
Lecture 19:
All-Pairs Shortest Paths (1997)

Steven Skiena

Department of Computer Science
State University of New York
Stony Brook, NY 11794–4400

http://www.cs.sunysb.edu/∼skiena

Give two more shortest path trees for the following graph:

3

6

5 3

6

2 7
42 1

s

u v

x y

Run through Dijkstra’s algorithm, and see where there are ties
which can be arbitrarily selected.
There are two choices for how to get to the third vertexx,

both of which cost 5.
There are two choices for how to get to vertexv, both of
which cost 9.

All-Pairs Shortest Path

Notice that finding the shortest path between a pair of vertices
(s, t) in worst case requires first finding the shortest path from
s to all other vertices in the graph.
Many applications, such as finding the center or diameter of
a graph, require finding the shortest path between all pairs of
vertices.
We can run Dijkstra’s algorithmn times (once from each
possible start vertex) to solve all-pairs shortest path problem
in O(n3). Can we do better?
Improving the complexity is an open question but there is a
super-slick dynamic programming algorithm which also runs
in O(n3).

Dynamic Programming and Shortest Paths

The four-step approach to dynamic programming is:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute this recurrence in a bottom-up fashion.

4. Extract the optimal solution from computed information.

From the adjacency matrix, we can construct the following
matrix:

D[i, j] = ∞, if i 6= j and(vi, vj) is not inE
D[i, j] = w(i, j), if (vi, vj) ∈ E
D[i, j] = 0, if i = j

This tells us the shortest path going through no intermediate
nodes.
There are several ways to characterize the shortest path
between two nodes in a graph. Note that the shortest path
from i to j, i 6= j, using at mostM edges consists of the
shortest path fromi to k using at mostM − 1 edges+W (k, j)
for somek.
This suggests that we can compute all-pair shortest path with
an induction based on the number of edges in the optimal
path.
Let d[i, j]m be the length of the shortest path fromi to j using
at mostm edges.
What isd[i, j]0?

d[i, j]0 = 0 if i = j

= ∞ if i 6= j

What if we knowd[i, j]m−1 for all i, j?

d[i, j]m = min(d[i, j]m−1, min(d[i, k]m−1 + w[k, j]))

= min(d[i, k]m−1 + w[k, j]), 1 ≤ k ≤ i

sincew[k, k] = 0
This gives us a recurrence, which we can evaluate in a bottom
up fashion:

for i = 1 to n
for j = 1 to n
d[i, j]m = ∞

for k = 1 to n
d[i, j]0=Min(d[i, k]m, d[i, k]m−1 + d[k, j])

This is anO(n3) algorithm just like matrix multiplication, but
it only goes fromm to m + 1 edges.

Since the shortest path between any two nodes must use at
mostn edges (unless we have negative cost cycles), we must
repeat that proceduren times (m = 1 to n) for an O(n4)
algorithm.
We can improve this toO(n3 log n) with the observation that
any path using at most2m edges is the function of paths
using at mostm edges each. This is just like computing
an = an/2 × an/2. So a logarithmic number of multiplications
suffice for exponentiation.
Although this is slick, observe that evenO(n3 log n) is
slower than running Dijkstra’s algorithm starting from each
vertex!

The Floyd-Warshall Algorithm

An alternate recurrence yields a more efficient dynamic
programming formulation. Number the vertices from1 to n.
Let d[i, j]k be the shortest path from i to j using only vertices
from 1, 2, ..., k as possible intermediate vertices.
What is d[j, j]0? With no intermediate vertices, any path
consists of at most one edge, sod[i, j]0 = w[i, j].
In general, adding a new vertexk + 1 helps iff a path goes
through it, so

d[i, j]k = w[i, j] if k = 0

= min(d[i, j]k−1, d[i, k]k−1 + d[k, j]k−1) if k ≥ 1

Although this looks similar to the previous recurrence, it isn’t.
The following algorithm implements it:

do = w
for k = 1 to n

for i = 1 to n
for j = 1 to n
d[i, j]k = min(d[i, j]k−1, d[i, k]k−1 + d[k, j]k−1)

This obviously runs inΘ(n3) time, which asymptotically is
no better than a calls to Dijkstra’s algorithm. However, the
loops are so tight and it is so short and simple that it runs
better in practice by a constant factor.

