
SPDP: An Automatically Synthesized Lossless

Compression Algorithm for Floating-Point Data
Steven Claggett, Sahar Azimi, and Martin Burtscher

Department of Computer Science
Texas State University

San Marcos, TX 78666, USA

Abstract: Scientific computing produces, transfers, and stores massive amounts
of single- and double-precision floating-point data, making this a domain that can

greatly benefit from data compression. To gain insight into what makes an effec-
tive lossless compression algorithm for such data, we generated over nine million

algorithms and selected the one that yields the highest compression ratio on 26

datasets. The resulting algorithm, called SPDP, comprises four data transfor-
mations that operate exclusively at word or byte granularity. Nevertheless, SPDP

delivers the highest compression ratio on eleven datasets and, on average, outper-
forms all but one of the seven compared compressors. An analysis of SPDP’s

internals reveals how to build effective compression algorithms for scientific data.

1. Introduction

Scientific computing applications often produce and transfer large amounts of floating-

point data. For example, many simulations exchange data between processing nodes and
with mass storage devices after every time step. Some large datasets have to be sent to

other locations for additional processing, analysis, or visualization. Moreover, long-run-
ning programs regularly save checkpoints to disk so that they can resume execution from

the most recent checkpoint after a crash. It is well known that compression can reduce the
amount of data that needs to be transferred and stored in these and other situations.

Many users of scientific computing take advantage of frameworks like HDF5 for managing

their data [7]. Some of these frameworks support compression “filters”. However, such
filters are only likely to be employed if they are effective. Moreover, they need to be loss-

less so that they can safely be used in any setting. Depending on the application, scientific

data are typically stored in either single- or double-precision IEEE 754 floating-point for-
mat. Users do not want to have to select different filters depending on the data’s precision.

Rather, they would like a single algorithm that compresses both types well.

To identify an effective lossless compression algorithm that meets this criterion, we used

our CRUSHER framework to systematically generate over nine million algorithm candi-

dates from a set of 48 algorithmic components. Each component implements a data trans-
formation and can operate at word and byte granularity. CRUSHER then performed an

exhaustive search to determine the best four-component algorithm in this search space for
a suite of 13 single- and 13 double-precision datasets. The goal of the work presented in

this paper is to answer the following two research questions. 1) Can we gain insight and

learn from the resulting algorithm, for example, how to best handle mixed single/double
datasets? 2) Can a competitive compression algorithm be created from data transfor-

mations that only process data at word and byte granularity but not at bit granularity?

We named the resulting algorithm SPDP, which is an abbreviation for “Single Precision

Double Precision”. It is brand new and not similar to prior compression algorithms. SPDP

delivers the highest compression ratio on eleven of the 26 tested datasets. Only Zstd per-
forms better. On average, SPDP outperforms Blosc, bzip2, FastLZ, LZ4, LZO, and Snappy

by at least 30% in terms of compression ratio. However, it tends to be slower.

This paper makes the following contributions. 1) We systematically search 9,400,320 com-
binations of four algorithmic components to determine the best compression algorithm

within this space. 2) We analyze the resulting sequence of components to gain insight into

why it works well and how to handle mixed types of inputs. 3) We present a previously
unknown algorithm (SPDP) that compresses floating-point data well even without any bit-

granularity coders. 4) We compare many compression algorithms that are available as
HDF5 filters in terms of compression ratio, compression throughput, and decompression

throughput. SPDP is freely available as a standalone compressor and as an HDF5 filter [6].

The rest of this paper is organized as follows. Section 2 describes our algorithm synthesis

approach. Section 3 summarizes related work. Section 4 provides an overview of the sys-
tem, compressors, and datasets we use. Section 5 presents and discusses the experimental

results. Section 6 concludes with a summary and future work.

2. Algorithm Synthesis

To be able to systematically search for effective compression algorithms, we built a frame-
work called CRUSHER for automatically synthesizing compressors and the corresponding

decompressors. It is based on a library of interoperable algorithmic components. These

components are the result of a thorough analysis of preexisting compression algorithms. In
particular, we broke many prior algorithms down into their constituent parts and general-

ized them. This yielded a number of algorithmic components for building data models and
coders. We then implemented these components using a common interface such that each

component can be given a block of data as input, which it transforms into an output block

of data. This design makes it possible to combine (chain) the components in any way, al-
lowing for the generation of a large number of compression-algorithm candidates from a

small set of components. CRUSHER uses exhaustive search to automatically determine
the best chain of components (aka compression algorithm) in its search space for a given

set of input data. Importantly, for each algorithmic component, the framework includes an

inverse that performs the opposite transformation. Thus, for any chain of components, it is
straightforward to synthesize the matching decompressor.

2.1. Algorithmic Components

This section describes the 48 algorithmic components available to CRUSHER for synthe-
sizing compression algorithms. Many of them are generalizations or approximations of

data transformations extracted from prior algorithms. Each component takes a sequence of
values as input (i.e., an array), transforms it, and outputs the transformed sequence.

The NUL component simply outputs the input sequence. It ensures that chains with n com-
ponents can also represent all possible algorithms with fewer than n components.

The BIT component groups the values into chunks of as many values as there are bits per

value. It then transforms each chunk by emitting a word that contains the most significant
bits of the values, followed by a word that contains the second most significant bits, etc.

The DIMn component takes a parameter n that specifies the dimensionality and groups the

values accordingly. For example, a dimension of three changes the linear sequence x1, y1,
z1, x2, y2, z2, x3, y3, z3 into x1, x2, x3, y1, y2, y3, z1, z2, z3. We use n = 2, 4, 8, and 12.

The ROTn component takes a parameter n that specifies by how many units to rotate the

bits of each word in the input sequence. There are seven versions of this component that
rotate the bits by one eighth to seven eighths of the word size in bits.

The LNVkn component takes two parameters. It subtracts the last nth value from the current
value and emits the residual. If k = ‘s’, arithmetic subtraction is used. If k = ‘x’, bitwise

subtraction (xor) is used. In both cases, we tested n = 1, 2, 3, 4, 8, 12, 16, 32, and 64.

None of the above components change the size of the data blocks. The next three compo-
nents are the only ones that can reduce the length of a data block, i.e., compress it.

The ZE component operates on chunks of eight values and emits a bitmap that contains a

bit for every value in the chunk. Each bit indicates whether the corresponding value is zero
or not. Following the bitmap, ZE emits the non-zero values from the chunk.

The RLE component performs run-length encoding. In particular, it counts how many

times the current value appears in a row. Then it counts how many non-repeating values
follow. Both counts are recorded in a single word, i.e., each count gets half of the bits. This

count is emitted first, followed by the current value and then the non-repeating values.

The LZln component implements a variant of the LZ77 algorithm [13]. It incorporates
tradeoffs that make it more efficient than other LZ77 versions on hard-to-compress data

and operates as follows. It uses a 32768-entry hash table to identify the l most recent prior
occurrences of the current value. Then it checks whether the n values immediately preced-

ing those locations match the n values just before the current location. If they do not, only

the current value is emitted and the component advances to the next value. If the n values
match, the component counts how many values following the current value match the val-

ues after that location. The length of the matching substring is emitted and the component
advances by that many values. We consider n = 3, 4, 5, 6, and 7 combined with l = ‘a’, ‘b’,

and ‘c’, where ‘a’ = 1, ‘b’ = 2, and ‘c’ = 4, which yields fifteen LZln components.

The │ pseudo component, called the Cut and denoted by a vertical bar, is a singleton com-
ponent that converts a sequence of words into a sequence of bytes. Every algorithm pro-

duced by CRUSHER contains a Cut, which is included because it may be more effective

to perform none, some, or all of the compression at byte rather than word granularity.

Each component includes a corresponding inverse component that performs the reverse

data transformation. By chaining the inverse components in the opposite order, CRUSHER
can automatically synthesize the matching decompression algorithm for any chain of com-

ponents, i.e., for any compression algorithm it can generate.

Due to the Cut, we need two versions of each component and its inverse, one for words (4-
byte values) and one for bytes. We implemented all components using C++ templates to

facilitate the generation of these versions. There are no components that emit data at bit

granularity such as Huffman or arithmetic coders. Each component exclusively uses integer
operations and works on an integer representation, i.e., each floating-point value is copied

bit by bit into an integer. All included components run in linear time. We excluded more
complex components such as move-to-front and block-sorting components to make the

synthesis faster, which has to evaluate millions of algorithms.

Not counting the Cut, CRUSHER has 48 components at its disposal, 17 of which are able

to reduce the length of the data. The purpose of the remaining 31 components is to trans-
form the values in such a way that the reducers become maximally efficient. Chains with

more than four components have the potential for better compression but would make the
search for the best algorithm nearly intractable. For an algorithm with k stages, i.e., a chain

with k components, the search space encompasses (k+1) ∙ 48k–1 ∙ 17 possibilities because

there are k+1 locations for the Cut, k–1 stages that can each hold any one of the 48 compo-
nents (duplicates are allowed), and a final stage that can hold any one of the 17 reducers.

In our case, this amounts to 9,400,320 possible four-stage algorithms.

3. Related Work

This section describes prior work on synthesizing compression algorithms. We first used

CRUSHER to create a massively-parallel floating-point compression algorithm for GPUs
[12]. That work employs some of the same algorithmic components. However, it only uti-

lizes components that can easily be parallelized. SPDP does not have this limitation, which

is why it almost always compresses better, in some cases by a large margin.

Then, we modified CRUSHER itself by adding a fast heuristic- and sampling-based paral-
lel search algorithm to accelerate the synthesis [2]. This makes it possible to generate com-

pression algorithms in real-time that are tailored to each dataset, i.e., to compress each
dataset with a potentially unique algorithm. Whereas this customization yields higher com-

pression ratios on some inputs, the fast search tends to miss some good algorithms in the

search space. On average, the compression ratio is 12% lower on the double- and 20%
lower on the single-precision datasets compared to SPDP, whose synthesis took days.

None of the remaining related works described below are designed for floating-point data.

Instead, they target integers, program execution traces, heterogeneous files, images, and
databases. Hence, we do not compare SPDP to these approaches.

We utilized CRUSHER to generate integer compression algorithms that are space-probe

friendly [3]. That work also partially uses the same algorithmic components. However, it
only employs components that require very little state (small or no tables/dictionaries) as

most space probes only contain a small amount of (radiation-hardened) main memory.

In much earlier work, we presented TCgen, a tool to generate customized trace compressors
from a user-provided configuration of one or more predictors [1]. TCgen then translates

this description into C source code that is optimized for the specified trace format and

predictors (components). CRUSHER supports many more components and automatically
determines good algorithms without the need for a description from the user.

Kattan and Poli propose a system that employs genetic programming to find optimal ways

to combine standard compression algorithms [9]. They group similar data chunks together
and label each group with the best compression algorithm for its chunks. Similarly, Hsu

and Zwarico present an automatic synthesis technique for compressing heterogeneous files

[8]. Each chunk of data is compressed using a different algorithm, which is determined
using a statistical method. Note that they combine chunks of the input data that were po-

tentially compressed with different algorithms whereas we combine components to form a
single compression algorithm that is used throughout.

The same distinction applies to Mitra et al., who propose a methodology for compressing

fractal images [10]. Initially, fractal codes are computed for each domain block. Then these
blocks are classified into two types based on the variability of the pixels in each block. The

purpose of this classification is to obtain higher compression ratios and to reduce the en-
coding time. Wu and Lin use a similar approach with three classes [11].

Fang et al. investigate how to compress database information to minimize the CPU/GPU
transfer overhead [4]. They use a compression planner and a cost model to identify an

optimal combination among nine different compression schemes and employ a rule-based

method to automatically prune the search space. They utilize fewer components than we
do and, as in Kattan and Poli’s work, each component is an entire compression algorithm.

Chaining whole compression algorithms, as is proposed in some of the above work, is fun-
damentally different from chaining algorithmic components to build a compression algo-

rithm, which is what we do. After all, the goal of a compression algorithm is to maximally
reduce the number of bytes, which generally means that there are few exploitable patterns

left in the output. This makes it difficult for the next compression algorithm in a chain to

be effective. Our approach does not suffer from this problem. In fact, most of the algorith-
mic components we use do not reduce the number of bytes but transform the data to better

expose patterns (cf. Section 2.1).

4. Methodology

4.1. Compressors

For our evaluation, we selected the compressors from the list of HDF5 filters [6] that are
lossless and serial and that we could get to compile and run. In addition to SPDP, this is

Blosc, bzip2, FastLZ, LZ4, LZO, Snappy, and Zstd. We use Blosc without any pre-condi-

tioner as we found them to lower the compression ratio on our datasets. Where possible,
we run each compressor with its fastest as well as its best compressing configuration. In all

cases, we evaluate the standalone compressor without employing HDF5.

4.2. Measurements

For each tested compressor and configuration, we report the compression ratio, the com-
pression throughput, and the decompression throughput. The compression ratio is the num-

ber of bytes in the uncompressed dataset divided by the number of bytes in the compressed

dataset. Hence, higher ratios are better. To measure the runtime, we timed the tools’ exe-
cution on the command line. To exclude the disk speed from the timing measurements, the

input datasets were cached in main memory and the outputs were written to /dev/null. To
obtain the throughput, we divided the original dataset size by the measured runtime. We

report throughputs rather than runtimes because throughputs are independent of the dataset

size and more amenable to averaging. Moreover, throughput is also a higher-is-better met-
ric. Each experiment was conducted five times and the median throughput is reported. For

each tool, we verified that the decompressed output matches the original dataset exactly.

4.3. Datasets

We use the thirteen FPC datasets for our evaluation [5]. They include observational data
(obs), numeric results (num), and MPI messages (msg). Table 1 provides information about

each dataset. The first two numeric columns list the size in megabytes and in millions of

double-precision values. The middle column shows the percentage of values that are
unique. The fourth column displays the first-order entropy of the values in bits. The last

column expresses the randomness of each dataset in percent, i.e., it reflects how close the
first-order entropy is to that of a truly random dataset with the same number of unique

values. For the single-precision versions, we simply converted the double-precision data.

Table 1: Information about the double-precision datasets

4.4. System and Compiler

We compiled the tested codes with gcc/g++ 5.3.1 using the “-O3 -march=native” flags. We
measured the runtime of the compressors on a system with dual 10-core Xeon E5-2687W

v3 CPUs running at 3.1 GHz. Each core has separate 32 kB L1 caches, a unified 256 kB
L2 cache, and the cores on a socket share a 25 MB L3 cache. The host memory size is 128

GB and has a peak bandwidth of 68 GB/s. The operating system is Fedora 23.

5. Experimental Results

The following subsections present the results of our evaluation. The first subsection ana-
lyzes the structure of the synthesized SPDP algorithm. The remaining subsections compare

it to the other compressors in terms of compression ratio, compression throughput, and

decompression throughput. Whenever we mention an average, it is the geometric mean.

5.1. Synthesized Algorithm

SPDP, the best-compressing four-component algorithm for our datasets in CRUSHER’s
9,400,320-entry search space is LNVs2 | DIM8 LNVs1 LZa6. Whereas there has to be a

reducer component at the end, none appear in the first three positions, i.e., CRUSHER

generated a three-stage data model followed by a one-stage coder. This result shows that
chaining whole compression algorithms, each of which would include a reducer, is not

beneficial. Also, the Cut appears after the first component, so it is important to first treat
the data at word granularity and then at byte granularity to maximize the compression ratio.

The LNVs2 component at the beginning that operates at 4-byte granularity is of particular

interest. It subtracts the second-previous value from the current value in the sequence and
emits the residual. This enables the algorithm to handle both single- and double-precision

data well. In case of 8-byte doubles, it takes the upper half of the previous double and
subtracts it from the upper half of the current double. Then it does the same for the lower

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

msg_bt 254.0 33.30 92.9 23.67 95.1

msg_lu 185.1 24.26 99.2 24.47 99.8

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 51.6

msg_sweep3d 119.9 15.72 89.8 23.41 98.6

num_brain 135.3 17.73 94.9 23.97 99.9

num_comet 102.4 13.42 88.9 22.04 93.8

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 99.4

obs_error 59.3 7.77 18.0 17.80 87.2

obs_info 18.1 2.37 23.9 18.07 94.5

obs_spitzer 189.0 24.77 5.7 17.36 85.0

obs_temp 38.1 4.99 100.0 22.25 100.0

halves. The result is, except for a suppressed carry, the same as computing the difference

sequence on 8-byte values. In case of 4-byte single-precision data, this component also
computes the difference sequence, albeit using the second-to-last rather than the last value.

If the values are similar, which is where difference sequences help, then the second-previ-
ous value is also similar and should yield residuals that cluster around zero as well. This

observation answers our first research question. We are able to learn from the synthesized

algorithm, in this case how to handle mixed single/double-precision datasets.

The DIM8 component after the Cut separates the bytes making up the single or double

values such that the most significant bytes are grouped together, followed by the second

most significant bytes, etc. This is likely done because the most significant bytes, which
hold the exponent and top mantissa bits in IEEE 754 floating-point values, correlate more

with each other than with the remaining bytes in the same value. This assumption is sup-
ported by the LNVs1 component that follows, which computes the byte-granularity differ-

ence sequence and, therefore, exploits precisely this similarity between the bytes in the

same position of consecutive values. The LZa6 component compresses the resulting dif-
ference sequence. It uses n = 6 to avoid bad matches that result in zero counts being emitted,

which expand rather than compress the data. The chosen high value of n indicates that bad
matches are frequent, as is expected with relatively random datasets (cf. Table 1).

5.2. Compression Ratio

Table 2 shows the compression ratios on the 26 datasets for the investigated compressors.

The highest compression ratio for each dataset is highlighted. The bottom row lists the
geometric mean of the compression ratios over all datasets for each compressor.

There are only two algorithms that yield highest compression ratios on these datasets, Zstd

and SPDP. Zstd compresses fifteen of the datasets best and SPDP the remaining eleven.
On average, Zstd provides the highest compression ratio by a substantial margin. This is,

to a large degree, due to its great performance on num_plasma, which it compresses by

over an order of magnitude more than any of the other compressors. It appears that Zstd is
able to capitalize on the very low fraction of unique values in this dataset (cf. Table 1).

SPDP outperforms the remaining compression algorithms on the majority of the datasets

and also on average. Its geometric-mean compression ratio is over 30% higher than that of
bzip2, the next best algorithm. We believe this is an impressive result given that SPDP

does not include any bit-granularity coders whereas the other algorithms do.

The single-precision datasets are derived from their double-precision counterparts. Yet,
only ten of the thirteen single-precision datasets are more compressible, most notably

msg_sweep3d.sp, which is over 2.4 times as compressible as msg_sweep3d.dp. In the re-
maining cases, the double-precision versions are more compressible. For instance,

obs_spitzer.dp is 1.8 times as compressible as obs_spitzer.sp. Evidently, the lower mantissa

bits that are dropped when converting a double- to a single-precision value tend to be more
random than the retained mantissa bits, but this is not always the case.

Overall, SPDP is surprisingly efficient, delivers a record compression ratio on 11 datasets,

and outperforms the other algorithms except Zstd on 18 of the 26 datasets. These results
highlight the potential of automatic compression-algorithm synthesis and answer our sec-

ond research question. A competitive algorithm can be created from components that do
not process data at bit granularity such as Huffman or arithmetic coders.

Table 2: Compression ratios

5.3. Compression Speed

Table 3 lists the compression throughputs (in MB/s) on each dataset for the investigated

compressors. The highest throughput for each dataset is highlighted. The bottom row
shows the geometric mean throughput over all datasets for each compressor.

At level 1, both SPDP and Zstd compress at roughly 330 MB/s. At their best-compressing
level, SPDP is much faster than Zstd. However, it should be noted that Zstd compresses

better, on average, at its lowest level than SPDP at its highest level, so Zstd is clearly pre-
ferred. Among the other algorithms, all of which compress significantly less than SPDP,

only Blosc level 1, LZ4 fast, and Snappy are faster than SPDP. The remaining algorithms

are, on average, outperformed both in compression ratio and throughput by SPDP (and
Zstd). Snappy is the fastest compressor, but it delivers one of the lowest compression ratios.

Note that a high compression speed is of interest in scientific computing where large
amounts of floating-point data are produced that may have to be compressed on the fly.

5.4. Decompression Speed

Table 4 lists the decompression throughputs (in MB/s) on each dataset for the investigated
compressors. The highest throughput for each dataset is again highlighted. The bottom row

shows the geometric mean throughput over all datasets for each compressor.

Zstd decompresses substantially faster than SPDP. It is 26% faster at level 1 and over two

times faster in the best-compressing mode. Except for SPDP level 9, all algorithms decom-
press faster than they compress on average, in some cases by a large factor. For example,

Zstd level 22 decompresses over 75 times faster than it compresses. In contrast, SPDP is a

fairly symmetric algorithm that compresses and decompresses at about the same speed. A
faster decompression throughput is useful in cases where a dataset is compressed once but

decompressed multiple times, such as for datasets that are analyzed or visualized many
times. In other cases, for example program checkpoints that are almost never read, the

Blosc Blosc bzip2 bzip2 FastLZ FastLZ LZ4 LZ4 SPDP SPDP Zstd Zstd

level 1 level 9 fast best fast best fast best level 1 level 9 level 1 level 22

msg_bt.dp 1.00 1.04 1.10 1.09 1.05 1.05 1.06 1.07 1.05 1.06 1.28 1.33 1.11 1.12

msg_lu.dp 1.00 1.00 1.02 1.02 0.98 0.98 1.00 1.00 1.00 1.00 1.20 1.26 1.06 1.05

msg_sp.dp 1.00 1.00 1.08 1.05 1.00 1.00 1.00 1.01 1.00 1.00 1.27 1.30 1.06 1.07

msg_sppm.dp 1.76 1.62 6.78 6.93 5.08 5.70 5.28 6.73 6.78 4.82 4.66 5.05 7.25 10.26

msg_sweep3d.dp 1.01 1.02 1.06 1.29 1.00 1.00 1.02 1.02 1.02 1.02 1.31 3.01 1.87 2.86

num_brain.dp 1.00 1.00 1.04 1.04 0.98 0.98 1.00 1.00 1.00 1.00 1.14 1.20 1.06 1.10

num_comet.dp 1.03 1.07 1.14 1.17 1.05 1.06 1.08 1.09 1.08 1.08 1.16 1.16 1.16 1.39

num_control.dp 1.01 1.01 1.03 1.03 0.99 0.99 1.01 1.01 1.02 1.01 1.02 1.01 1.06 1.06

num_plasma.dp 1.00 1.05 1.38 5.79 1.41 1.41 1.33 1.39 1.50 1.19 1.29 33.17 381.24 408.26

obs_error.dp 1.00 1.07 1.30 1.34 1.26 1.26 1.27 1.29 1.27 1.30 1.14 1.61 1.52 5.61

obs_info.dp 1.00 1.01 1.10 1.22 1.04 1.07 1.08 1.13 1.10 1.05 1.22 1.95 1.20 4.10

obs_spitzer.dp 1.00 1.02 1.29 1.75 1.04 1.05 1.05 1.20 1.14 1.06 1.00 0.98 1.18 3.27

obs_temp.dp 1.00 1.00 1.02 1.02 0.97 0.97 1.00 1.00 1.00 1.00 1.02 1.03 1.04 1.04

msg_bt.sp 1.00 1.04 1.13 1.13 1.06 1.06 1.06 1.07 1.08 1.06 1.43 1.48 1.14 1.22

msg_lu.sp 1.00 1.00 1.03 1.04 0.97 0.97 1.00 1.00 1.00 1.00 1.30 1.35 1.07 1.07

msg_sp.sp 1.00 1.00 1.16 1.14 1.00 1.00 1.00 1.01 1.08 1.00 1.47 1.53 1.11 1.26

msg_sppm.sp 3.18 1.69 8.14 8.74 7.85 8.37 8.55 8.73 8.63 6.26 6.93 7.69 9.84 13.52

msg_sweep3d.sp 1.01 1.02 1.10 2.35 1.00 1.00 1.02 1.03 1.03 1.02 1.45 7.32 5.52 6.07

num_brain.sp 1.00 1.00 1.09 1.11 0.98 0.98 1.00 1.00 1.00 1.00 1.26 1.35 1.13 1.13

num_comet.sp 1.03 1.07 1.11 1.12 1.06 1.06 1.08 1.09 1.09 1.08 1.18 1.18 1.15 1.15

num_control.sp 1.01 1.01 1.04 1.04 0.99 0.99 1.01 1.01 1.02 1.01 1.02 1.01 1.08 1.08

num_plasma.sp 1.00 3.93 1.53 8.65 1.12 1.97 1.00 1.09 1.22 1.02 3.26 34.74 254.98 369.22

obs_error.sp 1.00 1.02 1.28 1.34 1.17 1.18 1.12 1.20 1.25 1.18 1.28 2.03 1.31 5.63

obs_info.sp 1.00 1.01 1.12 1.33 1.02 1.07 1.07 1.13 1.13 1.05 1.60 2.28 1.21 3.62

obs_spitzer.sp 1.00 1.00 1.23 1.39 1.02 1.02 1.02 1.08 1.08 1.02 1.00 0.99 1.15 1.82

obs_temp.sp 1.00 1.00 1.04 1.05 0.97 0.97 1.00 1.00 1.00 1.00 1.01 1.00 1.08 1.08

GeoMean 1.07 1.11 1.31 1.59 1.20 1.24 1.21 1.25 1.26 1.19 1.42 2.09 2.22 3.09

Dataset LZO Snappy

decompression speed is immaterial. Due to its symmetry, SPDP’s decompression through-

put is low and only higher than that of bzip2 and LZO. Again, Snappy is the fastest.

Table 3: Compression throughput in megabytes per second

Table 4: Decompression throughput in megabytes per second

6. Summary and Future Work

In this paper, we describe the design, analyze the structure, and evaluate the performance

of SPDP, an automatically synthesized lossless compression algorithm for single- and dou-
ble-precision floating-point data. It is the best-compressing out of the 9,400,320 possible

four-stage algorithms that can be built from our set of 48 algorithmic components that does
not include any bit-level coders. SPDP yields the highest compression ratio on eleven of

Blosc Blosc bzip2 bzip2 FastLZ FastLZ LZ4 LZ4 SPDP SPDP Zstd Zstd

level 1 level 9 fast best fast best fast best level 1 level 9 level 1 level 22

msg_bt.dp 747.4 194.2 8.8 8.4 146.2 233.4 1010.6 41.2 5.5 1011.7 413.1 199.2 310.1 2.2

msg_lu.dp 674.0 185.0 8.3 7.8 134.9 225.7 1406.4 38.0 5.6 1786.7 426.6 190.9 403.7 2.6

msg_sp.dp 746.1 187.9 8.4 8.0 144.4 227.6 1554.3 38.0 4.9 1636.8 387.6 200.5 443.7 2.1

msg_sppm.dp 819.3 355.9 6.7 5.7 520.6 472.1 900.4 52.6 6.3 1384.2 364.8 333.6 454.6 7.8

msg_sweep3d.dp 673.3 172.6 8.4 8.1 133.5 194.8 1226.3 38.8 5.7 1811.6 326.9 250.1 265.3 2.8

num_brain.dp 718.6 176.0 8.2 7.7 136.5 203.6 1249.0 38.0 5.5 2218.3 330.8 189.2 368.7 2.5

num_comet.dp 528.5 200.3 9.3 8.5 136.4 208.7 792.0 37.6 5.6 1946.9 298.8 186.3 365.5 2.5

num_control.dp 758.8 188.2 8.3 7.7 138.7 235.7 1824.1 38.0 5.7 2189.4 312.4 163.0 379.1 2.8

num_plasma.dp 677.5 194.7 9.7 2.8 157.1 304.6 295.9 46.2 7.8 477.3 388.9 277.7 1364.2 96.0

obs_error.dp 718.2 177.2 9.6 9.1 149.0 205.7 365.2 43.3 3.3 339.4 277.7 181.4 166.0 3.9

obs_info.dp 420.8 113.3 8.5 8.2 89.3 126.4 493.5 36.2 6.0 931.7 212.8 122.4 297.6 3.0

obs_spitzer.dp 719.3 176.5 9.4 9.6 128.4 170.7 548.9 39.4 4.1 445.2 371.5 155.4 148.0 1.5

obs_temp.dp 478.5 188.5 8.2 7.7 111.3 243.4 1051.0 38.2 5.6 1211.0 333.6 138.2 251.4 4.3

msg_bt.sp 745.5 185.3 9.2 8.7 139.7 217.0 965.3 40.1 5.4 814.6 379.1 208.9 214.2 2.4

msg_lu.sp 709.5 169.4 8.6 8.1 128.8 203.2 1171.1 37.4 5.6 1460.5 434.1 188.4 321.5 3.5

msg_sp.sp 679.9 179.4 9.0 8.4 137.8 206.2 1119.8 38.5 5.2 1602.9 376.7 207.9 333.5 2.5

msg_sppm.sp 730.0 318.3 5.6 4.8 539.9 385.9 1496.8 157.4 16.7 1784.0 458.6 376.5 691.0 15.6

msg_sweep3d.sp 512.7 169.2 8.7 4.0 127.6 174.4 1543.8 37.5 5.6 1335.4 350.0 217.5 638.3 15.0

num_brain.sp 717.4 183.3 8.6 7.9 120.3 174.4 1368.7 35.7 5.4 1559.6 262.0 187.1 315.6 3.7

num_comet.sp 474.1 202.1 9.1 8.3 128.0 204.6 814.2 37.1 5.6 1166.6 222.7 169.0 346.4 3.7

num_control.sp 673.1 190.9 8.3 7.7 130.0 260.3 1070.3 38.7 5.7 1701.6 289.7 167.4 334.9 3.8

num_plasma.sp 394.7 314.8 9.3 3.0 104.5 170.6 807.7 39.4 6.5 314.8 292.7 170.4 965.2 74.6

obs_error.sp 400.3 126.4 9.3 8.8 127.8 249.8 354.6 37.3 2.5 238.7 386.1 149.3 132.9 3.1

obs_info.sp 325.8 90.9 8.4 8.6 89.0 107.0 495.2 33.6 5.9 659.1 170.9 161.7 200.0 2.4

obs_spitzer.sp 521.4 147.8 9.1 8.8 118.4 148.9 430.2 35.6 3.7 351.1 301.1 169.9 179.7 1.7

obs_temp.sp 444.2 176.1 8.2 8.0 90.2 134.2 936.5 33.8 5.6 1348.2 258.7 132.1 270.7 5.1

GeoMean 597.7 183.6 8.5 7.2 140.3 208.1 870.3 40.8 5.5 1024.6 323.6 189.2 333.5 4.4

Dataset LZO Snappy

Blosc Blosc bzip2 bzip2 FastLZ FastLZ LZ4 LZ4 SPDP SPDP Zstd Zstd

level 1 level 9 fast best fast best fast best level 1 level 9 level 1 level 22

msg_bt.dp 945.1 956.8 20.7 18.4 595.9 563.1 1854.4 1714.5 277.5 3470.8 430.4 203.7 478.6 269.3

msg_lu.dp 805.5 872.2 19.4 16.9 539.4 501.6 2081.0 2144.2 384.0 3624.9 453.9 199.3 422.6 289.6

msg_sp.dp 854.9 943.1 20.2 17.8 546.7 511.7 2149.9 1146.4 311.0 3741.9 412.6 198.8 469.2 231.7

msg_sppm.dp 960.8 1042.5 61.6 52.1 844.5 1002.4 1691.1 2450.3 327.8 3409.6 426.6 333.3 811.1 891.3

msg_sweep3d.dp 742.8 725.9 19.4 17.0 522.9 522.9 2070.6 1783.4 344.7 3313.6 431.5 122.2 393.7 323.9

num_brain.dp 795.1 734.8 18.8 16.5 649.4 495.9 2118.7 1831.6 384.0 3019.6 373.2 189.6 398.1 221.6

num_comet.dp 645.4 975.6 19.9 17.5 549.3 504.2 1634.4 1406.6 306.1 2529.7 315.0 188.3 381.8 232.0

num_control.dp 782.1 809.3 19.6 17.2 594.8 505.8 1398.4 2319.8 366.4 3127.1 360.1 158.3 408.5 424.1

num_plasma.dp 868.7 580.3 20.3 39.7 384.9 363.0 676.3 914.7 158.8 1119.0 437.2 84.0 1599.6 989.2

obs_error.dp 890.6 513.6 20.7 17.9 392.5 408.4 1605.5 1566.7 208.6 1857.6 298.7 122.1 316.9 457.7

obs_info.dp 592.2 442.0 18.4 16.4 298.6 267.9 1021.7 717.6 147.5 2313.9 306.5 123.6 237.3 301.1

obs_spitzer.dp 867.1 809.0 19.3 19.9 457.6 439.0 1075.3 1181.0 167.4 1966.8 377.1 150.9 404.5 289.8

obs_temp.dp 551.0 870.4 19.1 16.7 369.8 410.3 1162.2 1637.7 245.4 1871.0 340.4 165.9 310.2 187.4

msg_bt.sp 902.7 857.7 20.8 18.3 527.6 452.8 1733.6 979.8 213.2 2010.2 401.7 184.8 396.3 270.3

msg_lu.sp 714.1 915.4 19.5 17.2 454.6 427.6 1344.0 1784.3 326.4 2743.2 462.0 187.8 403.9 314.2

msg_sp.sp 749.6 728.6 20.5 18.2 439.4 443.6 2441.2 1663.2 165.0 2166.5 393.2 191.8 398.1 211.3

msg_sppm.sp 845.7 813.6 72.6 69.8 880.3 844.7 1504.3 2113.0 245.9 1672.0 461.5 312.3 1007.1 1017.1

msg_sweep3d.sp 911.1 663.9 19.0 25.1 638.4 363.7 1172.6 1732.2 187.0 2641.8 370.6 99.5 908.3 498.8

num_brain.sp 897.2 919.6 19.2 17.3 625.9 429.5 1871.9 1326.6 248.5 2198.7 342.2 157.6 323.7 202.8

num_comet.sp 840.0 805.8 21.0 18.1 409.5 430.6 1844.2 1613.9 253.1 2254.3 340.9 166.8 384.3 271.3

num_control.sp 821.8 912.7 19.4 16.9 705.3 460.8 1376.3 1443.0 338.7 3260.9 296.2 150.1 334.5 301.0

num_plasma.sp 462.5 568.0 22.1 39.0 275.4 342.0 1137.8 758.0 126.2 1289.7 406.0 105.6 2403.4 757.6

obs_error.sp 511.3 532.2 19.9 18.4 297.8 294.7 556.8 503.8 149.6 865.6 267.9 129.8 245.4 328.9

obs_info.sp 474.0 444.2 18.3 16.0 254.4 245.0 611.4 739.5 113.8 1152.7 125.1 134.1 206.5 244.3

obs_spitzer.sp 871.0 973.1 19.5 17.7 385.1 399.0 1058.4 1029.7 136.6 1506.3 390.4 154.8 392.8 197.3

obs_temp.sp 596.5 799.3 18.2 17.0 393.6 546.6 1252.2 2048.7 206.0 2447.8 286.4 136.4 281.2 203.6

GeoMean 749.1 756.2 21.6 20.7 476.5 447.4 1385.1 1379.4 228.7 2211.0 355.6 159.5 449.3 330.3

Dataset LZO Snappy

the 26 tested datasets and outperforms all of the evaluated compressors except Zstd. More

importantly, our analysis represents a first step in a new direction aimed at improving our
understanding of how to build effective domain-specific compression algorithms. First, by

systematically generating candidates and analyzing the structure of the best resulting algo-
rithm, we were able to gain insight into its operation and learned how to handle mixed-

precision datasets. Second, we were able to demonstrate that a competitive algorithm can

be created based solely on transformations that do not process data at bit granularity.

In future work, we would like to employ our approach in other domains to further improve

our understanding of what makes an effective compression algorithm. To enhance the

throughput, we intend to add optimized code generation that can interleave the operation
of consecutive components and thus avoid repeated writing out and reading in of data be-

tween each pair of components. To boost the compression ratio, we could include bit-gran-
ularity components. Moreover, we want to study algorithms like Zstd and extract the key

components from them so that we can synthesize even better algorithms.

Acknowledgments

The work reported in this paper was supported by the U.S. National Science Foundation

under Grants 1217231 and 1438963 as well as a REP grant from Texas State University.

References

[1] Burtscher, M. and N.B. Sam. “Automatic Generation of High-Performance Trace Com-

pressors.” Int. Symposium on Code Generation and Optimization, pp. 229-240. 2005.

[2] Burtscher, M., F. Hesaaraki, H. Mukka, and A. Yang. “Real-Time Synthesis of Com-

pression Algorithms for Scientific Data.” ACM/IEEE International Conference for
High-Performance Computing, Networking, Storage and Analysis, pp. 264-275. 2016.

[3] Coplin, J., A. Yang, A. Poppe, and M. Burtscher. “Increasing Telemetry Throughput

Using Customized and Adaptive Data Compression.” AIAA SPACE and Astronautics
Forum and Exposition. 2016.

[4] Fang, W., B. He, and Q. Luo. “Database Compression on Graphic Processors.” Pro-

ceedings of the VLDB Endowment, 3(1-2):670-680. 2010.

[5] FPC datasets: http://cs.txstate.edu/~burtscher/research/datasets/FPdouble/.

[6] HDF5 compression filters: https://support.hdfgroup.org/services/contributions.html.

[7] HDF5 framework: https://support.hdfgroup.org/HDF5/.

[8] Hsu, W.H. and A.E. Zwarico. “Automatic Synthesis of Compression Techniques for

Heterogeneous Files.” Software: Practice and Experience, 25(10):1097-1116. 1995.

[9] Kattan, A. and R. Poli. “Evolutionary Synthesis of Lossless Compression Algorithms
with GP-zip3.” IEEE Congress on Evolutionary Computation, 1(8):18-23. 2010.

[10] Mitra, S.K., C. A. Murthy, and K. Malay. “Technique for Fractal Image Compression

using Genetic Algorithm.” IEEE Trans. on Image Processing, pp. 586-593. 1998.

[11] Wu, M.S. and Y.L. Lin. “Genetic Algorithm with a Hybrid Select Mechanism for Frac-
tal Image Compression.” Digital Signal Processing, 20(4):1150-1161. July 2010.

[12] Yang. A., H. Mukka, F. Hesaaraki, and M. Burtscher. “MPC: A Massively Parallel

Compression Algorithm for Scientific Data.” IEEE Cluster Conf., pp. 381-389. 2015.

[13] Ziv, J. and A. Lempel. “A Universal Algorithm for Data Compression.” IEEE Trans-
action on Information Theory, Vol. 23, No. 3, pp. 337-343. 1977.

