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Abstract. In text encoding standards such as Unicode, text strings are sequences
of code points, each of which can be represented as a natural number. We present
a decision procedure for a concatenation-free theory of strings that includes
length and a conversion function from strings to integer code points. Furthermore,
we show how many common string operations, such as conversions between
lowercase and uppercase, can be naturally encoded using this conversion function.
We describe our implementation of this approach in the SMT solver CVC4, which
contains a high-performance string subsolver, and show that the use of a native
procedure for code points significantly improves its performance with respect to
other state-of-the-art string solvers.

1 Introduction

String processing is an important part of many kinds of software. In particular, strings
often serve as a common representation for the exchange of data at interfaces between
different programs, between different programming languages, and between programs
and users. At such interfaces, strings often represent values of types other than strings,
and developers have to be careful to sanitize and parse those strings correctly. This is a
challenging task, making the ability to automatically reason about such software and
interfaces appealing. Applications of automated reasoning about strings include finding
or proving the absence of SQL injections and XSS vulnerabilities in web applications [28,
25, 31], reasoning about access policies in cloud infrastructure [7], and generating
database tables from SQL queries for unit testing [29]. To make this type of automated
reasoning scalable, several approaches for reasoning natively about string constraints
have been proposed [18, 19, 4, 11, 3].

To reason about complex string operations such as conversions between strings and
numeric values, string solvers typically reduce these operations to operations in some
basic fragment of the theory of strings which they support natively. The scalability of a
string solver thus depends on the efficiency of the reductions as well as the performance
of the solver over the basic constraints. In such approaches, the set of operations in
the basic fragment of strings has to be chosen carefully. If the set is too extensive,
the implementation becomes complex and its performance as well as its correctness
may suffer as a result. On the other hand, if the set is too restrictive, the reductions
‹ This work was partially funded by Amazon Web Services.



may become too verbose or only approximate, also leading to suboptimal performance.
In current string solvers, basic constraints typically include only word equations (i.e.,
equalities between concatenations of variables and constants) and length constraints.
Certain operations, however, such as conversions between strings and numeric values,
cannot be represented efficiently in this fragment because the encoding requires reasoning
by cases on the concrete characters that may occur in the string values assigned to a
string variable.

In this work, we investigate extending the set of basic operators supported in a
modern string solver to bridge the gap between character and integer domains. We
assume a finite character domain of some cardinality n and, similarly to the Unicode
standard, we assume a bijective mapping between its character set and the first n natural
numbers which associates each character with a unique code point. We introduce then
a new string operator, code, from characters strings to integers which can be used to
encode the code point value of strings of length one and, more generally, reason about the
code point of any character in a string. We propose an approach that involves extending
a previous decision procedure with native support for this operator, obtaining a new
decision procedure which avoids splitting on character values. Using the code operator,
we can succinctly represent string operations including common string transducers,
conversion between strings and integers, lexicographic ordering on strings, and regular
expression membership constraints involving character ranges. We have implemented our
proposed decision procedure in the state-of-the-art SMT solver CVC4 as an extension of
its decision procedure for word equations by Liang et al. [19]. We have modified CVC4’s
reductions to take advantage of code. Using benchmarks generated by the concolic
execution of Python code, we show that our technique provides significant benefits
compared to doing case splitting on values.

To summarize, our contributions are as follows:
– We provide a decision procedure for a simple set of string operations containing length

and a code point conversion function code, and prove its correctness. We describe
how it can be combined with existing procedures for other string operators.

– We demonstrate how the code operator can be used in the reductions of several classes
of useful string constraints.

– We implement and evaluate our approach in CVC4, showing that it leads to significant
performance gains with respect to the state of the art.

In the following, we discuss related work. We then describe a fragment of the theory of
strings in Section 2 that includes code. In Section 3, we provide a decision procedure for
this fragment, prove its correctness, and describe how it can be integrated with existing
decision procedures. Finally, we discuss applications of reasoning about code points in
Section 4 and evaluate our implementation in Section 5.

Related Work The study of the decidability of different fragments of string constraints
has a long history. We know that solvability of word equations over unbounded strings is
decidable [21], whereas the addition of quantifiers makes the problem undecidable [23].
The boundary between decidable and undecidable fragments, however, remains unclear—
a long-standing open question is whether word equations combined with equalities over
string lengths are decidable [13]. Adding extended string operators such as replace [12]
or conversions between strings and integers [16] leads to undecidability. Weakly chaining
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ΣA n : Int for all n P N ` : Intˆ IntÑ Int ´ : IntÑ Int ě : Intˆ IntÑ Bool

ΣS l : Str for l P A˚ len : StrÑ Int code : StrÑ Int

Fig. 1. Functions in signature ΣAS. Str and Int denote strings and integers, respectively.

string constraints make up one decidable fragment. This fragment requires that the graph
of relational constraints appearing in the constraints only contains limited types of
cycles. It generalizes the straight-line fragment [20], which disallows equalities between
initialized string variables, and the acyclic fragment [5], which disallows equalities
involving multiple occurrences of a string variable and does not include transducers.

In practice, string solvers have to deal with undecidable fragments or fragments
of unknown decidability, so current solvers for strings such as CVC4 [10], Z3 [14],
Z3STR3 [11] and TRAU [3] implement efficient semi-decision procedures. In this work,
we present a decision procedure that can be combined modularly with those procedures.

2 Preliminaries

We work in the context of many-sorted first-order logic with equality and assume the
reader is familiar with the notions of signature, term, literal, (quantified) formula, and
free variable (see, e.g., [15]). We consider many-sorted signatures Σ that contain an
(infix) logical symbol « for equality—which has type σ ˆ σ for all sorts σ in Σ and
is always interpreted as the identity relation. A theory is a pair T “ pΣ, Iq where Σ
is a signature and I is a class of Σ-interpretations, the models of T . A Σ-formula ϕ is
satisfiable (resp., unsatisfiable) in T if it is satisfied by some (resp., no) interpretation
in I. Given a (set of) terms S, we write T pSq to denote the set of subterms of S. By
convention and unless otherwise stated, we use letters x, y, z to denote variables and s, t
to denote terms.

We consider a theory TAS of strings with length and code point functions, with a
signature ΣAS given in Figure 1. We fix a finite totally ordered set A of characters as
our alphabet and define TAS as a set of ΣAS-structures with universe A˚ (the set of all
words over A) which differ only on the value they assign to variables. The signature
includes the sorts Str and Int, interpreted as A˚ and Z, respectively. Figure 1 partitions
the signature ΣAS into the subsignatures ΣA and ΣS, as indicated. The first includes
the usual symbols of linear integer arithmetic, interpreted as expected. We will write
t1 ’ t2, with ’ P tą,ă,ďu, as syntactic sugar for the equivalent inequality between
t1 and t2 expressed using only ě. The subsignature ΣS includes: all the words of A˚
(including the empty word ε) as constant symbols, or string constants, each interpreted
as itself; a function symbol len : StrÑ Int, interpreted as the word length function; and
a code point function whose semantics is defined as follows.

Definition 1. Given alphabet A and its associated total order ă, let pc0, . . . , cn´1q be
the enumeration of A induced by ă (with ci ă ci`1 for all i “ 0 . . . , n´ 2). For each
character ci in the enumeration, we refer to i as its code point. The function symbol
code : StrÑ Int is interpreted in TAS as the unique code point function code such that:
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1. for all words w P A1, codepwq is the code point of the (single) character of w, and
2. for all other words w P A˚, codepwq is ´1.

The code point function can be used in practice to reason about the code point values
of Unicode strings.3 We will see in Section 4 that this operator is very useful for encoding
constraints that occur in applications. We stress, however, that the procedure presented in
this paper is agnostic with respect to the concrete alphabet A and its character ordering.

Note that we do not consider string concatenation in the signature above. This
omission is for the sake of modularity; also, procedures for word equations have been
addressed in a number of recent works [19, 4]. In practice, our procedure for string
constraints involving code can be naturally combined with existing procedures for a
signature that includes string concatenation, as we discuss in Section 3.1.

An atomic term is either a constant or a variable. A string term is either a constant
or one that contains function symbols from ΣS only. Notice that integer constants are
string terms. A string constraint is a (dis)equality between string terms. An arithmetic
constraint is an inequality or (dis)equality between linear combinations of atomic and/or
string terms with integer sort. Notice that the equality codepxq « codepyq with variables
x and y is both a string constraint and an arithmetic constraint.

3 A Decision Procedure for String to Code Point Conversion

In this section, we introduce a decision procedure for a fragment of string constraints
involving code but not containing string concatenation. In particular, we introduce a de-
cision procedure for sets of (quantifier-free) ΣAS-constraints for the signature introduced
in Figure 1. A key property of this procedure is that it is able to reason about terms of
the form codepxq without having to do case splitting on concrete values for string x.

Following Liang et al. [19], we describe this procedure as a set of derivation rules that
modify configurations of the form xA,Sy, where A is a set of arithmetic constraints, and
S is a set of string constraints. At a high level, the procedure can be understood as a co-
operation between two subsolvers, an arithmetic subsolver and a string subsolver, which
handle these two sets respectively. Our procedure assumes the following preconditions
on xA,Sy and maintains them as an invariant for all derived configurations:
1. AY S contains no terms of the form lenplq or codeplq for any string literal l.
2. For every string literal l P T pAY Sq, the set S contains x « l for some variable x.

The above restrictions come with no loss of generality since terms of the form lenplq and
codeplq can be replaced by an equivalent (constant) integer, and fresh variables can be
introduced as necessary for the second requirement.

We present the rules of the procedure in two parts, given in Figures 2 and 3. The
rules are given in guarded assignment form, where the top of the rule describes the
conditions under which the rule can be applied, and the bottom of the rule either is unsat,
or otherwise describes the resulting modifications to the components of our configuration.
A rule may have multiple, alternative conclusions separated by ‖. In the premises of
the rules, we write S |ù ϕ to denote that S entails formula ϕ in the empty theory. This
can be checked using a standard algorithm for congruence closure, where string literals

3 For technical details on Unicode see [26].
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A-Conf
A |ùLIA K

unsat
A-Prop

A |ùLIA s « t s, t P T pAY Sq

S :“ S, s « t

S-Conf
S |ù K

unsat
S-Prop

S |ù s « t s, t : Int s, t P T pAY Sq

A :“ A, s « t

L-Intro
S |ù x « l x : Str

S :“ S, lenpxq « plenplqqÓ
L-Valid

x P T pAY Sq x : Str

S :“ S, x « ε ‖ A :“ A, lenpxq ą 0

Card
S |ù lenpx1q « . . . « lenpxnq n ą 1

‖1ďiăjďn S :“ S, xi « xj ‖ A :“ A, lenpx1q ą tlog|A| pn´ 1qu

Fig. 2. Core derivation rules.

C-Intro
S |ù x « l l P A1

A :“ A, codepxq « pcodeplqqÓ
C-Collapse

S |ù x « l codepxq P T pSq
A :“ A, codepxq « pcodeplqqÓ

C-Valid
codepxq P T pSq

A :“ A, lenpxq ff 1, codepxq « ´1 ‖ A :“ A, lenpxq « 1, 0 ď codepxq ă |A|

C-Inj
codepxq, codepyq P T pSq x, y distinct

A :“ A, codepxq « ´1 ‖ A :“ A, codepxq ff codepyq ‖ S :“ S, x « y

Fig. 3. Code point derivation rules.

are treated as distinct values; thus S |ù l1 ff l2 for any S, l1 ‰ l2. Observe that, for
f P tlen, codeu, S |ù fpxq « fpyq iff S |ù x « y

An application of a rule is redundant if it has a conclusion where each component
in the derived configuration is a subset of the corresponding component in the premise
configuration. A configuration other than unsat is saturated if every possible application
of a derivation rule to it is redundant. A derivation tree is a tree where each node is
a configuration whose children, if any, are obtained by a non-redundant application
of a rule of the calculus. A derivation tree is closed if all of its leaves are unsat. We
show later that a closed derivation tree with root node xA,Sy is a proof that A Y S is
unsatisfiable in TAS. In contrast, a derivation tree with root node xA,Sy and a saturated
leaf is a witness that AY S is satisfiable in TAS.

Figure 2 presents rules adapted from previous work [19, 24] that model the inter-
action between the string and arithmetic subsolvers. First, either subsolver can report
that the current set of constraints is unsatisfiable by the rules A-Conf or S-Conf. For the
former, the entailment |ùLIA can be checked by a standard procedure for linear integer
arithmetic. The rules A-Prop and S-Prop correspond to a form of Nelson-Oppen-style
theory combination between the two subsolvers. In particular, each theory solver prop-
agates entailed equalities between terms of type Int. The next two rules ensure that
length constraints are satisfied. In particular, L-Intro ensures that the length of a term x is
equal to the length of string literals x is equated to in S. We write plenplqqÓ to denote
the constant integer corresponding to the result of evaluating the expression lenplq. The
rule L-Valid has two conclusions. It ensures that either x is the empty string or the value
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assigned to lenpxq is positive. Finally, since our alphabet is finite, the rule Card is used
to determine when a length constraint is implied due to the number of distinct terms of
a given length. In particular, if there are n distinct variables x1, . . . , xn whose length
is the same, then either xi is equal to xj for some i ‰ j, or their length must be large
enough so that they each can be assigned a unique string value. The lower bound on their
length is determined by taking the floor of the logarithm of n´ 1 base the cardinality of
the alphabet, where this expression denotes an integer constant.4

Figure 3 lists rules for reasoning about the code point function. In C-Intro, if a string
variable x is equal to a string literal of length one, we add to S an equality between
codepxq and the concrete value of the code point of l. An equality of this form is also
added via the rule C-Collapse if a string term x is equated in S to a string literal and,
in addition, codepxq occurs in S. Rule C-Valid splits on whether an instance of codepxq
from S is equal to a valid code point. The left conclusion considers the case where the
code point is ´1, which means that x must have a length different from 1. The right
conclusion considers the case where the code point is between 0 and |A|´ 1, meaning
that x is a one-character string. Finally, rule C-Inj reflects the fact that code denotes an
injective function over the domain of strings of length 1. More precisely, it captures
the fact that for any pair of string values lx and ly for x and y respectively, one of the
following (non-necessarily disjoint) cases always holds: piq lx has a length different
from 1, piiq lx has length 1 and differs from ly , and has a different code point from that
of ly , or piiiq lx and ly are the same.

We now demonstrate the procedure with a few simple examples. Recall that we
assume a fixed alphabet A and write cn to denote a character from this alphabet whose
code point is some n between 0 and the cardinality of A minus one.

Example 1. Let A0 be tlenpxq ą lenpyq, codepxq « codepyq, codepxq ě 0u and let S0
beH. We can generate the following closed derivation tree with root xA0,S0y. At each
node, we list the new constraint that is added to the configuration at that node. All the
leaf nodes are derived by A-Conf (not shown in the tree).

xA, Sy :“ xA0, S0y

codepxq « codepyq P S
A-Prop

codepxq « ´1 P A

unsat

codepxq ff codepyq P A

unsat

x « y P S

lenpxq « lenpyq P A

unsat

S-Prop
C-Inj

First, since A |ùLIA codepxq « codepyq, we apply A-Prop which adds the equality
codepxq « codepyq to S. Subsequently, since codepxq, codepyq P T pSq, we apply C-Inj
which considers three cases. The first two branches result in the arithmetic component
of our configuration A being unsatisfiable, and thus unsat may be derived by A-Conf. In
the third branch, we consider the case where x is equal to y. We have that S entails that
lenpxq « lenpyq, and hence, by S-Prop, this equality is added to A. Since lenpxq ą lenpyq
is already in A, we can derive unsat in this branch by A-Conf as well. Since there is a
closed derivation tree with root xA0,S0y, A0 Y S0 is unsatisfiable in TAS. [\

4 In the degenerate case where the cardinality of the alphabet is one, we assume this branch is
omitted from the conclusion since logarithm base one is undefined.
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Example 2. Let A0 be t97 ď codepxq ď 106u and let S0 be tx ff y, x ff z, y «
c97, z « c106u. We may obtain a derivation tree with root xA0,S0y and a saturated
configuration xA,Sy where A extends A0 with the constraints:

tcodepxq ff codepyq, codepxq ff codepzq, codepyq « 97, codepzq « 106u

The constraints codepxq ff codepyq and codepxq ff codepzq may be obtained by C-Inj,
and codepyq « 97 and codepzq « 106 may be obtained by C-Intro. Since a saturated
configuration exists in a derivation tree with root node xA0,S0y, we have that A0 Y S0
is satisfiable in TAS. As we show in Theorem 1 (below), a model for A0 Y S0 can be
obtained by constructing an arbitrary model for AY S. In particular, notice that due to
our derived constraints, it must be the case that codepxq is assigned a value in the range
r98 . . . 105s. Indeed, a model M exists for A0 Y S0, where Mpxq “ ck,Mpyq “ c97,
and Mpzq “ c106, for any k in the range r98 . . . 105s. Note that we do not explicitly case
split on the value of x. Instead, as we later describe in Definition 2, our procedure assigns
a value to x based on the value that the arithmetic subsolver gives to codepxq. [\

Example 3. Let A0 be t48 ď codepxq ă 58, lenpxq ă 1u and let S0 be H. We may
obtain the following closed derivation tree with root xA0,S0y.

xA,Sy :“ xA0, S0y

x « ε P S

codepxq « ´1 P A

unsat
A-Conf

C-Collapse
lenpxq ą 0 P A

unsat
A-Conf

L-Valid

Since x is a string term from T pAY Sq, we apply L-Valid. The left branch considers the
case where x is empty. Since S |ù x « ε, we apply C-Collapse which adds codepxq «
codepεqÓ “ ´1 to A. This makes A unsatisfiable, and we can derive unsat by A-Conf. In
the right branch, we consider the case that lenpxq ą 0, which results in a case where A
is unsatisfiable since lenpxq ă 1 P A. Thus, A0 Y S0 is unsatisfiable in TAS. [\

Example 4. Let A0 “ t0 ď codepxq ă lenpxqu and S0 “ H. We may obtain a saturated
configuration xA,Sy where A extends A0 with tlenpxq « 1, 0 ď codepxq ă |A|u. These
constraints are obtained by considering the right branch of an application of C-Valid
since codepxq P T pSq (after the trivial propagation codepxq « codepxq by A-Prop). The
only models for AY S are those where codepxq is assigned the value for 0; hence the
only models M for AY S (and hence A0 Y S0) are where Mpxq “ c0. [\

We now discuss the formal properties of our calculus, proving that it is refutation-sound,
model-sound, and terminating for any set of ΣAS-constraints, and thus yields a decision
procedure. We also show that, for any saturated configuration, it is possible to construct
a model for the input constraints based on the procedure given in the following definition.
In each step, we argue the well-formedness of this construction. In the subsequent
theorem, we show that the constructed model indeed satisfies our input constraints.

Definition 2 (Model Construction). Let xA,Sy be a saturated configuration. Construct
a model M for AY S based on the following steps.
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1. Let U be the set of terms of the form lenpxq or codepxq that occur in A. Let Z be a
model of A1, where A1 is the result of replacing in A each of its subterms t P U with
a fresh integer variable ut. Notice that Z exists, since A-Conf does not apply to our
configuration, meaning that A (and hence A1) is satisfiable in LIA.

2. Construct M by assigning values to the variables in A Y S in the following order.
Below, let pS denote the congruence closure of S.5

(a) For all integer variables x, set Mpxq “ Zpxq.
(b) For all string equivalence classes e P pS that contain a string constant l (including

the case where l “ ε), set Mpyq “ l for all variables y P e. Notice that l is
unique since S-Conf does not apply to our configuration.

(c) For all string equivalence classes e P pS, such that Zpulenpzqq “ 1 and codepzq P
T pSq for some z P e, we let Mpyq “ ck for each variable y P e, where
k “ Zpucodepzqq. Since C-Valid cannot be applied to our configuration, it must
be the case that A1 contains the constraint 0 ď ucodepzq ă |A|. Since Z satisfies
A1, the value of Zpucodepzqq is guaranteed to be a valid code point and thus ck is
indeed a character in A.

(d) For all remaining unassigned string equivalence classes e P pS, we have that
lenpzq P T pAq for all variables z P e, since L-Valid cannot be applied to our
configuration. We choose some l of length Zpulenpzqq, such that l is not already
assigned to any other string variable in M, and set Mpyq “ l for all variables
y P e. Since our configuration is saturated with respect to Card, we know that at
least one such string literal exists: if the set of string literals of length Zpulenpzqq

were each in the range of M, it would imply that there are |A|Zpulenpzqq ` 1 dis-
tinct terms whose length is Zpulenpzqq, in which case Card would require lenpzq

to be greater than the value of tlog|A| p|A|Zpulenpzqq ` 1´ 1qu “ Zpulenpzqq.
However, this is not the case since A is satisfiable in LIA.

Theorem 1. Let M “ A0 Y S0 be a set of ΣAS-constraints where A0 are arithmetic
constraints and S0 are non-arithmetic constraints. The following statements hold.
1. There is a closed derivation tree with root xA0,S0y only if M is unsatisfiable in TAS.
2. There is a derivation tree with root xA0,S0y containing a saturated configuration

only if M is satisfiable in TAS.
3. All derivation trees with root xA0,S0y are finite.

Proof. To show (1), assume there exists a model M of A0 Y S0. It is straightforward to
show that for every rule of the calculus, applying that rule to any node xA,Sy results in
a tree where at least one child xA1,S1y is such that M also satisfies A1 Y S1. Thus, by
induction on the size of the derivation tree, there exists at least one terminal node that is
not closed. Thus, if there exists a closed derivation tree with root node xA0,S0y, then it
must be the case that no model exists for A0 Y S0, so M is unsatisfiable in TAS.

To show (2), assume there exists a derivation tree with a saturated configuration
xA,Sy. Let M be the model constructed based on the procedure in Definition 2. Below,
we argue that M is a model for AY S, which is a superset of A0 Y S0 and thus satisfies

5 That is, the equivalence relation over T pSq such that s, t are in the same equivalence class if
and only if S |ù s « t.
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M. Let U and Z respectively be the set of terms and model as computed in Step 1 of
Definition 2. Below, we show that M is a model for each constraint in AY S.

– To show M satisfies each constraint in A, we show Zpxq “Mpx ¨ σq for all integer
variables x, where σ is the substitution tut ÞÑ t | ut P Uu.
‚ Consider the case x “ ulenpyq for some y, that is, x is a variable introduced in Step

1 of Definition 2 for an application of a length term. If y was assigned a value in
Step 2(b) of Definition 2, then Mpyq “ l for some l such that S |ù y « l. Since L-
Intro cannot be applied to our configuration, we have that lenpyq « plenplqqÓ P A,
and hence Zpulenpyqq “ ZplenplqÓq “Mplenpyqq. If y was assigned in Step 2(c)
or 2(d), we have that Mpyq “ l for some l whose length is Zpulenpyqq, and hence
Zpulenpyqq “Mplenpyqq.

‚ Consider the case x “ ucodepyq for some y. If y was assigned in Step 2(b) of
Definition 2, then Mpyq “ l for some l such that S |ù y « l. Since C-Collapse
cannot be applied to our configuration, we have that codepyq « pcodeplqqÓ P A
and hence Zpucodepyqq “ MpcodeplqÓq “ Mpcodepyqq. If y was assigned in
Step 2(c) or 2(d), we have that Mpyq “ l for some l whose length is Zpulenpyqq.
If it was assigned in Step 2(c), we have that l “ ck for k “ Zpucodepyqq and
hence Zpucodepyqq “Mpcodepyqq. If y was assigned in Step 2(d), we have that
codepyq P T pSq. Since y was not assigned in Step 2(c), it must be the case that
Zpulenpyqq ‰ 1. Since C-Valid cannot be applied, and since codepyq P T pSq, we
have, by its left conclusion, that lenpyq ff 1 and codepyq « ´1 are in A. Due
to the former constraint, Zpulenpyqq ‰ 1 and the length of l is not one, and thus
Mpcodepyqq “ ´1. Due to the latter constraint, Zpucodepyqq “ ´1 as well.

‚ For all other x : Int, we have that Zpxq “Mpxq by Step 2(a) of Definition 2.
In all cases above, we have shown that Zpxq “Mptq where t “ x ¨ σ. Since all free
variables of A1 are of integer type and since Z is a model for A1, we have that M
satisfies A1 ¨ σ “ A.

– To show M satisfies the equalities between terms of type Int in S, since our configura-
tion is saturated with respect to S-Prop, equalities between integer terms are a subset
of those in A, and since M satisfies A, it satisfies these equalities as well. Furthermore,
S1 does not contain disequalities between terms of type Int by construction.

– To show M satisfies the equalities between terms of type Str in S, notice that s « t P

S1 implies that s and t reside in the same equivalence class of e P pS. By construction
of M every variable in e is assigned the same value and that value is the same value
as the string literal in e if one exists. Thus Mpsq “ Mptq for all terms s, t of type
Str that reside in the same equivalence class, and thus M satisfies s « t.

– To show that M satisfies the disequalities s ff t between terms of string type in S, it
suffices to show that distinct values are assigned to variables in each distinct equiv-
alence class of pS. Moreover, by assumption of the configurations, each equivalence
class of terms of type string has at least one variable in it. Let x and y be variables
residing in two distinct equivalence classes of pS, and without loss of generality, assume
y was assigned after x in the construction of M. We show Mpxq ‰ Mpyq in the
following. If y was assigned in Step 2(d) of Definition 2, then the statement holds
since by construction, its value was chosen to be distinct from the value of string
variables in previous equivalence classes, including the one containing x. If both x
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and y were assigned in Step 2(b), the statement holds since S-Conf does not apply.
Otherwise, y must have been assigned in Step 2(c) to a string literal of length one. If
x was assigned in Step 2(b) and S |ù x « l for some string literal l not of length one,
then x and y are assigned different values trivially. Otherwise, x is assigned (either
by Step 2(b) or Step 2(c)) to a string of length one. Moreover, codepzq is a term in
S for some z such that S |ù x « z: if x was assigned in Step 2(b), since C-Intro
cannot be applied we have codepxq « codeplqÓ P S; if x was assigned in Step 2(c)
it holds by construction. Since C-Inj cannot be applied, either codepyq « ´1 P A,
codepzq ff codepyq P A, or z « y P S. The first case cannot hold since M satisfies A,
and thus Mpcodepyqq is not equal to ´1. In the second case, since M satisfies A, we
have that Mpcodepzqq ‰ Mpcodepyqq, and hence, since code is injective over the
domain of strings of length one, we have that Mpzq ‰Mpyq. Since Mpzq “Mpxq,
it then follows that Mpxq ‰ Mpyq. The third case cannot hold since z and y are
in distinct equivalence classes. Thus, variables in distinct equivalence classes are
assigned distinct values. All disequalities s ff t P S are such that s and t are in
different equivalence classes since S-Conf cannot be applied. Thus, M satisfies s ff t.

Thus, M satisfies all constraints in AY S and the part (2) of the theorem holds.
To show (3), it is enough to show that only finitely many constraints can be generated

by the rules of the calculus. Let T˚ be the (finite) set of terms that includes T pA0 Y

S0q Y tε,´1u and contains lenpxq and codepxq for all variables x P T pA0Y S0q of type
Str, and plenplqqÓ and pcodeplqqÓ for all string literals l P T pA0 Y S0q. Let A˚ be the
set containing A0, equalities between terms from T˚ of type Int, literals of the form
lenpxq ą 0, 0 ď codepxq ă |A|, lenpxq ff 1 for all variables x P T pA0 Y S0q of type
Str, and inequalities of the form lenpxq ą log|A| pn´ 1q where n is any positive integer
less than or equal to the number of terms of type Str in T pA0 Y S0q. Let S˚ be the set
containing S0 and equalities between string terms from T˚. Notice that both A˚ and S˚

are finite. By definition of the rules of our calculus, and by induction on the size of the
derivation tree, one can show that all derived configurations xA,Sy are such that AY S
is a subset of A˚ Y S˚. Since no application of a derivation rule in a tree is redundant,
each node in the derivation tree contains at least one more constraint from this set than
its parent. Thus, the depth of any tree is bounded by the cardinality of A˚ Y S˚, and the
statement holds. [\

An immediate consequence of Theorem 1 is that any strategy for applying the derivation
rules in Figures 2 and 3 is a decision procedure forΣAS-constraints. We stress that, thanks
to the constructiveness of the proof of Part 2, the procedure can also compute a satisfying
assignment for the free variables of M when it halts with a saturated configuration.

3.1 Implementation in an SMT Solver

The procedure in this section can be integrated into the DPLLpT q solving architec-
ture [22] used by modern SMT solvers such as CVC4. In the most basic version of this
architecture, given an arbitrary quantifier-free ΣAS-formula, an incremental proposi-
tional SAT solver first searches for a truth assignment for the literals of this formula
that satisfies the formula at the propositional level. If none can be found, the input is
declared unsatisfiable. Otherwise, the found assignment is given as a set of ΣAS-literals
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substr : Str ˆ Intˆ IntÑ Str to int : StrÑ Int to lower : StrÑ Str
ĺ: Str ˆ StrÑ Bool from int : IntÑ Str to upper : StrÑ Str

Fig. 4. A sample of the extended string functions.

to a theory solver that implements the calculus above. If the solver finds a saturated
configuration, then the input is declared satisfiable. Otherwise, either a conflict clause or
a lemma is asserted to the SAT solver in the form of additional TAS-valid constraints and
the process restarts with the extended set of formulas.

We have integrated the procedure in CVC4. CVC4’s linear arithmetic subsolver acts
as the arithmetic subsolver of our procedure and reports a conflict clause when the rule
A-Conf is applied. Similarly, the string subsolver reports conflict clauses when S-Conf is
applied. The rules A-Prop and S-Prop are implemented using the standard Nelson-Oppen
theory combination mechanism. Rules with multiple conclusions are implemented via
the splitting-on-demand paradigm [9], where the conclusions of the rule are sent as
a disjunctive lemma to the SAT solver. The remaining rules are implemented using
a solver whose core data structure implements congruence closure, where additional
(dis)equalities are added to this structure based on the specific rules of the calculus.

We remark that the procedure presented in this section can be naturally combined
with procedures for other kinds of string constraints. While the rules we presented had
premises of the form S |ù s « t denoting entailment in the empty theory, the procedure
can be applied in the same manner for premises S |ùTS

s « t for any extension TS of
the core theory of strings. In practice, our theory solver interleaves reasoning about code
points with reasoning about other string operators, e.g., string concatenation and regular
expressions operators, via the procedure by Liang et al. [19].

The derivation rules of the calculus are applied with consideration to combinations
with the other subsolvers of CVC4. For the rules in Figure 2, we follow the strategy
used by Liang et al., which applies L-Intro and L-Valid eagerly and Card only after a
configuration is saturated with respect to all other rules. Moreover, since Card is very
expensive, we split on equalities between string terms (x1, . . . , xn in the premise of
this rule) if some xi, xj such that neither xi « xj or xi ff xj is in our current set of
assertions. Among the rules in Figure 3, C-Valid and C-Collapse are applied eagerly, the
former when a term codepxq is registered with the string subsolver, and the latter as soon
as our congruence closure procedure puts that term in the same equivalence class as a
string literal. Rules C-Intro and C-Inj are applied lazily, only after the arithmetic subsolver
determines A is satisfiable in LIA and the string subsolver is finished computing the set
of equalities that are entailed by S.

4 Applications

In this section, we describe how a number of common string functions can be imple-
mented efficiently using reductions involving the code function. Previous work has
focused on efficient techniques for handling extended string functions, which include
operators like substring (substr) and string replace (replace), among others [24]. Here
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we consider the alphabet A to be the set of all Unicode characters and interpret code as
mapping one-character strings to the character’s Unicode code point.

A few commonly used extended functions are listed in Figure 4. In the following,
we say a string l is numeric if it is non-empty, all of its characters are in the range
"0" . . . "9", and it its has no leading zeroes, that is, it starts with "0" only if it has length
1.6 At a high level, the semantics of the operators in Figure 4 is the following. First,
substrpx, n,mq is interpreted as the maximal substring of x starting at position n with
length at most m, or the empty string if n is outside the interval r0, |x| ´ 1s or m is
negative; to intpxq is the non-negative integer represented by x in decimal notation if x
is numeric, and is ´1 otherwise; from intpnq is the result of converting the value of n to
its decimal notation if n is non-negative, and is ε otherwise; x ĺ y holds if x is equal to
y or precedes it lexicographically, that is, in the lexicographic extension of the character
orderingă introduced in Definition 1; to upperpxqmaps each lower case letter character
from the Basic Latin Unicode block (code points 97 to 122) in x to its uppercase version
and all the other characters to themselves. The inverse function to lowerpxq is similar
except that it maps upper case letters (code points 65 to 90) to their lower case version.

Note that our restriction to the Latin alphabet to upperpxq and to lower is only for
simplicity since case conversions for the entire Unicode alphabet depend on the locale
and follow complex rules. However, our definition and reduction can be extended as
needed depending on the application.

Generally speaking, current string solvers handle the additional functions above using
lazy reductions to a core language of string constraints. We say ρ is a reduction predicate
for an extended function f if ρ does not contain f and is equivalent to λx, y. fpxq « y
where x, y consist of distinct variables. All applications of f can be eliminated from
a quantifier-free formula ϕ by replacing their occurrences with fresh variables y and
conjoining ϕ with the appropriate applications of the reduction predicate. Reduction
predicates are chosen so that their dependencies are not circular (for instance, we do not
use reduction predicates for two functions that each introduce applications of the other).
In practice, reduction predicates often may contain universally quantified formulas over
(finite) integer ranges, which can be handled via a finite model finding strategy that
incrementally sets upper bounds on the lengths of strings [24]. These reductions often
generate constraints that are both large and hard to reason about. Furthermore, the
reduction of certain extended functions cannot be expressed concisely. For example, a
reduction for the to upperpsq function naively requires splitting on 26 cases to ensure
that "a" is converted to "A", "b" to "B", and so on, for each character in s. As part
of this work, we have revisited these reductions and incorporated the use of code. The
new reduction predicates are more concise and lead to significant performance gains in
practice as we demonstrate in Section 5.

Conversions to Lower/Upper Case The equality to lowerpsq « r is equivalent to:

lenprq « lenpsq ^ @0ďiălenpsq. codepriq « codepsiq ´ itep97 ď codepsiq ď 122, 32, 0q

6 Treatment of leading zeroes is slightly different in the SMT-LIB theory of strings [27]; our
implementation actually conforms to the SMT-LIB semantics. Here, we provide an alternative
semantics for simplicity since it admits a simpler reduction.
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where ri is substrpr, i, 1q, si is substrps, i, 1q and ite is the if-then-else operator. Intu-
itively, the formula above states that the result of to upperpsq is a string r of the same
length as s such that for all positions i in s, the character at that position has a code point
that is 32 less than the character at the same position in s if that character is a lowercase
character; otherwise it has the same code point. Similarly, the equality to lowerpsq « r
is equivalent to:

lenprq « lenpsq ^ @0ďiălenpsq. codepriq « codepsiq ` itep65 ď codepsiq ď 90, 32, 0q

More generally, the code operator allows us to concisely encode many common string
transducers, which have been studied in a number of recent works [20, 17, 6].

String to Integer Conversion The equality to intpsq « r is equivalent to:

p ϕis num
s ñ r « ´1q ^ pϕis num

s ñ pr « stisplenpsqq ^ ϕ
sti
s qq

where stis is an (uninterpreted) function of type IntÑ Int, ϕis num
s is:

s ff ε^ @0ďiălenpsq. iteplenpsq ą 1^ i « 0, 49, 48q ď codepsiq ď 57

si is substrps, i, 1q, and ϕsti
s is:

stisp0q « 0^ @0ďiălenpsq. stispi` 1q « 10 ˚ stispiq ` codepsiq ´ 48

In the above reduction, the formula ϕis num
s states that s is numeric. It must be non-

empty, and each of its characters must have a code point in the interval r48, 57s, which
corresponds to the characters for digits "0" through "9". The term iteplenpsq ą 1^ i «
0, 49, 48q insists that the code point of the first index of s be at least 49 to exclude the
possibility that its first character is "0" if the string has length greater than 1.

For a numeric string s, the formula ϕsti
s ensures that for each non-zero position i in s,

the value of stispiq is the result of converting the first i characters in s to the integer it
denotes. The definition of ϕsti

s first constrains that stisp0q is zero. Then, for each i ě 0,
the value of stispi` 1q is determined by shifting the previously considered characters
to the left by a digits place (10 ˚ stispiq) and adding the integer interpretation of the
current character (codepsiq ´ 48). In the end, the above formula ensures that the value
of stisplenpsqq is equivalent to the overall value of to intpsq, which is constrained to be
equal to the result r in the above reduction.

Given these definitions, it is straightforward to define the opposite reduction from
integers to strings. The equality from intpnq « r is equivalent to the following:

pn ă 0ñ r « εq ^ pn ě 0ñ pϕis num
r ^ n « stirplenprqqqq ^ ϕ

sti
r

By definition, from int maps negative integers to the empty string. For non-negative
integers, the above reduction states that the result of converting integer n to a string is a
string r that is a string representation of an integer (due to ϕis num

r ), and moreover is such
that stir for this string results in n. We additionally insist that the formula constraining
the semantics of this conversion (ϕsti

r ) holds.
In practice, these reductions are implemented by introducing a fresh uninterpreted

function of type Int ñ Int to represent stis for each string s. The functions above are
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introduced during solving as needed for strings that occur as arguments to to int or those
that represent the result of from int according to the above reduction.

Lexicographic Ordering The (Boolean) equality px ĺ yq « r is equivalent to:

px « y ñ r « Jq ^ px ff y ñ Dk. ϕdiff
k,x,y ^ r « codepxkq ă codepykqq

where xk is substrpx, k, 1q, yk is substrpy, k, 1q, and ϕdiff
k,x,y is:

xk ff yk ^ substrpx, 0, kq « substrpy, 0, kq

Above, ϕdiff
k,x,y states that x and y are different and k is the first position at which they

differ. If x is a prefix of y or vice versa, then k is the length of the shorter of the two.
The reduction above considers two cases. First, if x and y are the same string, then

x ĺ y is trivially true. If x and y are different, then they must differ at some smallest
position k. The value of r is equivalent to the comparison of codepxkq and codepykq.
This definition correctly handles cases when k refers to the end position of x or y. If x is
a strict prefix of y, k must be lenpxq, xk is the empty string and hence codepxkq must be
´1. In this case, r must be true since yk is non-empty and hence the value of codepykq
is non-negative; indeed x ĺ y is true when x is a prefix of y. Similarly, r must be false
if y is a strict prefix of x; indeed x ĺ y is false when y is a strict prefix of x.

Regular Expression Ranges In practice, the theory of strings is often extended with
memberships constraints of the form x P R, where P is an infix binary predicate whose
first argument is a string and whose second argument R is a regular expression denoting
a sublanguage LpRq of A˚. This constraint holds if x is a member of LpRq.

The code operator can be used for regular expressions that occur often in applications.
In particular, the constraint x P rangepcm, cnq, where m ď n and ci is is singleton string
constant with code point i, states that x consists of one character whose code point is
in the interval rm,ns. This is equivalent to n ď codepxq ^ codepxq ď m. Our imple-
mentation of regular expressions in CVC4 utilizes this as a rewrite rule on membership
constraints since it can eliminate the expensive computation of certain regular expression
intersections. For example, consider the following equivalent formulas:

x P rangep"A", "M"q ^ x P rangep"J", "Z"q (1)
65 ď codepxq ď 77^ 74 ď codepxq ď 90 (2)

A naive approach to regular expression solving may compute the intersection of the two
regular expressions above by explicitly splitting on characters in the ranges of (1). Our
approach instead reasons about the arithmetic constraints in (2) and infers the constraint
74 ď codepxq ď 77 without expensive case splits. If the latter constraint persists in a
saturated configuration, our procedure will then assign x a character in rangep"J", "M"q.

5 Evaluation

In this section, we evaluate whether our approach is practical and whether code can
enable more efficient implementations of common string functions.7 As outlined in

7 The implementation, the benchmarks, and the results are available at https://cvc4.
github.io/papers/ijcar2020-strings
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Benchmark Set cvc4+c cvc4 Z3

py-conbyte cvc4
sat 1344 1104 1187

unsat 8576 8547 8482
ˆ 13 282 264

py-conbyte trauc
sat 1009 929 697

unsat 1424 1407 1428
ˆ 13 110 321

py-conbyte z3seq
sat 1354 1126 1343

unsat 5864 5797 5719
ˆ 35 330 191

py-conbyte z3str
sat 711 652 692

unsat 1227 1223 1223
ˆ 3 66 26

Total
sat 4418 3811 3919

unsat 17091 16974 16852
ˆ 64 788 802
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Fig. 5. Number of solved problems per benchmark set and scatter plots comparing the different
solvers and configurations on a log-log scale. Best results are in bold. All benchmarks ran with a
timeout of 300 seconds.

Section 3.1, we have implemented our approach in CVC4, which has a state-of-the-art
subsolver for the theory of strings with length and regular expressions. We evaluated
it on 21,573 benchmarks [1] originating from the concolic execution of Python code
involving int() using Py-Conbyte [30, 8]. The benchmarks make extensive use of
to int, from int and regular expression ranges. They are divided into four sets, one for
each solver used to generate the benchmarks (CVC4, TRAU [3], Z3 [14], and Z3STR3).

We compare two configurations of CVC4 to show the impact of our approach: A
configuration (cvc4+c) that uses the reductions from Section 4 and a configuration
(cvc4) that disables all code-derivations and uses reductions without code. For regular
expression ranges, cvc4 disables the rewrite to inequalities involving code and uses
its regular expression solver to process them. The reductions in cvc4 use nested ite
terms of the form itepc “ "9", 9, itepc “ "8", 8, . . .qq, i.e., do case splitting on the 10
concrete string values that correspond to valid digits, instead of the code operator but
keep the reductions the same otherwise. As a point of reference, we also compare against
Z3 version 4.8.7, another state-of-the-art string solver. We omit a comparison against
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Z3STR3 4.8.7 and Z3-TRAU 1.0 [2] (the new version of TRAU) because our experiments
have shown that the current versions are unsound.8

We ran our experiments on a cluster with Intel Xeon E5-2637 v4 CPUs running
Ubuntu 16.04 and allocated one CPU core, 8 GB of RAM, and 300 seconds for each job.

Figure 5 summarizes the results of our experiments. The table lists the number of
satisfiable and unsatisfiable answers as well as timeouts/memouts (ˆ). Z3 ran out of
memory on one benchmark but had no other memouts. The figure shows two scatter
plots comparing the performance of cvc4+c and cvc4 and comparing cvc4+c and Z3.
Configuration cvc4 solves more unsatisfiable benchmarks than Z3 and fewer satisfiable
ones, which suggests that cvc4 is a reasonable baseline. Our new approach performs
significantly better than both cvc4 and Z3. Compared to cvc4, configuration cvc4+c
times out on an order of magnitude fewer benchmarks (64 versus 788) and also improves
performance on commonly solved benchmarks, as the scatter plot indicates. While
cvc4 performs worse than Z3 on satisfiable benchmarks, cvc4+c performs significantly
better than both on those benchmarks. The scatter plot indicates that Z3 manages to
solve a subset of the benchmarks quickly. However, when Z3 is not able to solve a
benchmark quickly, it is unlikely that it solves it within our timeout. This results in
cvc4+c having significantly fewer timeouts overall. The results indicate that our new
approach is practical and capable of improving the performance of state-of-the-art solvers
by enabling more efficient encodings.

6 Conclusion

We have presented a decision procedure for a fragment of strings that includes a string
to code point conversion function. We have shown that models can be generated for
satisfiable inputs, and that existing techniques for handling strings in SMT solvers can be
extended with this procedure. Due to its use for encoding extended string functions, our
implementation in CVC4 significantly improves on the state of the art for benchmarks
involving string-to-integer conversions and regular expression ranges.

In future work, we plan to extend CVC4 to solve new constraints of interest to user
applications. This includes instrumenting our string solver to be capable of generating
proofs based on the procedure described in this paper. Further directions such as config-
uring the solver to generate interpolants for constraints in the theory of strings combined
with linear arithmetic could also be explored. Finally, we conjecture that efficient support
for reasoning about string-to-code conversions can be leveraged for further extensions,
such as handling user-defined string transducers.
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