Extending SMTCoq, a Certified Checker for SMT

(Extended Abstract)
Burak Ekici Guy Katz Chantal Keller
The University of lowa New York University LRI, Université Paris-Sud

lowa City, USA New York, USA Orsay, France

burak-ekiciQuiowa.edu guy.katz@nyu.edu Chantal.Keller@lri.fr
Alain Mebsout Andrew J. Reynolds Cesare Tinelli
The University of lowa The University of lowa The University of lowa
lowa City, USA lowa City, USA lowa City, USA
alain-mebsout@uiowa.edu andrew-reynoldsQuiowa.edu cesare-tinelliQuiowa.edu

This extended abstract reports on current progress of S\ T&€ceommunication tool between the
Coq proof assistant and external SAT and SMT solvers. Basedahecker for generic first-order
certificates implemented and proved correct in Coq, SMTGterofacilities both to check external
SAT and SMT answers and to improve Coq's automation usinly salvers, in a safe way. Currently
supporting the SAT solver ZChaff, and the SMT solver veriftie combination of the theories of
congruence closure and linear integer arithmetic, SMTGageant to be extendable with a reason-
able amount of effort: we present work in progress to supiberSMT solver CVC4 and the theory
of bit vectors.

1 Introduction

SMTCO(@ [1] is a tool that allows the Cod [2] proof assistant to comimate with external automatic
solvers for Boolean satisfiability (SAT) and Satisfiabilitipdulo Theories (SMT). Its twofold goal is to:

e increase the confidence in SAT and SMT solvers: SMTCoq pesvith independent and certified
checker for SAT and SMT proof withesses;

e safely increase the level of automation of Coq: SMTCoq mtesistarting safe tactics to solve a
class of Coqg goals automatically by calling external sa\aerd checking their answers (following
askepticalapproach).

SMTCoq currently supports the SAT solver ZChaffl[19] andSiMT solver veriT[[10] for the quantifier-
free fragment of the combined theory of linear integer amithic and equality with uninterpreted func-
tions. For this combined theory, SMTCoq’s certificate cleedkas proved to be as efficient as state-of-
the-art certified checkersl[1, 9].

There is a large variety of SAT and SMT solvers, with each esotypically excelling at solving
problems in some specific class of propositional or firseogmtoblems. While the SAT and SMT com-
munities have adopted standard languages for expreisgingproblems (namely the DIMACS standard
for SAT and the SMT-LIBI[[4] standard for SMT), agreeing on antnonoutputlanguage for proof wit-
nesses has proven to be more challenging. Several fornfat811.6] have been proposed but none has
emerged as a standard yet. Each proof-producing solvegrdlyrrimplements its own variant of these
formats.

1SMTCogq is distributed as free softwarehattps: //github. com/smtcoq/smtcog)
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Figure 1: SMTCoqg's main checker and its uses

To be able to combine the advantages of multiple SAT and SMMeso despite the lack of com-
mon standards for representing proof certicates, SMTCadoban designed to be modular along two
dimensions:

e supporting new theories: SMTCoq’s main checker is an exeledcombination of independent
small checkers

e supporting new solvers: SMTCoq’s kernel relies on a geregitificate format that can encode
most SAT and SMT reasonings for supported theories; thedimga@an be done during@epro-
cessingphase, which does not need to be certified.

In this abstract, we emphasize the key ideas behind the mdigubf SMTCoq, and validate this
by reporting on work in progress on the integration of the Séélver CVC4 [[3] and the theory of bit
vectors. We simultaneously aim at:

o offering to CVC4 users the possibility to formally checkdtsswers in a trusted environment like
Coq;

e bringing the power of a versatile and widely used SMT solikey CVC4 to Coq;

e providing in Coq a decision procedure for bit vectors, a thhewsidely used, for instance, for
verifying circuits or programs using machine integers.

2 The SMTCoq Tool

2.1 General Idea

The heart of SMTCoq is a checker for a generic format of cedtifis (close to the format proposed
by Bessoret al. [6]), implemented and proved correct inside Coq (see Fifiale Taking advantage
of Coqg’s computational capabilities the SMTCoq checkeull/fexecutable, either inside Coq or after
extraction to a general-purpose languége [18].

The Coq signature of this checker is the following:

checker : formula — certificate — bool
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where the typeformula represents the deep embedding in Coq of SMT formulas, andyte
certificate represents SMTCoq’s format of certificates.

The checker's soundness is stated with respect to a tramsfanhction from the deep embedding of
SMT formulas into Coq terms:

[e] : formula — bool
that interprets every SMT formula into its Coq Boolean ceupért. The correctness of the checker:
checker_sound : V f ¢, checker f ¢ = true — [f]

thus means that, given a formula and a certificate for whiehctiiecker answers positively, then the
interpretation in Coq of the formula is valid.

The choice of the type of Booleamsol as the codomain of the translation functifw, instead of
the type of (intuitionistic) propositionBrop, allows us to handle the checking of the classical reasoning
made by SMT solvers without adding any axioms. The SSRefléjtglugin for Coq can be used to
bridge the gap between propositions and Booleans for tleifseconsidered by SMTCog. The major
shortcoming of this approach is that it does not allow qui@ns inside goals sent to SMT solvers,
although it does not prevent one from feeding these solveik@rsally quantified lemmas. To increase
the expressivity of SMTCoqg with respect to quantifiers, onk meed to switch to propositions, and
handle classical logic either by axioms or by restrictingrtion to decidable atoms of the considered
combined theory.

The first use case of this correct-by-construction checkés check the validity of a proof witness,
or proof certificatecoming from an external solver against some input probleigu(E[1Db). In this use
case, the trusted base is both Coq and the parser of the irghlem. The parse is part of the trusted
based because we need to make sure we are effectively agriyproof of the problem we sent to the
external solver. However, this parser is fairly straightfard.

The second use case is within a Coq tactic (Figure 1c). We isarag_Coq goal to an external solver
and get a proof certificate for it. If the checker can validae certificate, the soundness of the checker
allow us to establish a proof of the initial goal. This praé&sknown asomputational reflectioms it
uses a computation (here, the execution of the checkedersproof. In this use case, the trusted base
consists only of Coq: if something else goes wrong (e.g.ctieeker cannot validate the certificate), the
tactic will fail, but nothing unsound will be added to the ®yms.

In both cases, a crucial aspect for modularity purposeseiptissibility topreprocessgproof certifi-
cates before sending them to the SMTCoq checker, withouhfjde prove anything about this prepro-
cessing stage. Again, if the preprocessor is buggy, thekehedll fail to validate the proof certificate (by
returningfalse), which means that while nothing is learned, nothing ungatelded to CoqQ’'s context.
This allows us to easily extend SMTCoqg with new solvers: aglas the certificate coming from the
new solver can be logically encoded into SMTCoq'’s certifdarmat, we can implement this encoding
at the preprocessing stage. As a result, SMTCoq’s curr@picstifor both ZChaff and veriT is provided
through the implementation of a preprocessor for each soReth preprocessors convert to the same
proof format, thus sharing the same checker.

Using a preprocessor is also beneficial for efficiency: pomofificates may be encoded more com-
pactly before being sent to the SMTCoq checker, which mayawgperformance.

2.2 The Checker

We now provide more details on the checker of SMTCoq. As mteskin Figuré P, it consists ofrmain
checkerobtained as the combination of sevesalall checkerseach specialized in one aspect of proof
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checking in SMT (e.g., CNF conversion, propositional re@sg, reasoning in the theory of equality,
linear arithmetic reasoning, and so on).

formula certificate

Small{checkers

™l resolution chains|

Main checker

/ \ Coq checker

yes no

Figure 2: Internals of the Coq checker

The typecertificate is actually the aggregation of specialized types, one fohaanall checker.
The role of the main checker is thus to dispatch each piededafdrtificate to its dedicated small checker,
until the initial formula is proved.

A small checker is a Coq program that, given a (possibly ejrslyof formulas and a certificate
associated with it (which may be just a piece of the inputifieate), computes a new formula:

small_checker : list formula — certificate_sc — formula
The soundness of thehecker comes from the soundness of each small checker, stated@sdol

small_checker_sound : V f; ... £, c,
[£f1] A ... A [fn] — [small_checker [fi;...;fn] ]

meaning that the small checker returns a formula which idieddafter translation into Coq’s logic) by
the conjunction of its premises. Note that the list of pre&simay be empty: in such a case, the small
checker returns a tautology in Coq.

Here are some examples of small checkers.

e For propositional resolution chains, the checker takespatia list of premises and returns a
resolvent if it exists, or a trivially true clause otherwise this case, a certificate is not required as
part of the small checker’s input.

e For the theory of equality with uninterpreted functions lthe checker takes as input a formula
in this theory formulated as a certificate (corresponding toeory lemma produced by the SMT
solver), and returns the formula if it is able to check it, drigally true clause otherwise. In this
case, No premises are given.
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e Forlinear integer arithmetic (LIA), the checker works darlly to the EUF checker, but checks the
formula using Micromega [5], an efficient decision proceiar this theory implemented in Cog.

The only thing that small checkers need to share is thetgpgula, and its interpretation into Coq
Booleans. Each small checker may then reason independesiilyg separate pieces of the certificate.
Again, this is crucial for modularity: to extend SMTCoq withnew theory, one only has to extend
the typeformula with the signature of this theory and, independently of tineaaly existing checkers,
implement a small checker for this theory and prove its snesd.

Notice that “small checker” can be understood in a very gadrgemse: any function that, given a list
of first-order formulas, returns an implied first-order fafay can be plugged into SMTCoqg as a small
checker. In principle, such a checker could even be as congglean SMT solver, as long as it can be
proved correct in Coq.

3 Work in Progress: Extensions to CVC4 and Bit Vector Arithmetic
3.1 Support for CVC4

CVC4 is a proof-producing SMT solver, whose proof format éaséd on the Logical Framework with
Side Conditions (LFSC) [21]. LFSC extends the EdinburghitalgFramework (LF)[[14] by allowing
types with computationadide conditionsexplicit computational checks defined as programs in alsmal
but expressive functional first-order programming languakhe language has built-in types for arbitrary
precision integers and rationals, ML-style pattern maitgtover LFSC type constructors, recursion, a
minimal support for exceptions, and a very restricted setgierative features. One can define proof
rules in LFSC as typing rules that may optionally includedesiondition written in this language. When
checking the application of such proof rules, an LFSC checkeputes actual parameters for the side
condition and executes its code; if the side condition f#ils LFSC checker rejects the rule application.
The validity of an LFSC proof witness thus relies on the atiiress of the side condition functions used
in the proof. LFSC comes with a set of pre-defined side camtltifor various theories, used by the
CVC4 proof production mechanism.

The key differences between LFSC and the SMTCoq format asepted in Tablg 1.

LFSC SMTCoq
Rules| deduction + computation deduction + certificate
Nested proofs supported not supported

Table 1: Main differences between the LFSC and SMTCoq amat#iformats

The major difference lies in the presentation of the deduatules. In SMTCoq, the small checkers
deduce a new formula from already known formulas, possibiti the help of a piece of certificate that
depends on the theory. The LFSC format is more uniform, thamkhe side conditions described above.

To support LFSC, and so CVC4, we are in the process of impléngefin OCaml) an untrusted
preprocessor that transforms LFSC proofs into SMTCoq grodio this end, for some theories, we
need to replay parts of the side conditions, in order to predhe corresponding SMTCoq premises,
conclusion and piece of certificate that will be passed tasthall checkers. This encoding, however, is
relatively straightforward:

o for propositional reasoning, LFSC side conditions use #meslogical content as SMTCoq rules;
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e CNF conversion and EUF proofs are nested in LFSC, so theyireequme processing for the
moment;

e for linear integer arithmetic, since SMTCoq relies on arstg decision procedure in Coq, it
only needs to know what theory lemma is being proved, and gaoré the actual proof steps in
the LFSC certificate.

One difficulty in translating LFSC proofs to the SMTCoq foitncemes from to the possibility in
LFSC of using natural-deduction-style proofs, where omeresst one proof inside another. For instance,
it is possible to have lemmas inside an LFSC proof whose wéee are themselves LFSC proofs. The
architecture of the main and small checkers of SMTCoq do¢guroently allow this sort of nesting:
every clause produced by the small checkers needs to becadiresequence of input clauses or clauses
that were previously produced. To encode an LFSC proof iM®Soq, our preprocessor thus linearizes
nested proofs. The LFSC proofs generated by CVC4 are catestiun such a way that this does not
cause a blow-up in practice; however, to support LFSC inigénee plan to extend SMTCoq certificates
with nested proofs. Again, this extension should be madierlg the modularity inside the checker. It
should impact only the main checker, and not the variouslsrthatkers already in SMTCoq.

3.2 Support for Bit Vector Arithmetic

CVC4 has been recently extended to produce LFSC proofs éogulantifier-free fragment of the SMT
theory of bit vectors [13]. To check proof certificates irstttieory, SMTCoqg needs be extended with it.
As explained in Section 2.2, to do that one needs to:

1. extend the Coq representation of formulas with the sigeabf the bit vector theory and the
interpretation function into Coq terms;

2. implement (new) small checkers and their correspondergjficates for this theory, and prove
their correctness.

Step 1 is a simple extension on the SMTCoq side. The majoculiffi is that Coq itself has limited
support for bit vectors. Its bit vector library provides pithe implementation of bitwise operations
(and not arithmetic operations), and no proofs. We are thmasiotly implementing a more complete
library for this theory. Stepl2 involves implementing andliag new certified Coq programs (the small
checkers). As mentioned, however, because of SMTCoq'guesone of the previous small checkers
and their proofs of correctness need to be changed as a oéthik addition.

LFSC proofs for bit vectors produce by CVC4 mainly involve fiollowing two kinds of deduction
steps:

e bit-blasting steps that reduce the input bit vector formula to an equsiaitle propositional for-
mula;

e standard propositional reasoning steps (based on resgluti

The propositional steps can be handled directly by prevamell checkers. For the bit-blasting steps, we
implemented new small checkers that relate terms of theeiov theory with lists of Boolean formulas
representing their bits; we are currently working on pradagroofs of correctness in Coq for these
small checkers.

LFSC proofs generated by CVC4 involve a third kind of steptmfola simplifications based on
the equivalence of two bit-vector terms or atomic formufas instance, by normalizing inequalities).
Currently, these simplification steps are not provided ailit LFSC subproof by CVC4, although there
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are plans to do so in the near future. In the current SMTCodgmentation then, we assume those steps,
as in the LFSC proof coming from CVC4, or let the user proverthia the case of tactics. Since those
steps correspond to applications of CVC4-defined rewritind simplification rules, we plan for now to
prove the correctness of these rules once and for all at tlgglével, and to pre-process simplification
steps into applications of these rules.

4 Related Work

In addition to related work already discussed throughoetpidwper, we now briefly mention a few more
notable projects. Heulet al. implemented an efficient checker for state-of-the-art Sédhhiques,
verified in ACL2 [15,[24]. It is mainly based on a generaliaatiof extended resolution [22, [17] and
on reverse unit propagation [11]. SMTCoq currently handiely standard extended resolution for its
propositional part.

Efficient proof reconstruction for SAT and SMT solvers hasrbémplemented in proof assistants
based on higher-order logic [23, 9]. Some of these recorigins also handle the theory of bit vec-
tors [E]. This approach is based on translating SAT/SMTifteates to applications of the inference
rules of the kernels of these proof assistants. In contoastapproach in Coq is based on computational
reflection: the certificate is directly processed by the cidn mechanism of Coq’s kernel.

Based on an efficient encoding of a large subset of HOL gotidimst-order logic, the Sledgeham-
mer tactic|[20] allows HOL-based proof assistants to effityeand reliably help manual proving. Proofs
are replayed using either the proof reconstruction meshaniescribed above or a built-in first-order
prover. We hope that SMTCoq can help in adding such techsifqute Coq and other Type Theory-
based proof assistants, by providing a proof replay meshabased on certificates.

5 Conclusion and Future Work

SMTCoq has been designed to be modular in such a way thatiécits extension with new solvers
and new theories. In particular, such extensions shouldetptire any changes in existing checkers or
in their proofs of soundness. Thus, while it may require seffet to certify new small checkers or to
translate new proof formats into the SMTCoq format, suclemsibns require only local changes. Our
current extensions to CVC4 and bit vectors arithmetic eédhis goal: indeed, the work so far consisted
mostly in implementing an untrusted preprocessor forfieasites and adding new, independent checkers.
One limiting aspect of SMTCoq is the lack of support for ndgteoofs, which we plan to add. Thanks
to the modularity of the checker, we believe this featuredao be added locally.

In the future we plan to continue extending the expressioftEMTCoq, and in particular to offer
support for the SMT theory of arrays (for which CVC4 is alsogffproducing). We believe we can
match, and perhaps even improve upon existing work in tefreffioiency.

The current major limitation of SMTCoq resides in its setaftics: presently, it can only handle
goals that are directly provable by SMT solvers, without meacoding of Coq logic into first-order
logic. Our longer term plan is to combine ongoing workimmmerind/|] for proof assistants based on
Type Theory (such as Coq) with the certificate checking céipab offered by SMTCoq.
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