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We give an overview of recent techniques for implementing syntax-guided synthesis (SyGuS) algo-
rithms in the core of Satisfiability Modulo Theories (SMT) solvers. We define several classes of
synthesis conjectures and corresponding techniques that can be used when dealing with each class of
conjecture.

1 Introduction

A synthesis conjecture asks whether there exists a structure for which some property holds universally.
Traditionally, such conjectures are very challenging for automated reasoners. Syntax-guided synthesis
(or SyGuS) is a recently introduced paradigm [1] where a user may provide syntactic hints to guide an
automated reasoner in its search for solutions to synthesis conjectures. A number of recent solvers based
on this paradigm have been successfully used in applications, including correct-by-construction program
snippets [33] and for implementation of distributed protocols [36].

Satisfiability Modulo Theories (SMT) solvers have historically been used as subroutines for auto-
mated synthesis tasks [18, 35, 4, 37]. More recently, we have advocated in Reynolds et al. [29] for SMT
solvers to play a more active role in solving synthesis conjectures, including being used as stand-alone
tools. In particular, we have recently instrumented the SMT solver CVC4 [6] with new capabilities which
make it efficient for synthesis conjectures, and entered it in the past several editions of the syntax-guided
synthesis competition [2, 3] where it placed first in a number of categories. This work has shown that
SMT solvers can be powerful tools for handling synthesis conjectures using two orthogonal techniques:

1. Synthesis via Quantifier Instantiation The first leverages the support in SMT solvers for first-
order quantifier instantiation, which has been used successfully in a number of approaches for
automated theorem proving [16, 24, 30]. Quantifier-instantiation techniques developed for SMT
can be extended and used as a complete procedure for certain classes of synthesis conjectures.

2. Synthesis via Syntax-Guided Enumeration The second technique follows the syntax-guided
synthesis paradigm [1]. More specifically, it simulates an enumerative search strategy in the core
of the SMT solver by leveraging its native support for algebraic datatypes.

This paper gives an overview of the way these synthesis techniques can be embedded in the core
of SMT solvers based on the DPLL(T) framework [25]. We focus on recent advances for achieving
efficiency while giving consideration to the quality of solutions generated using both these techniques.

Overview In Section 2, we give preliminary definitions and introduce several classes of synthesis con-
jectures. In Section 3, we introduce the concept of refutation-based synthesis and summarize the scenar-
ios in which it can be applied to synthesis conjectures. In Section 4, we describe a synthesis technique
based on quantifier instantiation, its properties, and associated challenges. In Section 5, we describe cur-
rent work on developing syntax-guided synthesis techniques in the core of an SMT solver. In Section 6,
we conclude with several directions for future work.
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2 Preliminaries

We consider synthesis in the context of a background theory T in many-sorted logic. Formally, a theory is
a pair (Σ,I) where Σ is a signature and I is a class of Σ-interpretations, the intended models for T . A for-
mula is T -satisfiable (respectively, T -valid, T -unsatisfiable) if it is satisfied by some (respectively, every,
no) interpretation in I. A synthesis conjecture is a formula of the form ∃~f ∀~xP[~f ,~x] with ~f = ( f1, . . . , fn)
and ~x = (x1, . . . ,xk), where each fi in ~f has type of the form τ1× . . .× τni → τ , where τ1, . . . ,τni ,τ are
(first-order) sorts in Σ and P is a first-order Σ-formula, which means that in P the second-order variables
~f are fully applied to arguments. Here, we write P[~f ,~x] to denote that the free variables of formula P are
a subset of those in tuples ~f and~x, and use this convention throughout the paper. A solution to the syn-
thesis conjecture is a substitution of the form { f1 7→ λ~y1 t1, . . . , fn 7→ λ~yn tn} where~y1, . . . ,~yn are bound
variables and t1, . . . , tn are Σ-terms with no second-order variables1 such that ∀~xP[(λ~y1 t1, . . . ,λ~yn tn),~x],
after β -reduction, is T -valid in T . Note that we restrict our consideration to solutions were none of the
fi need to be defined recursively.

Optionally, we may be interested in synthesis conjectures in the presence of syntactic restrictions.
We specify syntactic restrictions by a grammar R = (s0,S,R) where s0 is an initial symbol, S is a set of
symbols with s0 ∈ S, and R is a set of rules of the form s→ t, where s ∈ S and t is a term built from
the symbols in the signature of theory T , free variables, and symbols from S. The rules define a rewrite
relation over such terms, also denoted by→, as expected. We say a term t is generated by R if s0→∗ t
where→∗ is the reflexive-transitive closure of→ and t does not contain symbols from S. For example, the
terms x, (x+x) and ((1+x)+1) are all generated by the grammar R = (I,{I},{I→ x, I→ 1, I→ (I+ I)}).
We will write a grammar like this in BNF-style as:

I → x | 1 | (I+ I)

We say that a solution λ~xt meets the syntactic restrictions of R if t is generated by it.

2.1 Classes of Synthesis Conjectures

We describe SMT approaches for synthesis specialized to particular classes of conjectures. We introduce
the following terminology for defining those classes with respect to a given Σ-theory T .

Definition 1 (Input-Output Example Conjectures). An input-output example synthesis conjecture is a
formula of the form:

∃~f ∀~x(
n∧

k=0

~x≈~ik⇒ ~f (~x)≈~ok)

where for each k = 1, . . . ,n,~ik and~ok are tuples of constants from Σ.

Example 1. If T is the theory of integer arithmetic with the usual signature, the formula:

∃ f ∀x(x≈ 1⇒ f (x)≈ 2)∧ (x≈ 2⇒ f (x)≈ 3)∧ (x≈ 7⇒ f (x)≈ 8)

is an input-output example conjecture.

1In particular, it contains no variables from ~f .
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Figure 1: Refutation-based techniques used by SMT solvers for solving classes of synthesis conjectures.

Definition 2 (Single invocation Conjectures). A single invocation conjecture is a formula of the form:

∃~f ∀~xP[~f (~x),~x]

where P[~f (~x),~x] is an instance of a formula P[~y,~x] that does not contain any second-order variables. In
other words, single invocation conjectures are those where all functions in ~f are applied to the same
argument tuple~x.

Notice that input-output example conjectures are a subset of single invocation conjectures.

Example 2. The formula:

∃ f ∀xy( f (x,y)≥ x∧ f (x,y)≥ y)

stating that f returns a value greater than its arguments is a single invocation synthesis conjecture.

All other synthesis conjectures that do not meet the criteria of the above definition we refer to as
non-single invocation conjectures.

Example 3. The formula:

∃ f ∀xy( f (x,y)≈ f (y,x)) (1)

stating that f is a commutative function is a non-single invocation synthesis conjecture.

3 Refutation-Based Synthesis

We use a refutation-based approach for synthesis in SMT solvers [31] that takes as input the negation of
a synthesis conjecture ¬∃~f ∀~xP[~f ,~x], which is equivalent to ∀~f ∃~x¬P[~f ,~x]. In this approach, a solution
for ~f can be extracted from a proof of unsatisfiability2, whereas a satisfiable response from the solver
indicates that the synthesis conjecture has no solutions. This paper will focus solely on the former case,
that is, we consider only synthesis conjectures that have solutions.

Figure 1 summarizes the refutation-based techniques we use in DPLL(T)-based SMT solvers for
handling various classes of synthesis conjectures, both with and without syntactic restrictions. We give
details on variants of counterexample-guided quantifier instantiation (CEGQI) and syntax-guided enu-
merative search in the remainder of the paper. As indicated in the figure, counterexample-guided quan-
tifier instantiation (Section 4) is applicable to single invocation conjectures only. It also trivially applies
to input-output examples without syntactic restrictions, which we describe in Section 4.2. It typically
is used only when no syntactic restrictions are associated with the conjecture, although Section 4.3 de-
scribes a technique for reconstructing solutions from counterexample-guided instantiation that satisfy

2We will show examples of how solutions are extracted later in the paper.
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syntactic restrictions. For other classes of conjectures, we use syntax-guided enumerative search (Sec-
tion 5). In the case where a synthesis conjecture is not single invocation but has no syntactic restrictions,
we use a set of default restrictions, that is, those that allow all constructable Σ-terms as solutions. For
input-output examples, we may use a technique for breaking symmetries in the search space based on
evaluating input-output examples which we describe in Section 5.2.

4 Synthesis via Counterexample-Guided Quantifier Instantiation

In previous work [29], we developed an efficient technique for single invocation synthesis conjectures
without syntactic restrictions. In this section, we give a brief review of this technique and mention
current challenges associated with this approach. Unless otherwise stated, in all examples we will use
linear integer arithmetic as the background theory T with sort Int for the set of all integers. We will write
t1 > t2 > t3 as an abbreviation for t1 > t2∧ t2 > t3.

Example 4. Consider the synthesis conjecture:

∃ f ∀xy(x > y+1⇒ x > f (x,y)> y)∧ (y > x+1⇒ y > f (x,y)> x) (2)

where f is of type Int× Int→ Int and all other variables are of type Int. This conjecture is single
invocation and states that f is a function that, under certain conditions on the inputs x and y, returns a
value strictly between those inputs. As noted by Reynolds et al. [29], the second-order formula above is
equivalent to the first-order formula:

∀xy∃z(x > y+1⇒ x > z > y)∧ (y > x+1⇒ y > z > x) (3)

where z is of type Int. This formula states that for every two values x and y satisfying certain restrictions,
there exists a “return” value z that is strictly between those values.

In contrast to formula (2), formula (3) can be processed with SMT techniques for first-order quan-
tified linear arithmetic [8, 9, 12, 13, 30]. In particular, since these techniques are refutation-based, we
consider the negation of (3):

∃xy∀z¬((x > y+1⇒ x > z > y)∧ (y > x+1⇒ y > z > x)) (4)

Using quantifier instantiation, we can show that the instances of the innermost quantified formula:

¬((x > y+1⇒ x > x+1 > y)∧ (y > x+1⇒ y > x+1 > x))∧
¬((x > y+1⇒ x > y+1 > y)∧ (y > x+1⇒ y > y+1 > x))

which simplify to x > y+1 and y > x+1 respectively, are together T -unsatisfiable. As described in [29],
a solution for f in (2) can be extracted from the instantiations required for showing (4) T -unsatisfiable.
In particular, we construct a conditional function whose return values are the terms we considered as
instances of the negated first-order conjecture. In this case, from the above instances of (4) we construct
the function

λxy ite((x > y+1⇒ x > x+1 > y)∧ (y > x+1⇒ y > x+1 > x), x+1, y+1)

which states that when the conjecture holds for x+1, return x+1, otherwise return y+1. After simpli-
fication, this gives the solution f = λxy ite(x ≤ y+ 1, x+ 1, y+ 1), which indeed is a solution for our
original conjecture in (2).
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The key technical challenge in the previous example was to determine a T -unsatisfiable set of in-
stances of (4). We use a technique called counterexample-guided quantifier instantiation (CEGQI) for
determining these instances. Variants of CEGQI have been used in a number of recent works [23, 19,
9, 12, 14, 30]. A detailed description of the technique can be found in [30]; we summarize the most
important details in the following.

For a negated single invocation synthesis conjecture ¬∃~f ∀~xP[~f (~x),~x], our goal is to find a set Γ of
instances of the innermost body of the equivalent first-order formula ∃~x∀~z¬P[~z,~x] that are collectively
T -unsatisfiable. We incrementally construct the set Γ = {¬P[~t1,~x],¬P[~t2,~x], . . .} where each~ti is chosen
by a selection function.

Definition 3 (Selection Function). A selection function for ∀~z¬P[~z,~x] takes as input:

1. a Σ-interpretation I ,

2. a tuple of fresh variables~k with the same length and type as~z, and

3. a set of formulas Γ = {¬P[~t1,~x], . . . ,¬P[~tn,~x],P[~k,~x]} where I |= Γ.

It returns a tuple of terms~t of the same type as~k whose free variables are a subset of~k.

We use a selection function for finding the next instance ¬P[~t,~x] of ¬P[~z,~x] to add to Γ. Typically,
the terms~t are chosen based on the model I for Γ. In particular, a model-based selection function is one
that choses~t based on the value of~k in I . With sufficient conditions on the selection function used, one
may develop sound and complete instantiation procedures for the satisfiability of ∃∀-formulas in certain
theories, which hence can be used as sound and complete procedures for single invocation synthesis
conjectures without syntactic restrictions.

Selection functions are specific to the background theory T and are often inspired by quantifier
elimination procedures. Consider the case of a formula ∀z¬P[z,~x] with a single quantified variable
(corresponding to an original synthesis conjecture involving a single function). A selection function will
chose instantiations for z based on models I that satisfy P[k,~x]. For linear real arithmetic, a selection
function for this formula may choose to return a tuple of terms corresponding to the maximal lower
bound (respectively minimal upper bound) for k in I , where virtual terms such as ∞ and δ may be
necessary. This is analogous to the quantifier elimination procedure by Loos and Weispfenning [22]. We
may also add the midpoint of the maximal lower and minimal upper bounds for k, analogous to Ferrante
and Rackoff’s method [15]. It is also possible to devise selection functions for linear integer arithmetic
that take into account implied divisibility constraints for k, similar to Cooper’s method [11].

We remark that there is a correspondence between three classes of procedures:

1. quantifier elimination procedures,

2. instantiation-based procedures for ∃∀ formulas, and

3. synthesis procedures for single invocation conjectures without syntactic restrictions.

In particular, devising a sound and complete instantiation procedure for ∃∀ formulas (Point 2) is suf-
ficient both for quantifier elimination (Point 1) and for devising a sound and complete procedure for
single invocation conjectures without syntactic restrictions (Point 3) 3. Furthermore, a complete syn-
thesis procedure for single invocation conjectures (Point 3) is trivially sufficient for devising a complete
instantiation procedure (Point 2). Finally, many quantifier elimination techniques (Point 1), for instance
based on virtual term substitution [22], can be rephrased as instantiation procedures (Point 2), although
this direction of the correspondence does not necessarily hold in general. A number of previous works,
e.g. [20, 34], are based on the correspondence between quantifier elimination and synthesis.

3For details, see [30].
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4.1 Inferring When a Conjecture is Single Invocation

It is often the case that a conjecture is not single invocation but is equivalent to one that is. The latter can
often be generated automatically from the former by a normalization process that includes normalizing
the arguments of invocations across conjunctions, and using quantifier elimination to eliminate variables
for which the function to synthesize is not applied.

Example 5. The (non-single invocation) synthesis conjecture ∃ f f (0)≈ 1∧ f (1)≈ 5 is equivalent to the
single invocation conjecture ∃ f ∀x(x≈ 0⇒ f (x)≈ 1)∧ (x≈ 1⇒ f (x)≈ 5).

Example 6. Consider the conjecture:

∃ f ∀xyz(x≥ y∧ x≈ z)∨ (y≥ x∧ y≈ z))⇒ f (x,y)≈ z

where f is of type Int× Int→ Int and all other variables have type Int. Although f is only invoked
once, this conjecture does not fit the single invocation pattern due to the additional quantification on
z. However, quantification on z may be eliminated based on the following steps. First, replace the
occurrence of f (x,y) with a fresh variable w, and negate the conjecture to obtain:

(∀w ∃xy)∃z ¬((x≥ y∧ x≈ z)∨ (y≥ x∧ y≈ z))⇒ w≈ z) .

As this is a formula in linear arithmetic, we may use a quantifier elimination procedure to obtain an
equivalent formula involving only w, x, and y such as:

∀w ∃xy¬((x≥ y⇒ w≈ x)∧ (y≥ x⇒ w≈ y)) .

From that, we can generate the following single invocation conjecture, which is provably equivalent to
the original one:

∃ f ∀xy(x≥ y⇒ f (x,y)≈ x)∧ (y≥ x⇒ f (x,y)≈ y) .

4.2 Counterexample-Guided Quantifier Instantiation for I/O Examples

While counterexample-guided quantifier instantiation is both highly efficient and complete for single
invocation synthesis conjectures, it has the disadvantage of producing solutions that are suboptimal in
terms of term size, especially in the case of partial specifications.

To see that, consider that based on Definition 1, all input-output example synthesis conjectures are
also single invocation conjectures; thus, the techniques above are applicable, However, as demonstrated
in the following example, synthesis by counterexample-guided quantifier instantiation produces for this
class of conjectures sub-optimal solutions that, in a sense, overfit the specification.

Example 7. Consider the negated input-output example conjecture:

¬∃ f ∀x(x≈ 1⇒ f (x)≈ 2)∧ (x≈ 2⇒ f (x)≈ 3)∧ (x≈ 7⇒ f (x)≈ 8) . (5)

This formula is equivalent to the first-order formula:

∃x∀z¬((x≈ 1⇒ z≈ 2)∧ (x≈ 2⇒ z≈ 3)∧ (x≈ 7⇒ z≈ 8))



A. Reynolds & C. Tinelli 7

which can be shown T -unsatisfiable with the following three instances:

¬((x≈ 1⇒ 2≈ 2)∧ (x≈ 2⇒ 2≈ 3)∧ (x≈ 7⇒ 2≈ 8)),
¬((x≈ 1⇒ 3≈ 2)∧ (x≈ 2⇒ 3≈ 3)∧ (x≈ 7⇒ 3≈ 8)),
¬((x≈ 1⇒ 8≈ 2)∧ (x≈ 2⇒ 8≈ 3)∧ (x≈ 7⇒ 8≈ 8))

which simplify to x≈ 2∨ x≈ 7, x≈ 1∨ x≈ 7 and x≈ 1∨ x≈ 2, respectively. Hence:

λx ite(
(x≈ 1⇒ 2≈ 2)∧
(x≈ 2⇒ 2≈ 3)∧
(x≈ 7⇒ 2≈ 8)

, 2, ite(
(x≈ 1⇒ 3≈ 2)∧
(x≈ 2⇒ 3≈ 3)∧
(x≈ 7⇒ 3≈ 8)

, 3, 8))

which simplifies to λx ite(x ≈ 1, 2, ite(x ≈ 2, 3, 8)) is a solution for f in (16). In other words, counter-
example-guided quantifier instantiation produces the trivial solution (consisting of an input-output table)
for the given input-output example conjecture although shorter solutions, such as λxx+1, exist.

From this example, one can see that a more compelling use case of input-output example conjectures
is when syntactic restrictions are imposed on the conjecture, which may force the synthesis procedure to
produce more compact solutions. Indeed, the programming-by-examples paradigm [17] assumes such
restrictions are provided so that intended solutions are generated by the underlying synthesis algorithm.
There, the additional goal is also to capture function intended by the user by generalizing from a few
input-output examples.

4.3 Counterexample-Guided Quantifier Instantiation with Syntactic Restrictions

To find solutions for single invocation synthesis conjectures in the presence of syntactic restrictions, a
straightforward if incomplete technique is to first solve for the conjecture as before, ignoring the restric-
tions, and then check whether the generated solution satisfies the syntactic restrictions. If it does not,
then we may try to reconstruct those portions of the solution that break the restrictions. We demonstrate
this process in the following example.
Example 8. Consider again the synthesis conjecture from Example 4 but now assume we are additionally
given syntactic restrictions expressed by this grammar with initial symbol I:

I → 0 | 1 | x | y | I+ I | ite(B, I, I)
B → I> I | I≈ I | ¬(B)

We may first ignore syntactic restrictions and run counterexample-guided quantifier instantiation on the
conjecture, obtaining the solution f = λxy ite(x ≤ y+ 1,x+ 1,y+ 1) as before. This solution does not
meet the syntactic restrictions above since the subterm x≤ y+1 cannot be generated from B. However,
the term ¬(x > y + 1), which is generated from B, is equivalent to x ≤ y + 1 in T . It follows that
f = λxy ite(¬(x > y + 1),x + 1,y + 1) is also a solution for (2), which moreover satisfies the given
syntactic restrictions.

We refer to this technique as counterexample-guided quantifier instantiation with solution recon-
struction.4 Due to its heuristic nature, a synthesis procedure based on syntax-guided enumeration often
has a higher success rate than one based on this approach. Thus, for single invocation properties with
syntactic restrictions, we may use a portfolio approach that first tries counterexample-guided instanti-
ation but aborts if solution reconstruction does not quickly succeed, and then resorts to syntax-guided
enumeration, which we describe in detail in Section 5.

4For more details on this technique, see Section 5.2 of [29].
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4.4 Synthesis via Quantifier Instantiation for Other Theories

While instantiation-based procedures for quantified linear arithmetic are now fairly mature [9, 12, 30],
procedures for quantified constraints in other theories are still undergoing rapid development. Notably,
current methods for quantified bit-vectors construct streams of instantiations based on candidate mod-
els [38], and use aggressive rewriting techniques to increase the likelihood that the problem can be solved
during preprocessing. The limitation of current procedures is that they are often unable to construct use-
ful symbolic instantiations required for finding concise proofs of unsatisfiability. To address this issue,
a recent approach by Preiner et al. [26] uses syntax-guided synthesis to find relevant instantiations for
quantified bit-vectors. An independent approach by Rabe et al. [27] uses new techniques to construct
symbolic Skolem functions for quantified Boolean formulas.

Furthermore, a number of SMT solvers have been extended with theories outside the standard canon
of traditional theories, such as unbounded strings and regular expressions [21], finite sets [5], and float-
ing point arithmetic [10]. Devising counterexample-guided instantiation procedures for each of these
theories remains an open challenge.

5 Synthesis via Syntax-Guided Enumeration

For some cases, counterexample-guided quantifier instantiation is either not applicable to the class of
synthesis conjecture under consideration, or suboptimal because of user-provided syntactic restrictions.
In these cases, we use enumerative syntax-guided techniques popularized by a number of recent synthesis
tools, notably the enumerative solver by Udupa et al. [36, 4]. At a high level, these techniques consider
a stream of candidate solutions sorted increasingly with respect to some total ordering, typically some
linearization of term size. In this section, we focus on how these techniques can be performing using
existing components of a DPLL(T)-based SMT solver. We will use the following running example.

Example 9. Consider the negated synthesis conjecture:

¬∃ f ∀xy( f (x,y)≥ x∧ f (x,y)≈ f (y,x)) (6)

with syntactic restrictions on f provided by the following grammar with initial symbol I:

I → 0 | x | y | I+1 | ite(B, I, I)
B → I≤ I | I≥ I | I≈ I | ¬(B)

Since SMT solvers do not natively have a notion of grammars, we rephrase the syntactic restrictions as a
(set of) algebraic datatypes, for which a number of SMT solvers have dedicated decision procedures [7,
28]. Hence we construct the following set of (mutually recursive) algebraic datatypes:

I = 0 | x | y | plus(I, I1) | if(B, I, I)
I1 = 1
B = leq(I, I) | eq(I, I) | not(B)

Here, the right hand side of each datatype lists the set of possible constructors for the datatype, where
each constructor symbol corresponds to a symbol in the theory of arithmetic. Notice that this construction
involved flattening, so that each construct consists of exactly one symbol applied to a set of arguments.
Thus, the rule I→ I+ 1 required the auxiliary datatype I1 with a single constructor 1. The construction
also involved minimization, and hence the rule B→ I≥ I was discarded since it is redundant with respect
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to B→ I ≤ I. For a datatype constant c, we call analog of c the term it corresponds to in the theory it
encodes. For example, the analog of plus(x,1) is the arithmetic term x+1.

As described by Reynolds et al. [29], by using the datatypes I, I1,B, we can construct a first-order
version of the formula (6) that encodes the syntactic restrictions on solutions for f . To do that, for
τ in (I, I1,B), we first introduce an operator evalτ or type τ × Int× Int→ τ ′ where τ ′ is respectively in
(Int, Int,Bool). Informally, evalτ is interpreted as a function that takes a datatype value d, an integer value
a and an integer value b, and evaluates the analog of d under the assignment {x 7→ a,y 7→ b}. For example,
evalI(x,2,3) = 2; evalI(y,2,3) = 3; evalI(plus(x,1),2,3) = evalI(x,2,3) + evalI1(1,2,3) = 2+ 1 = 3;
evalI(if(leq(x,y),1,0),2,3)= ite(evalB(leq(x,y),2,3),evalI(1,2,3),evalI(0,2,3))= 1. Concretely, these
semantics can be enforced in the SMT solver by implementing additional inference rules for unfolding
and eliminating occurrences of the three evalτ recursively over the datatypes I, I1 and B.

Using these operators, we can construct a first-order formula corresponding to (6):

¬∃d f ∀xy(evalI(d f ,x,y)≥ x∧ evalI(d f ,x,y)≈ evalI(d f ,y,x)) (7)

where, however, d f is a first-order variable of datatype sort I (corresponding to the second-order variable
f of type Int× Int→ Int). This formula is equivalent to:

∀d f ∃xy¬(evalI(d f ,x,y)≥ x∧ evalI(d f ,x,y)≈ evalI(d f ,y,x)) (8)

which can be shown T -unsatisfiable by a single instantiation that maps d f to if(leq(y,x),x,y). It is
possible to prove that then λxy ite(y≤ x,x,y) is a solution for f in (6).

Like the previous section, the key technical challenge in the above technique is determining the
datatype term if(leq(y,x),x,y) used to instantiate the universal quantifier in (8). At a high level, this is
done brute-force, by considering a stream of candidate terms based on some ordering.5 Such candidates
can be generated by an extension of the decision procedure for quantifier-free equational constraints over
algebraic datatypes which is implementend in some SMT solvers [7, 28]. Before giving more detail on
the candidate generation procedure, we must introduce some more notation.

If d is a term of some datatype type D and C is a constructor of D, we write isC(d) to denote a
predicate that is satisfied exactly when d is interpreted as a datatype value whose top symbol is C.
These predicates are sometimes referred to as discriminators. We write selτ,n(d) to denote the term
that is interpreted as the nth child of d that has type τ if one exists, or is freely interpreted otherwise. In
Example 9, if dI = plus(x,1), then selI,1(d)I = x and selI1,1(d)

I = 1, whereas if dI = if(leq(x,y),y,x),
then selB,1(d)I = leq(x,y), selI,2(d)I = selI,1(selB,2(d))I = x and selI,1(d)I = selI,2(selB,1(d))I = y.
The functions selτ,n are often referred to as selectors, where here we allow that selector symbols may
access the subfields of multiple constructors6.

Now, consider again the algebraic datatypes I, I1,B from Example 9, and let d be a fresh variable of
type I. A DPLL(T)-based SMT solver may be configured to enumerate a stream of values of datatype
I by finding models I for a evolving set of clauses Γd , initially empty. On each iteration, assuming
Γd is satisfied by some interpretation I , we consider the value of dI as an instantiation for d f in (8).
The value of dI either corresponds to a solution for f in (6), in which case the resulting instantiation
simplifies to false, or it does not, in which case the resulting instantiation simplifies to true. In the latter
case, we ensure all subsequent models J for d are such that dJ 6= dI . To do so, we add a clause of the
form ¬isC1(t1)∨ . . .∨¬isCn(tn) where each ti is a (possibly empty) chain of selectors applied to d.

5This ordering is determined, for instance, by counting the number of non-nullary constructors in the terms.
6In most presentation of algebraic datatypes [7, 28], selectors are associated with one constructor only. Decision procedures

for datatypes can be easily modified to support our version of selectors and discriminators.
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For example, if we find that the instantiation of (8) that maps d f to dI = plus(x,1) is not a solution,
then we add the clause:

¬isplus(d)∨¬isx(selI,1(d))∨¬is1(selI1,2(d)) (9)

to Γd . This clause records the fact that we want subsequent models J of Γd to be such that dJ 6=
plus(x,1), since at least one of the disjuncts in the above formula must hold.

5.1 Symmetry Breaking Based on Theory-Specific Simplification

The key optimization for making enumerative syntax-guided search scalable in practice is to avoid con-
sidering multiple solutions that are identifiable based on a suitable equivalence relation. For this purpose,
we leverage the fact that DPLL(T)-based SMT solvers use simplification techniques for terms and for-
mulas. Such techniques simplify the development of decision procedures and can be used to improve the
performance of subsolvers for certain background theories [32]. The same simplification techniques can
be used in turn to recognize when a candidate solution to equivalent to another, thereby allowing us to
prune portions of the enumerative search.

Specifically, state-of-the-art SMT solvers are capable of constructing from any term t a simplified
form7 that we denote here as t↓. This is a term that is equivalent to t in the background theory T , but
is simpler by some measure. We do not need to require simplified forms to be unique. Specifically,
equivalent terms s and t may have different simplified forms s↓ and t↓. However, the more equivalent
terms that have the same simplified form, the more effective our pruning technique is. We illustrate how
theory-specific simplification methods can be used to prune search space in the following example.

Example 10. Consider the algebraic datatypes:

I = 0 | 1 | x | y | plus(I, I) | if(B, I, I)
B = leq(I, I) | eq(I, I) | not(B)

Given an interpretation I , consider a list of candidate solutions dI , their arithmetic analog, and their
corresponding simplified form obtained with simplifications specific to integer arithmetic:

# dI Analog Analog↓
1 x x x

. . .
2 plus(y,1) y+1 1+ y
3 plus(x,0) x+0 x
4 plus(1,y) 1+ y 1+ y

. . .
5 if(leq(0,1),x,0) ite(0≤ 1,x,0) x

In this table, we assume our simplification orders monomial sums based on some ordering so that, for
instance, (y+ 1)↓ = 1+ y. Notice that the third, fourth and fifth terms listed in this enumeration have
analogs that are identical after simplification to previous terms in the enumeration. For example, the
simplified analog of plus(x,0) is the same as x. For this reason, we may add clauses to the SMT solver

7This is sometimes also called its normal or rewritten form.
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that exclude models I where d is interpreted as plus(x,0). In particular, the clauses:

¬isplus(d)∨¬isx(selI,1(d))∨¬is0(selI,2(d)) (10)

¬isplus(d)∨¬is1(selI,1(d))∨¬isy(selI,2(d)) (11)

¬isif(d)∨¬isleq(selB,1(d))∨¬is0(selI,1(selB,1(d)))∨¬is1(selI,2(selB,1(d)))∨
¬isx(selI,1(d))∨¬is0(selI,2(d))

(12)

exclude models where d is interpreted as plus(x,0), plus(1,y), and if(leq(0,1),x,y) respectively. We
refer to formulas (10-12) as symmetry breaking clauses. Notice that symmetry breaking clauses do not
rule out interesting candidate solutions since they only have the effect of avoiding repeated solutions
modulo equivalence in T .

We extend the quantifier-free decision procedure for algebraic datatypes to maintain a database of
entries of form described in the table in Example 10. Symmetry breaking clauses are added to the set Γd
(introduced earlier) in two ways. First, whenever a new datatype term t is generated, we eagerly generate
a predetermined set of symmetry breaking clauses to restrict the value of t in all models, where this set is
determined by statically analyzing the set of constructors and the symbols in the theory they correspond
to. Second, when considering an interpretation I , if any datatype term tI has a value that is not unique
with respect to existing values in our database, we add a symmetry breaking clause that implies that
t 6≈ tI , thereby forcing the solver to find a new interpretation.

Notice that symmetry breaking clauses can be reused for multiple terms of the same type. For
example, our implementation may consider a modified version of the symmetry breaking clause (10)
where d is replaced by selI,1(d):

¬isplus(selI,1(d))∨¬isx(selI,1(selI,1(d)))∨¬is0(selI,2(selI,1(d))) (13)

This clause can be added to Γd , thereby enabling the solver to avoid candidate models where the first
child of d with type I is interpreted as plus(x,0). This further enables the solver to avoid candidate
solutions like plus(plus(x,0),y). A similar observation is made in the approach by Alur et al. [4].

Symmetry breaking clauses may be generalized in several ways to consider, for instance, cases when
a term simplifies to one of its proper subterms, or when simplification can be performed independently
of certain subterms.
Example 11. Recall that the symmetry breaking clause (10) in Example 10 was justified by the fact that
(x+0)↓= x, which has the same simplified form as the analog of x. Since (z+0)↓= z for fresh variable
z, we may conclude that (t + 0)↓ = t for all terms t. Thus, we may generalize this symmetry breaking
clause to exclude the disjunct that depends on x, obtaining the clause:

¬isplus(d)∨¬is0(selI,2(d)) (14)

This clause rules out all models where d is interpreted as a value of the form plus(d0,0) for any d0. It can
be shown that this clause does not rule out any interesting candidate solutions, and hence can be used to
avoid an (infinite) class of candidate solutions.
Example 12. The symmetry breaking clause (12) in Example 10 was justified by the fact that ite(0 ≤
1,x,0)↓= x. We can generalize this observation to terms of the form ite(0≤ 1,x, t) by noting that ite(0≤
1,x,z)↓ = x for fresh variable z. Thus, the simplification in this example did not depend on the second
occurrence of 0. Hence, we can generalize (12) to exclude its corresponding disjunct ¬is0(selI,2(d)),
obtaining the clause:

¬isif(d)∨¬isleq(selB,1(d))∨¬is0(selI,1(selB,1(d)))∨¬is1(selI,2(selB,1(d)))∨¬isx(selI,1(d)) (15)
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This clause rules out all models where d is interpreted as a value of the form if(leq(0,1),x,d0) for any
d0. We can generalize this further by noting ite(0 ≤ 1,z1,z2)↓ = z1 for fresh variables z1,z2. Hence we
may drop the disjunct ¬isx(selI,1(d)) from (15) as well.

Generalizing symmetry breaking clauses has a dramatic positive impact on the performance of
syntax-guided enumerative search in our implementation. Notice that the above generalization tech-
niques must take syntactic restrictions into account. Consider the algebraic datatypes:

I = x | plus(I1, I2)
I1 = 0 | 1 | x | y | plus(I, I)
I2 = 0

Although the terms x and plus(x,0) have identical analogs after simplification, the symmetry break-
ing clause for d : I of the form ¬isplus(d)∨¬isx(selI1,1(d))∨¬is0(selI2,1(d)) cannot be generalized to
¬isplus(d)∨¬is0(selI2,1(d)). Even though (z+ 0)↓ = z for fresh variable z, this clause clearly rules out
possible solutions for d like plus(y,0) that could not be constructed if such a symmetry breaking clause
were used. In practice, we annotate terms with the datatype they correspond to. In this example, z+0 is
annotated with I and z is annotated with I1. Hence, we can infer that the simplification (z+0)↓= z does
not preserve syntactic restrictions since the annotated types of z+0 and z are not identical.

5.2 Symmetry Breaking Based on I/O Example Evaluation

Alur et al. [4] note that enumerative syntax-guided search need only consider candidate solutions that
are unique when evaluated on the set of input points in the conjecture. Thus, we may use an even
stronger criterion for recognizing when candidate solutions can be discarded. We demonstrate how this
observation can be incorporated in our setting in the following example.
Example 13. Consider the input-output example conjecture:

¬∃ f ∀xy (x≈ 1∧ y≈ 0⇒ f (x,y)≈ 1)∧
(x≈ 2∧ y≈ 1⇒ f (x,y)≈ 3)∧
(x≈ 7∧ y≈ 1⇒ f (x,y)≈ 8)

(16)

where f is of type Int× Int→ Int and all other variables are of type Int. Note that this conjecture consists
of three conjunctions which correspond to the input points (x,y) = (1,1), (2,1), and (7,1). Assume we
are given syntactic restrictions for this conjecture, which we transform into the algebraic datatype:

I = 0 | 1 | x | y | plus(I, I) | if(B, I, I)
B = leq(I, I) | eq(I, I) | not(B)

For each candidate solution dI , we again compute its arithmetic analog, and its analog after theory-
specific simplification; but now also compute its evaluation on the three input points of the conjecture:

# dI Analog Analog↓ Eval on Examples

1 1 1 1 1,1,1
2 x x x 1,2,7

. . .
3 plus(x,x) x+ x 1+ y 2,4,14
4 plus(x,0) x+0 x n/a

. . .
5 if(leq(y,x),x,y) ite(y≤ x,x,y) ite(y≤ x,x,y) 1,2,7
6 if(leq(1,y),1,x) ite(1≤ y,1,x) ite(1≤ y,1,x) 1,1,1
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We are interested in avoiding solutions that are either not unique after simplification, or not unique when
evaluated on input examples. Consider the fifth term if(leq(y,x),x,y), whose analog after simplification
is ite(y≤ x,x,y), which is unique with respect to the previous terms listed in the enumeration. However,
evaluating ite(y ≤ x,x,y) on the points (x,y) = (1,1), (2,1), and (7,1) gives 1, 2, and 7 respectively.
Thus, with respect to the conjecture (16), the candidate solutions x and if(leq(y,x),x,y) are identical,
and hence we may discard the latter using a symmetry breaking clause:

¬isif(d)∨¬isleq(selB,1(d))∨¬isy(selI,1(selB,1(d)))∨¬isx(selI,2(selB,1(d)))∨
¬isx(selI,1(d))∨¬isy(selI,2(d))

(17)

The candidate solutions 1 and if(leq(1,y),1,x) are identical for similar reasons. Observe that for the
term plus(x,0), we find that its analog after simplification is equivalent to x, and hence we do not need
to compute its evaluation on the input examples since they are guaranteed to be identical.

We may use symmetry breaking clauses to eliminate candidate solutions that are not unique when
considering input examples. We may use the same enhancements from the previous section for these
clauses as well, namely, they can be reapplied to any term of the proper type and generalized using
similar techniques. For example, the clause (17) can be generalized to:

¬isif(d)∨¬isleq(selB,1(d))∨¬isy(selI,1(selB,1(d)))∨¬isx(selI,2(selB,1(d)))∨¬isx(selI,1(d)) (18)

by noting that evaluating the term ite(y≤ x,x,z) on the points (x,y) = (1,1), (2,1), and (7,1) gives 1,2,7
respectively for fresh variable z. Hence we may drop the disjunct ¬isy(selI,2(d)) since this reasoning did
not depend on the second occurrence of y in the candidate solution if(leq(y,x),x,y).

6 Conclusions and Future Work

We have presented techniques for integrating techniques for syntax-guided synthesis in the core of a
DPLL(T)-based SMT solver. All techniques described in the paper are implemented in the open-source
SMT solver CVC4. For future work, we are investigating cases where synthesis by quantifier instantiation
and synthesis by syntax-guided enumeration can be combined, as well as investigating efficient quantifier
instantiation techniques for new background theories.
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