Exposing Private Information
by Timing Web Applications

Andrew Bortz
Stanford University
abortz@cs.stanford.edu

ABSTRACT

We show that the time web sites take to respond to HTTP
requests can leak private information, using two different
types of attacks. The first, direct timing, directly measures
response times from a web site to expose private informa-
tion such as validity of an username at a secured site or the
number of private photos in a publicly viewable gallery. The
second, cross-site timing, enables a malicious web site to ob-
tain information from the user’s perspective at another site.
For example, a malicious site can learn if the user is currently
logged in at a victim site and, in some cases, the number of
objects in the user’s shopping cart. Our experiments sug-
gest that these timing vulnerabilities are wide-spread. We
explain in detail how and why these attacks work, and dis-
cuss methods for writing web application code that resists
these attacks.

Categories and Subject Descriptors

K.4.4 [Computers and Society]: Electronic Commerce—
Security; K.4.1 [Computers and Society]: Public Policy
Issues— Privacy

General Terms

Design, Security, Experimentation

Keywords

web application security, web browser design, privacy, web
spoofing, phishing

1. INTRODUCTION

Web applications are vulnerable to a variety of well pub-
licized attacks, such as cross-site scripting (XSS) [15], SQL
injection [2], cross-site request forgery [14], and many oth-
ers. In this paper we study timing vulnerabilities in web
application implementations. Our results show that timing
data can expose private information, suggesting that this is-
sue is often ignored by web developers. We first discuss the
type of information revealed by a timing attack and then
discuss ways to prevent such attacks.

We consider two classes of timing attacks. The first, called
a direct timing attack, measures the time the web site takes

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2007 May 8-12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

Dan Boneh
Stanford University
dabo@cs.stanford.edu

Palash Nandy

palashn@gmail.com

to respond to HTTP requests. We experiment with two
types of direct attacks:

e Estimating hidden data size. Many sites holding user
data, such as photo-sharing sites, blogging sites, and
social networking sites, allow users to mark certain
data as private. Photo sharing sites, for example, al-
low users to mark certain galleries as only viewable by
certain users. We show that direct timing measure-
ments can expose the existence of private data, and
even reveal the size of private data such as the num-
ber of hidden pictures in a gallery.

e Learning hidden boolean values. Web login pages of-
ten try to hide whether a given username is valid —
the same error message is returned whether the input
username is valid or not. However, in many cases,
the site executes a different code path depending on
validity of the given username. As a result, timing
information can expose username validity despite the
site’s attempt to conceal it.

The second class of attacks, called cross-site timing, is a
form of cross-site request forgery [14]. The attack enables a
malicious site to obtain information about the user’s view of
another site — a violation of the same-origin principle [11,
8]. We describe this attack in Section 4. At a high level, the
attack begins when the user visits a malicious page, which
proceeds to time a victim web site using one of several tech-
niques, all of which time the exact content the user would
actually see. We show that this timing data can reveal pri-
vate information: for example, it can reveal whether the user
is currently logged-in. In some cases, timing information can
even reveal the size and contents of the user’s shopping cart
and other private data, as discussed in Section 4. This in-
formation enables a context-aware phishing attack [9] where
the user is presented with a custom phishing page.

These attacks exploit weaknesses in server-side applica-
tion software, specifically when execution time depends on
sensitive information. Our results suggest that these vulner-
abilities are often ignored.

1.1 Related work

Timing attacks were previously used to attack crypto im-
plementations on smartcards [10, 12, 13] and web servers [4,
1]. Felten and Schneider [6] used a cache-based timing at-
tack to track web users. Their idea is that once a user visits
a static page, her local cache contains a copy of the page
causing the page to load faster on subsequent visits. By
measuring the time the browser takes to load a given page,

a malicious web site can determine whether the user visited
the page before. We note that non-invasive methods exist
to prevent this attack [6, 8].

Our attacks target dynamic web pages — we obtain de-
tailed information by measuring the time a web site takes to
assemble the page (i.e. the time to query the database and
run application code). Since dynamic pages are not typi-
cally cacheable, and techniques exist to prevent the use of
cached copies, we can ignore any caching effects.

2. WEB APPLICATION ARCHITECTURE

When an HTTP request hits a web site various compo-
nents on the site are used to assemble a response. After be-
ing initially processed for required HTTP details by a web
server, such as Apache or Microsoft IIS, it is routed to the
appropriate application or module to generate a response.
Static content, which is stored directly in a file, is the easi-
est to handle: the response is always just the content of the
file. Dynamic content, such as data-driven HTML pages and
stylesheets that are a hallmark of modern web applications,
are handled by running a program.

This program, which can either be part of a specialized
web application framework (e.g. PHP, Java Server Pages,
or ASP.NET), or a standalone program (typically called a
CGI script), outputs the content that will form the response.
This program can call upon any number of resources, includ-
ing databases and custom servers, which may reside either
on the same machine or another machine on the network,
connected either internally or across the public Internet.
The time it takes to use these resources, and process the
data that they return, are generally dependent on the un-
derlying data, much of which is private. For example, an
implementation of a picture gallery might respond to a user
request by first retrieving from the database the list of all
pictures in the gallery and then looping over all images to
produce HTML only for those images marked “public”. The
number of loop iterations depends on the total number of im-
ages (both public and private), which is private information.
Consequently, the response time leaks information about the
number of private images. A popular photo sharing system
called Gallery [7] is vulnerable in this way, enabling an at-
tacker to learn the number of hidden galleries at the site.
Since it doesn’t matter whether the processing time is local
to the web server or in another process or machine, even
applications using complicated SQL queries can have com-
putation time dependent on the data.’

Finally, as the response is being passed back to the web
server, it is buffered and finally returned to the requesting
client in one of two ways allowed by HTTP 1.1:

e Content-length. The server can assemble the en-
tire response page before sending the first byte to the
client. In this case, the server embeds a Content-Length
HTTP header which indicates the total length of the
response. When this method is used, we need only
measure the time from the moment the request in sent
until the first response packet is received. This time
represents the total time the application took to as-
semble the page.

IThe vulnerability of a SQL query depends on many factors,
including the specifics of the query, the type of database
server and its query optimization strategies, and the number
and type of indexes for the tables involved.

e Chunked encoding. Dynamic pages often take a
while to assemble. With HTTP 1.1 the server can
respond using chunked encoding, where each response
chunk is sent as soon as it is available (and no Content-
Length header is sent). In this case, a direct timing
attack obtains more information — one can measure
inter-chunk timings to determine how long each part
of the page took to assemble.

Neither one of these methods is strictly more secure against
timing attacks, and application server providers typically do
not consider the security implications, leaving the web server
to use its default settings. Apache 2.0, for example, dynami-
cally decides whether to use the Content-Length header or to
use chunked encoding. If Apache has data ready to be sent,
but it has not yet seen an end-of-stream marker, Apache will
use chunked encoding. Otherwise, it will use the Content-
Length header.

While this architecture of application code execution is
built without any regard to timing vulnerabilities, our tim-
ing attacks are effective primarily because the nature of
many web applications necessarily depends on private data.
The specifics of our timing attacks require no assumptions
about the nature of the computation on the server-side.

3. DIRECT TIMING ATTACKS

Our first approach is to directly make requests to a tar-
get web server and carefully time the response. Using a
custom program to do this, we not only get very accurate
timing data (sub-millisecond) and the ability to make arbi-
trary requests, we also get timing data for each chunk of the
response if the server uses chunked encoding, providiing a
complete profile of the server’s computation.

The ability to make arbitrary requests allows us to test
many code paths which are normally not accessed by a prop-
erly functioning web browser. In many cases, these are in
place purely to prevent accidentally broken or maliciously
constructed requests from having ill effects on the applica-
tion. In these cases, falling back on slow methods in un-
usual circumstances is normally a perfectly acceptable cod-
ing practice for even the most secure web sites. These meth-
ods, however, can easily serve as amplification for timing
attacks.

In practice, however, we found that the vast majority of
vulnerable web sites were vulnerable to the most simple form
of attack: regular requests where only the time until the first
response packet was received is measured.

3.1 Dealing with noise

In a perfect world, one could time precisely how long it
takes the server to generate a response, and it would be the
same every time. However, two large factors add a signifi-
cant amount of noise to the process. One is varying network
conditions: long delays and any packet loss can significantly
affect overall timing. These conditions are additive noise,
since they are not dependent on the request.? Another large
factor is server load: when a server is handling a great num-
ber of requests concurrently, each request takes longer on
average. This type of noise can be both additive (queuing

20Only requests that are so large as to be spread out over
multiple TCP packets would be affected variously by differ-
ent network conditions. For the experiments in this paper,
no such request was ever used.

on the server itself) and multiplicative (n threads of execu-
tion on the server take n times as long to complete).

Obviously, if these sources are not as large as the computa-
tion itself, they do not pose any difficulty in timing. As they
grow more significant, multiple samples can be used to av-
erage out the large variance in timing that the noise causes.
Specifically, since the noise is strictly non-negative, and in
practice very skewed, the sample most likely to have small
noise is the one with the smallest absolute time. Therefore,
to effectively reduce the noise in these timing tests, we keep
only the smallest.

For the purposes of collecting experimental data, a pro-
gram timed a collection of pages at a given site many times
spread uniformly over a reasonable stretch of time. This
timing data generated an estimate for the actual distribu-
tion of times, and was used to calculate the estimated dis-
tribution for the various sampling methods actually used.
This allowed us to estimate the reliability of the timing at-
tacks without making millions of requests to commercial web
servers.

3.2 Testing for boolean values

The most simple timing attack is a boolean test: does
some condition on the server’s hidden data hold or not. One
such condition is used by attackers today, although with
limited success: ‘Is this the right password for the specified
user?’. Such brute-force password attacks work only when
the website is poorly designed (does not limit the rate at
which a single user can attempt to log in) and the user has
chosen a common or easily guessable password.

However a different attack, with a very similar idea, works
surprisingly well on the majority of popular web sites: ‘Does
this username correspond to a valid user of this site?’. Since
a great many web sites use email addresses as usernames,
this data can be used to validate large lists of potential email
addresses for the purposes of spam®. Moreover, knowledge
of which sites the user of an email address regularly visits is
useful for invasive advertising and phishing.

Because most sites do not currently consider this a sig-
nificant attack, they unwittingly provide attackers with the
means to get this data without timing at all, through the
ubiquitous ‘Forgot my password’ page. This page, which
is all but required on major sites, often reveals whether
the specified email address is associated with a valid user
or not. Some sites clearly acknowledge weaknesses in their
reset page by adding layers of protection to it, such as a
CAPTCHA [5], requiring the additional input of personal
information of the account holder, and only sending the
password or a means to reset it to the email address of the ac-
count holder. However, even well designed sites that clearly
consider user account validity to be an important breach of
privacy are frequently vulnerable to direct timing of their
login page.

Figure 1 gives an example of two popular, high-traffic sites
where timing the login page leaks user account validity. The
figure shows the mean and standard deviation of the time
taken to respond to a login attempt for a set of valid and
invalid email addresses, taking the smallest of 10 samples.
The mean and standard deviation were computed by taking

3Given a list of potential email addresses, an attacker can
test each one against a set of popular web sites. This process
will not only produce a list of valid email addresses, but also
some additional personal data on each.

160

140 1

120

100

80

Response time (ms)

60 1

40

20 A

Example 1 Example 2

@ Valhd account B Invahd account

Figure 1: Distinguishing valid from invalid user ac-
counts at a social networking site and an online
travel agency

many hundreds of samples of each type, and calculating the
distribution that would occur when the smallest of 10 ran-
dom samples is taken. The data clearly shows a separation
between valid and invalid emails that is sufficient to predict
accurately more than 95% of the time. Using more than 10
samples would provide an even more accurate distinguisher.

3.3 Estimating the size of hidden data

Many computations that go into web applications involve
taking data sets and displaying some filtered or processed
version of them on a page. Frequently, the actual size of the
data set itself is meant to be hidden from the user, based on
some sort of access control. Simple examples that are widely
used on the web include blogs where individual entries can
be shown only to chosen groups of users, and photo galleries
where a similar preference can be specified for albums or
individual photos. Sometimes, entries can be marked ‘pri-
vate’, visible only to the owner of the site, which can be
used to edit items before making them visible to the world.
The total number of items in the data set, and the relative
change in items over time, represent significant hidden data
that can often be discovered using timing.

76

754

74

Response Time (ms)

73+

T T T T T T T
0 1 2 3 4 5 3 7 8

Total Number of Alburmns

Figure 2: Counting the number of hidden albums in
a gallery

Inherent in the process of dealing with a data set is having
to do something for each item: either check a property of
it, or compute some derived data from it. These loops de-
pend partly on the number of items and partly on the items
themselves. Given that some of the properties become visi-
ble to the viewer of the page, it is possible to calculate timing
data that has very strong correlation with the total number
of items.

Specifically, we tested a popular photo sharing package
called Gallery [7]. Taking the smallest of 20 samples was
sufficient to distinguish exactly how many albums there were
in a gallery, even though the gallery only had one album
visible to the world.

Figure 2 shows the approximately linear relationship be-
tween the response time and the number of albums. Given
the extremely small difference in response times, it was nec-
essary to have a relatively fast and short network path to
the target server. However, this attack was successful even
though the server was a top-of-the-line machine under no
load. This effect may or may not be present on most other
web sites of this sort, including popular blogs such as Live-
Journal and popular photo sites such as Yahoo’s Flickr and
Google’s Picasa. However, as with the case of Gallery, ex-
ploiting this effect may require an unusually fast network
path to the target.

4. CROSS-SITE TIMING ATTACKS

With direct attacks, it is only possible to see the ‘public’
side of the web. If one could make requests as another user,
using that user’s preferences and login credentials, it would
be possible to find out information that is visible to that user
alone. Since these preferences and credentials are typically
sent automatically in a cookie, we merely need to time these

cookie-enabled requests.

Web browsers have taken many steps to prevent one web
site from learning anything about requests made by the
user’s browser to other sites. This broad class of attacks,
known as cross-site, has been known and studied for some
time, but remains a large source of problems on the web.
Despite the presence of different preventative measures in
modern web browsers, we can nevertheless still time cross-
site content.

4.1 Browser timing techniques

Given that JavaScript is the most common form of dy-
namic content on the web, it will come as no surprise that
it forms the basis for the most reliable method of timing
cross-site content. JavaScript itself is typically prohibited
from learning anything about the content of any data that
is not hosted on the same domain as the page containing the
script — this is a direct application of the same-origin prin-
ciple. However, script is allowed to learn when and whether
embedded content loads. This is useful in many different
circumstances, including dynamic web pages using AJAX
or other techniques.

One way to embed content is through the use of frames.
FRAMEs and IFRAMEs are the official method for embedding
other HTML pages into a site. Frames are very useful in cre-
ating pages that combine content from multiple sites without
requiring explicit cooperation. JavaScript is provided the
onload handler for each frame: this event allows JavaScript
to be notified when the enclosed page finishes loading. While
this technique is able to time a page load, it unfortunately
comes with all the baggage of a typical website: all the im-
ages, applets, scripts, and stylesheets on the embedded page
need to load, then the browser needs to lay out the page —
even if the frame is invisible. All this adds an unacceptable
amount of noise to the time measurement.

Instead, images are a much more effective method for tim-
ing. IMG tags are commonly used to embed images into a
page, and surprisingly can be used to time any web-accessible
url. When a source is loaded via an image tag, the browser
cannot know in advance that the source will actually be an
image. It sends a normal request*, and when the response
header indicates that it is not an image, the browser stops
and notifies JavaScript via the onerror handler. This allows
enterprising JavaScript to accurately time responses for ar-
bitrary content.

Our primary technique is to use an invisible image and
JavaScript to take several timing samples of the same or
different pages sequentially. Figure 3 shows that this code
is not at all complicated.

Restricting access to these handlers does not solve this
problem, since one can execute a cross-site timing attack
without JavaScript at all. Specific tags, such as LINK and
SCRIPT, force the browser to finish downloading and process-
ing one before moving on to the next. Using a tag of this
type pointing at a target page in between two tags pointing
to the attacker’s site, the attacker can remotely time the
target page.

4Using the Accept header in HTTP, a browser actually
makes a slightly different request for a source found in an
image tag than found in a frame tag. However, in an effort
to be maximally compatible, most browsers do not specify
that only images are acceptable — merely a preference for an
image.

<html><body>

<script>

var test = document.getElementById(’test’);

var start = new Date();

test.onerror = function() {

var end = new Date();

alert("Total time: " + (end - start));

}

test.src = "http://www.example.com/page.html";

</script>
</body></html>

Figure 3: Example JavaScript timing code

The use of these methods to obtain multiple, precise tim-
ing samples from an unwilling user’s browser are incredibly
realistic, since all of these attacks can be done invisibly in
the background. A malicious web site need only distract the
user for a few seconds for the attacks to complete.

4.2 Why cross-site timing is harder than direct

Unlike a direct attack, a cross-site timing attack does not
have a stable, known network configuration. A particular
user could have virtually any type of Internet connection at
almost any geographical location. Therefore, an absolute
comparison of timed responses is not very useful. Instead,
a robust cross-site attack must time at least two sources, in
order to correct for differences in individual network condi-
tions. One source will be the page whose computation time
is dependent on the hidden data the attacker wants to dis-
cover. The other source must have as little dependency as
possible on the hidden data, to serve as a timing baseline.
Almost any page on the web satisfies this second criteria,
even pages on the attacker’s site; however, the ideal second
source is a static page on the target web server that does
not depend on hidden data. For example, one could measure
the response time for a non-existent page on the same site
— most sites’ 404 error pages do not depend on user data.

None of the available techniques for cross-site timing can
measure arrival times for individual chunks (as can be done
in direct attacks, see Section 3). Fortunately, the most valu-
able timing data — the time from the initial request to the
first chunk of the response — is accessible from JavaScript
using image tags and the onerror handler. °

For efficiency of data collection, the timing data for all the
cross-site attacks was generated using the same program for
collecting the direct timing data. It simulated legitimate
browser requests and only gathered the data that would
be available to the browser through the use of JavaScript
and image tags. The models generated from this timing
data were then experimentally verified using an actual in-
browser attack page. The timing noise generated by several
browsers, including Firefox and Safari, was not found to con-
siderably impact the accuracy of the generated models.

5The first chunk is the least likely to be dropped due to the
network, least likely to be delayed by TCP window artifacts,
and most likely to have been generated after the important
queries of the page have been executed and after the hidden
data is otherwise processed and output to HTML.

4.3 Testing for boolean values

One obvious attack is to determine what, if any, relation-
ship the user has with a given site. With cross-site timing, it
is often possible to distinguish between four types of users:
those who have never been to a site, users who have been to
a site but never logged in, users who are currently logged in,
and users who are not logged in but have logged in some-
time in the past. At least one distinguishing attack is not
only present but easily exploitable on every major web site
tested. Here we give two examples which serve to illustrate
two common vulnerabilities present in many other web sites.
The first is a popular movie site and the second is a search
engine.

In these specific attacks, the goal is to distinguish between
a logged in user and all other types of users. Since we require
two timing sources, for the first example, the chosen ‘test
page’ was the front page of the website, and the ‘reference
page’ was the ‘Contact Us’ page. Looking at the difference
between the time to load the test and reference pages in
Figure 4, we can clearly distinguish a logged in user with
only 2 samples per page. This is primarily because the web
site in question externally redirects a logged in user from
the front page to the primary member page, which adds a
full network round-trip to the time it takes the browser to
complete the request. The data in the figure also suggests
that it may be possible to distinguish whether a user has a
cookie. In fact, although not included in the figure, using the
difference between the ’Contact Us’ page and an arbitrary
page that is not present (which returns a 404 error) we can
distinguish whether the user has ever been to the web site
in question with the same 2 samples per page.®

Even though the second example web site does not do any
external redirecting, it’s reference page takes longer to load
for a logged in user than for a user who is not logged in be-
cause a logged in user has a more complicated and data-rich
page than an anonymous user. This is easily distinguished
by the difference between the time to load the reference page
and the time to load an arbitrary page that is not present,
again with only 2 samples per page.

4.4 Estimating the size of hidden data

Even more so than with direct attacks, there is a tremen-
dous amount of ‘countable’ data that should only be visible

SSince a user can manually clear all browser state, including
cookies and history, at any time, “ever” really means “since
the user last cleared his cookies”.

140

120 4

100+
w
E
w 4
g 80 |
b=
[E]
W
s B0
[+
[}
L]
o

40

20

0 , : ..
Example 1 Example 1 Example 1 Example 1 Example 2 Example 2 Example 2 Example 2
Mo cookie Mewverloggedin Loggedin Logged out Mo cookie Meverloggedin Loggedin Logged out
O Test page W Reference page
Figure 4: Distinguishing if a user is logged in
to the user, and not to any arbitrary web site that user con- in (anonymously browsing and shopping) — for unknown

nects to. It is impossible to list here all the possible places
in which this scenario is true on the web today, but the most
obvious would include counting the number of transactions
at a bank or brokerage site, auctions at an auction site, or
emails at any of the popular webmail sites. These counts
could even be conducted on search results, a common fea-
ture of many web sites, giving an attacker the power to see
only items meeting some chosen criteria.

As an example, we look at counting the number of items
in a user’s shopping cart at a popular Internet retailer. Mea-
sured at a single moment, it reveals information about that
user’s overall shopping habits. If a user could be convinced
or forced to visit an attacker’s web site more than once, the
relative change in the shopping cart could be used to infer
purchase quantities and dates.

Experimentally, a reference page was chosen whose timing
did not substantial depend on the number of items in the
shopping cart. This task was not trivial on this site, which
includes a feature-filled header on every page. Unexpectedly,
the time to compute the header itself was also correlated
with the number of items in a shopping cart.

As Figure 5 clearly shows, the difference between the shop-
ping cart and this reference page is linearly related with the
number of items in a user’s shopping cart very precisely up
to the count of 10, which is the number of items the shop-
ping cart will display on a single page. After that, there
is still a noticeable dependency, but it is smaller and less
precise. Overall, the number of items can be determined
with overwhelming probability to within a factor of 10%
with only 10 timing samples per page. More samples would
allow an attacking site, under realistic conditions, to count
exactly. This data is drawn for a user that is not logged

reasons, this attack is more effective for a logged in user.

4.5 Combining with cross-site request forgery

In theory, even more powerful attacks can be created by
combining the cross-site timing attack with existing cross-
site request forgery. Cross-site request forgery (CSRF) [14]
is an attack where one site directs the browser to make a
request that actually changes state on another site, even
though the browser prevents the attacking site from viewing
any data that did not originate from the same domain. A
simple and effective solution to this problem is well-known:
add a hidden field to every form containing a random string,
and check that a valid random string is present in every
form request. Despite this ready solution, cross-site request
forgery remains a pervasive problem on the web.

Most CSRF attacks that are at the moment annoyances
— such as adding specific items to a user’s shopping cart
— can become a serious privacy breach when combined with
timing. For example, an attacker able to add arbitrary items
to a user’s cart can test if the cart contains a particular
item. To see how, recall that shopping carts have a per-
item quantity field. Hence counting items in a shopping
cart (using cross-site timing) actually counts the number of
distinct items in the cart. To test if an item is presently in
a shopping cart the attacker first counts the current number
of items in the cart, it then adds an item, then counts again.
If the number of items did not change, then the added item
must have already been in the shopping cart. Since a second
CSRF can be used to remove the ‘test’ item, this attack
could be executed invisibly.

S. DEFENSES

700
600 -
W
E
o 5004
E
=
i
Wi
c
[=]
o
w
w
o
400 A
300
TI....I....I....I....I
T T T T T
0 5 10 15 20
Mumber of itermns in the shopping cart

Figure 5: Counting the number of items in a user’s
shopping cart

Generally speaking, any control flow statement that de-
pends on sensitive data could lead to timing vulnerabilities.
For example, an application that retrieves a list of records
from the database and then selectively decides which ones
to display will be vulnerable to leaking the total number
of records. One could look for such coding patterns to de-
tect basic timing vulnerabilities and correct them, but this
is likely to be very error-prone.

One defense is to ensure that the web server always takes
a constant amount of time to process a request. Blaze [3]
proposed an operating system level mechanism for doing so.
A similar system could be built for web servers. However,
simply ensuring that total request time is constant is insuf-
ficient. If the server is using chunked encoding, inter-chunk
timings could reveal sensitive information, even though the
total response time is constant. For chunked encoding it is
critical that all inter-chunk times are constant.

We implemented this specific defense as an Apache mod-
ule called mod_timepad. The module ensures that each
chunk is sent at a time since the request was made which
is a multiple of n milliseconds where, say n = 100ms. n is
a user-adjustable parameter that can be specified for each
page, directory, site, and server. If n is set greater than the
maximum time to prepare a chunk for a given page, then
responding to a request for that page will leak no timing
information to an attacker. If m is insufficiently large (for
example, if the page could take any amount of time to com-
pute), then the module dramatically reduces the resolution
of timing data available to an attacker. While certainly not
a perfect solution, this module can be used effectively to
thwart the attacks demonstrated in this paper with very
little modification to existing web applications.

While the correct way to fix timing vulnerabilities is at
the web site, the cross-site timing attack may also be de-
feated using browser modifications. For example, one could
block our JavaScript timing method by applying the same-
origin policy to onerror and onload events. As a result, the
attacking site would have no information on how or when
the target page was loaded. This approach, however, is very
brittle and unlikely to provide security — there are many
different methods for measuring page load time and they
would all have to be blocked.

Finally, we note that simply adding random delays at the
web server will not defeat this timing attack. It will only
slow down the attack by forcing the attacker to sample mul-
tiple times to average out the noise. The ineffectiveness of
random delays was already discussed in [10].

6. CONCLUSION

This paper discusses a pervasive bug in web application
software. The fact that timing data at many web sites leaks
private information suggests that this side channel is often
ignored by web developers. We presented a number of direct
and indirect measurement techniques that can effective ex-
ploit real-world leaks of private information, including a new
cross-site timing method that can reveal private user state.
While a difficult problem to solve, one approach to fixing
these vulnerabilities is carefully controlling the time taken
to respond to any request, either through careful server-side
coding or a web server module that automatically regulates
the time at which responses are sent.

Acknowledgments

We thank John Mitchell, Collin Jackson, Adam Barth, Jeremiah
Grossman, and Daniel Walling for their suggestions.

7.
1]

REFERENCES

Onur Aciicmez, Werner Schindler, and Cetin Koc.
Improving Brumley and Boneh timing attack on
unprotected SSL implementations. In Proceedings of
the 12th ACM conference on Computer and
communications security, 2005.

C. Anley. Advanced SQL injection in SQL server
applications, 2002. http://www.nextgenss.com/
papers/advanced_sql_injection.pdf.

Matt Blaze. Simple UNIX time quantization package.
Previously available on the web.

D. Boneh and D. Brumley. Remote timing attacks are
practical. Journal of Computer Networks,
48(5):701-716, 2005. Extended abstract in Usenix
Security 2003.

The CAPTCHA project. http://www.captcha.net.
Edward W. Felten and Michael A. Schneider. Timing
attacks on web privacy. In ACM Conference on
Computer and Communications Security, pages 25—32,
2000.

Gallery. http://gallery.menalto.com/.

Collin Jackson, Andrew Bortz, Dan Boneh, and John
Mitchell. Protecting browser state from web privacy
attacks. In Proceedings of the 15th ACM World Wide
Web Conference (WWW 2006), 2006.

[9] Markus Jakobsson. Modeling and preventing phishing
attacks, 2005. http://www.informatics.indiana.
edu/markus/papers/phishing_jakobsson.pdf.

Paul Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems.
Advances in Cryptology, pages 104-113, 1996.

Jesse Ruderman. The same origin policy, 2001.
http://wuw.mozilla.org/projects/security/
components/same-origin.html.

Werner Schindler. A timing attack against RSA with
the chinese remainder theorem. In CHES 2000, pages
109-124, 2000.

Werner Schindler. Optimized timing attacks against
public key cryptosystems. Statistics and Decisions,
20:191-210, 2002.

Chris Shiflett. Cross-site request forgeries, 2004.
http://shiflett.org/articles/
security-corner-dec2004.

The cross-site scripting FAQ. http:
//www.cgisecurity.net/articles/xss-faq.shtml.

(10]

(11]

(12]

(13]

(14]

(15]

