
Fast and Flexible Proof Checking for SMT

Computer Science, The University of Iowa, USA

Duckki Oe

Andrew Reynolds

Aaron Stump

An SMT Proof System

• Solver generates formal proofs of unsatisfiability
– Solver is not trusted
– Answers can be trusted by verifying the proofs

• Verifier checks the proofs against the axioms and
the formulas
– Trusted component
– Challenge 1: flexible to accommodate variety of solvers
– Challenge 2: fast enough for practical usage

CLSAT

• CLSAT 1.0
– SAT solver w/ proof generation
– SMT solver (QF_IDL)

– New: proof generation for SMT

• Proof Formalism
– Based on Edinburgh Logical Framework (LF)

– LF is a simple meta logic
– SMT syntax and axioms defined in LF

LF and LFSC

LF
• LF is based on type theory
• Looks like a functional programming language
• Type computation and checking

LFSC (LF with Side Conditions)
• LF lacks looping and recursion

– No complicated pattern matching and term building
• LFSC extends LF for

– Computational side conditions
– Built-in integer type and arithmetic

A Theorem of Unsatisfiability

Γ, f : Φ ├ t : false
– Γ : SMT syntax and axioms

• 61 rules (32 for CNF conversion, 17 for IDL)
• 897 lines in LFSC

– f : Φ : assumption of the input formula

– t : the proof statement from the solver
• Mostly, ≤ 200 MB for benchmarks solved ≤ 900s

• But, a few of them are greater than 1GB
• Overhead of proof production was less than 10%

Proof Encoding in LF

LF variables are used
• to name derived formulas and clauses (as assumptions)
• to introduce new variables of the logic
• to store contextual information

CNF Conversion w/ Partial Clauses

• Tseitin rules will apply elimination and renaming at the
same time (no choice of one)

• Partial Clauses represent intermediate steps

• Starts with a single partial clause (φ; ⋅)

LFSC

• Based on Edinburgh Logical Framework (LF)
• Meta-logical proof checker
• Logic declared in user signature

– Clause, Literal, True/False, Lists …

• If a proof type checks, then it is considered valid
• Optimizations

– Side Condition Compilation

– Deferred Resolution

LFSC Side Conditions

• Proofs need computational side conditions

• Example: “resolve” rule for SMT proofs

• Written in simple functional language
…

(program append ((c1 clause) (c2 clause)) clause

 (match c1 (cln c2) ((clc l c1') (clc l (append c1' c2)))))

• Side conditions executed with interpreter

• Idea: Convert to C++ and execute directly

Approach

LFSC
scccode.cpp
scccode.h

LFSC code

“lfsc sig.plf --compile-scc”

LFSC
sig.plf

“lfsc sig.plf proof.plf --run-scc”
Proof valid?

“lfsc sig.plf proof.plf” [old]
C++ Compiler

Checking Resolution
• Resolution rule: clauses C and D on

variable v
– C contains v
– D contains ¬v
– Removing occurrences of v from C yields C’
– Removing occurrences of ¬v from D yields D’
– Appending C’ to D’ yields clause E
– Duplicate literals eliminated from E

• Naively checked on every resolution step
• Idea: Calculate resolvent clause lazily

Approach

• Extended definition of clauses:
– cln: empty clause
– clc L C: clause C with literal L concatenated
– clr L C: clause C with literal L removed
– concat C1 C2: append clauses C1 and C2 in standard form

• Resolution rule becomes:
– C contains v
– D contains ¬v
– Return (concat (clr v C) (clr ¬v D))

• Resolution deferred until final step
– Calculate extended clause
– Convert extended clause to standard clause

Conversion to Standard Clause

• Literals to remove stored in σ
• Literals marked for deletion eliminated
• Duplicate literals eliminated

• Extended clause G, standard clause C, set of
literals σ.

...

Results

Solver Score Unknown Timeout

clsat (w/o proof) 542/622 50 30

clsat+lfsc (optimized) 538/622 51 33

clsat+lfsc (unoptimized) 485/622 58 79

• Benchmarks QF_IDL difficulty 0-3
• Timeout of 1800s
• Public job on SMT EXEC

Results

Solver Score Time1 Time2

clsat (w/o proof) 542/622 20168.7s 31843.6s

clsat+lfsc (optimized) 538/622 23741.4s 41420.8s

clsat+lfsc (unoptimized) 485/622 52373.8s n/a

• Time1: Total time to solve 485 benchmarks solved by all
three configurations

• Time2: Total time to solve 538 benchmarks solved by first
two configurations

Results

0

1

10

100

1000

10000

0 1 10 100 1000 10000

clsat+lfsc

cl
sa

t

Conclusion

• Provides fast and flexible proof checking
• Proof production overhead is less than 10%
• Lowest reported proof checking time
• Proof checking overhead converging to 2x

• 30.1% on average

