT, we apply GRPO to further refine answer quality. To create the GRPO training set, we collect an
additional 600 samples from unseen studies, with each sample prompting the SFT model to generate 32 candidate
answers. We then use BioBERT to compute a reward score for each candidate answer against the ground truth answer
provided by GPT-4.5, capturing its biological plausibility. These BioBERT-derived scores serve as the primary reward
signals, guiding the GRPO update step and optimizing model parameters to favor biologically accurate, contextually
relevant responses. For GRPO training, we set β = 0.03 and use a learning rate of 5× 10−7. Finally, we evaluate the
GRPO-refined model on a new test set derived from unseen studies, and compare its performance against a commonly
used LLM, as illustrated in Figure 7.

Perturbation prediction. The Dong et al. dataset includes immune cells exposed to individual and combinatorial
cytokines, with each cell annotated by type, stimulation, and exposure length—yielding 133 conditions. We retain
the 5000 most highly variable genes and evaluate models in the scGPT embedding space [4] using maximum mean
discrepancy (MMD), Wasserstein distance, and scFID (Section 5.7). This embedding-based evaluation provides more
meaningful comparisons than expression-level metrics, which can be skewed by a small number of genes with extreme
values.

The training of C2S models for the Dong et al. dataset followed a structured two-stage process to effectively predict
responses to unseen cytokine stimulations. The test dataset featured three tiers of held-out perturbations with increasing
difficulty: (1) a completely excluded combinatorial perturbation (interferon-β + IL-6), (2) one perturbation entirely
held out for each cell type across both chronic and acute conditions (B: interferon-III, CD4 T: interferon-γ, CD8 T:
interferon-α2, Dendritic: interferon-β (no chronic cells), NK: IL-6), and (3) one perturbation excluded in either chronic
or acute conditions for each cell type while the other condition remained in training (B: acute interferon-β, CD4 T:
acute interferon-β + interferon-γ, CD8 T: chronic TNF-α, NK: chronic interferon-III). In the first stage, the model
was fine-tuned using supervised learning on both cell sentence generation and natural language label prediction, where
it simultaneously predicted all three labels—cell type, perturbation, and exposure—ensuring it learned bidirectional
relationships between conditions and gene expression. This fine-tuning stage was conducted for 3–4 epochs using the
Hugging Face Trainer on a single H100 GPU.

The second stage employed GRPO to refine perturbation response generation. For the Dong et al. dataset, the reward
was computed as the negative mean squared error between generated and ground truth cells, randomly paired under the
same condition labels and embedded using scGPT. GRPO training used 32 generated responses and 32 real cells per
prompt, and was conducted on 4 H100 GPUs for 3 epochs. The interferon subset used for GRPO was defined as the
union of the MSigDB [68] interferon-α and interferon-γ hallmark gene sets, intersected with the highly variable genes
(HVGs) from the dataset, resulting in 95 genes.

To benchmark against other perturbation response models, we included scGen, CellOT, and scGPT. For scGen, we
used the pertpy library [69] to generate perturbation predictions. For CellOT, we followed the standard procedure
but replaced the encoder with the pretrained encoder from scGen. For scGPT, we added linear encoders for cell type,
perturbation, and exposure, projecting binary vectors into dense vectors, and then added these embeddings to each gene
token embedding before forwarding them through the model.

For the L1000 dataset [46], we trained on the 978 landmark genes following quantile normalization. We paired untreated
and treated samples by matching the cell line name. To evaluate generalization, we selected 50 perturbations with fewer
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than 1,000 total samples and held out half the cell lines in each perturbation as test data. We used Kendall’s Tau as the
reward function during reinforcement learning, as it properly accounts for tied ranks. This is especially important for
L1000 where non-expressed genes share the same lowest rank. SFT was conducted using a batch size of 2 and gradient
accumulation of 32, with a learning rate of 1e-4. Training ran on a single H100 GPU for 3,500 steps (approximately
one epoch, though not all data is seen due to dataset size). For GRPO, the model was trained with a batch size of 8 and
gradient accumulation of 4. We generated 24 responses per prompt. The learning rate was set to 1e-6 with a beta value
of 5e-3. Training was distributed across four H100 GPUs—three for model training and one for vLLM-based response
generation. GRPO ran for approximately 3,000 steps over 3 epochs, although as with SFT, the model likely saw less
than a full epoch due to data scale. Only the apoptosis genes from the MSigDB hallmark set that were present in the
L1000 landmark gene list were used during GRPO, totaling 40 genes.

5.7 Single-Cell Fréchet Inception Distance

The scFID is an adaptation of the FID [48] tailored for evaluating generative models in single-cell transcriptomics.
While the traditional FID employs the Inception v3 model [49] to extract features from images, scFID utilizes scGPT
[4] as its foundation model to embed single-cell gene expression profiles. Notably, scFID is flexible and can incorporate
any suitable foundation model for embedding. The scFID quantifies the similarity between the distributions of real and
generated single-cell embeddings by assuming that these distributions are multivariate normal (Gaussian). Under this
assumption, the scFID computes the Wasserstein distance between the two Gaussian distributions, providing a measure
of how closely the generated data resembles the real data in the embedding space.

Mathematically, given two sets of single-cell embeddings—one from real cells and one from generated cells—scFID is
defined as:

scFID = ∥µr − µg∥22 + tr
(
Σr +Σg − 2 (ΣrΣg)

1
2

)
where:

• µr and µg are the mean vectors of the real and generated cell embeddings, respectively,
• Σr and Σg are the covariance matrices of the real and generated cell embeddings, respectively,
• tr denotes the trace of a matrix.

To evaluate generative model performance across various conditions, we compute the scFID for each unique combination
of test labels—such as specific cell types, perturbations, and exposure durations—and then average these individual
scFID values.
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7 Supplementary

Figure 9: C2S allows for conversion from expression information into cell sentence format with minimal information
loss. Using a linear model fitted between rank and original expression, cell sentences can be converted back to
expression accurately.

Figure 10: Example abstract summaries from scRNA-seq datasets collected from CellxGene [2].
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