Fast and Flexible Proof Checking for SMT

Duckki Oe
Andrew Reynolds
Aaron Stump

Computer Science, The University of lowa, USA

An SMT Proof System

* Solver generates formal proofs of unsatisfiability
— Solver is not trusted
— Answers can be trusted by verifying the proofs

* Verifier checks the proofs against the axioms and
the formulas
— Trusted component
— Challenge 1: flexible to accommodate variety of solvers
— Challenge 2: fast enough for practical usage

CLSAT

* CLSAT 1.0
— SAT solver w/ proof generation
— SMT solver (QF _IDL)
— New: proof generation for SMT

* Proof Formalism
— Based on Edinburgh Logical Framework (LF)

— LF Is a simple meta logic
— SMT syntax and axioms defined in LF

LF and LFSC

LF

* LF is based on type theory

* Looks like a functional programming language
* Type computation and checking

LFSC (LF with Side Conditions)
* LF lacks looping and recursion
— No complicated pattern matching and term building

e |FSC extends LF for

— Computational side conditions
— Bullt-in integer type and arithmetic

A Theorem of Unsatisfiability

r,f:® |t:false

— I : SMT syntax and axioms
* 61 rules (32 for CNF conversion, 17 for IDL)
e 897 lines in LFSC

—f: @ : assumption of the input formula

—t : the proof statement from the solver
* Mostly, < 200 MB for benchmarks solved < 900s

e But, a few of them are greater than 1GB
e Overhead of proof production was less than 10%

Proof Encoding In LF

M IS PRI SRR P
P, Py
dq A Dy false

fﬁ“x a
false

= (and_e Py (Afj:dq. (Afa:do. Py)))

LF variables are used
* to name derived formulas and clauses (as assumptions)

* to introduce new variables of the logic
* to store contextual information

CNF Conversion w/ Partial Clauses

Tseitin rules will apply elimination and renaming at the
same time (no choice of one)

Partial Clauses represent intermediate steps
061, ,0mli,-,)] = V...V VhV...Viy

Starts with a single partial clause (@;)

(011 02,0;C), T (¢1,9:C),(91,9;C),N
(¢1V92,0:C). T (01,92,0;C),M

1| A

(9,0;C).N (0;v,C),N (v— o)

|

(C),Nn = C,n

LFSC

Based on Edinburgh Logical Framework (LF)
Meta-logical proof checker

Logic declared in user signature
— Clause, Literal, True/False, Lists ...

If a proof type checks, then it is considered valid
Optimizations

— Side Condition Compilation

— Deferred Resolution

LFSC Side Conditions

* Proofs need computational side conditions
* Example: “resolve” rule for SMT proofs
* Written in simple functional language

(program append ((c1 clause) (c2 clause)) clause
(match c1 (cIn c2) ((clc |1 c1') (clc | (append cl1' c2)))))

* Side conditions executed with interpreter
* |dea: Convert to C++ and execute directly

Approach

“Ifsc sig.plf --compile-scc”

LFSC

‘ ________________ |

C++ Compiler

“Ifsc sig.plf proof.plf” [old]

v “Ifsc sig.plf proof.plf --run-scc”

LFSC

Proof valid?

A

sig.plf

Checking Resolution

e Resolution rule: clauses C and D on
variable v

— C contains v

— D contains ~v

— Removing occurrences of v from C yields C’
— Removing occurrences of =v from D yields D’
— Appending C’ to D’ yields clause E

— Duplicate literals eliminated from E

* Naively checked on every resolution step
* |dea: Calculate resolvent clause lazily

Approach

Extended definition of clauses:
— cln: empty clause

— clc L C: clause C with literal L concatenated

— clr L C: clause C with literal L removed

— concat C, C,: append clauses C, and C, in standard form
Resolution rule becomes:

— C contains v

— D contains —v

— Return (concat (clr v C) (clr =v D))

Resolution deferred until final step
— Calculate extended clause
— Convert extended clause to standard clause

Conversion to Standard Clause
[G]7 = C

e Extended clause G, standard clause C, set of
literals o.

[(cle L C)]° if(L € o) ([C]°) else (clc L [C]° T)
[(clr L C)]° 18]
e Literals to remove stored in o
e Literals marked for deletion eliminated
* Duplicate literals eliminated

Results

* Benchmarks QF _IDL difficulty 0-3
* Timeout of 1800s
* Public job on SMT EXEC

Solver Score | Unknown | Timeout
clsat (w/o proof) 542/622 50 30
clsat+lfsc (optimized) 538/622 51 33
clsat+lfsc (unoptimized) 485/622 58 79

Results

Solver Score Timel Time2
clsat (w/o proof) 542/622 20168.7s 31843.6s
clsat+lfsc (optimized) 538/622 23741.4s 41420.8s
clsat+lfsc (unoptimized) 485/622 52373.8s n/a

* Timel: Total time to solve 485 benchmarks solved by all
three configurations

* Time2: Total time to solve 538 benchmarks solved by first
two configurations

Results

10000

1000

100

clsat

10

0 1 10 100 1000 10000

clsat+lIfsc

Conclusion

Provides fast and flexible proof checking

Proof production overhead is less than 10%

_owest reported proof checking time

Proof checking overhead converging to 2x
* 30.1% on average

