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Abstract
Emerging fast, persistent memories will enable systems
that combine conventional DRAM with large amounts of
non-volatile main memory (NVMM) and provide huge
increases in storage performance. Fully realizing this po-
tential requires fundamental changes in how system soft-
ware manages, protects, and provides access to data that
resides in NVMM. We address these needs by describing
a NVMM-optimized file system called NOVA that is both
fast and resilient in the face of corruption due to media
errors and software bugs. We identify and propose solu-
tions for the unique challenges in hardening an NVMM file
system, adapt state-of-the-art reliability techniques to an
NVMM file system, and quantify the performance and stor-
age overheads of these techniques. We find that NOVA’s
reliability features increase file system size system size
by 14.9% and reduce application-level performance by
between 2% and 38%.

1. Introduction
Fast, persistent memory technologies (e.g., battery-backed
NVDIMMs [52] or Intel and Micron’s 3D XPoint [3]) will
enable computer systems with expansive memory systems
that combine volatile and non-volatile memories. These
hybrid memory systems offer the promise of dramatic
increases in storage performance.

Integrating NVMMs into computer systems presents
a host of interesting challenges. The most pressing of
these focus on how we should redesign existing software
components (e.g., file systems) to accommodate and exploit
the different performance characteristics, interfaces, and
semantics that NVMMs provide.

Several groups have proposed new file systems [19,
23, 92, 97] designed specifically for NVMMs and several
Windows and Linux file systems now include at least
rudimentary support for them [16, 32, 95]. These file
systems provide significant performance gains for data
access and support “direct access” (or DAX-style) mmap()
that allows applications to access a file’s contents directly
using load and store instructions, a likely “killer app” for
NVMMs.

Despite these NVMM-centric performance improve-
ments, none of these file systems provide the data protec-
tion features necessary to detect and correct media errors,
protect against data corruption due to misbehaving code, or
perform consistent backups of the NVMM’s contents. File
system stacks in wide use (e.g., ext4 running atop LVM,
Btrfs, and ZFS) provide some or all of these capabilities
for block-based storage. If users are to trust NVMM file
systems with critical data, they will need these features as
well.

From a reliability perspective, there are four key differ-
ences between conventional block-based file systems and
NVMM file systems.

First, the memory controller reports persistent memory
media errors as high-priority exceptions rather than error
codes from a block driver. Further, the granularity of errors
is smaller – a cache line rather than an entire block.

Second, persistent memory file systems must support
DAX-style memory mapping that maps persistent memory
pages directly into the application’s address space. DAX
is the fastest way to access persistent memory since it
eliminates all operating and file system code from the
access path. However, it means a file’s contents can change
without the file system’s knowledge, something that is not
possible in a block-based file system.

Third, the entire file system resides in the kernel’s
address space, vastly increasing vulnerability to “scribbles”
– errant stores from misbehaving kernel code.

Fourth, persistent memories are vastly faster than block-
based storage devices. This means that the trade-offs that
block-based file systems make between reliability and
performance need a thorough re-evaluation.

We explore the impact of these differences on reliability
mechanisms by building NOVA, a hardened NVMM file
system. NOVA extends the NOVA [97] NVMM file system
with a full suite of data integrity protection features. We
quantify the performance and storage overhead of these
mechanisms and evaluate their effectiveness at preventing
corruption of both file system metadata and file data.

In particular, we make the following contributions:

1. We use the error-reporting and management interface
that existing NVMM-enabled systems provide to iden-
tify file system reliability challenges that are unique to
NVMM file systems.

2. We identify a key challenge to taking consistent file
system snapshots while using DAX-style mmap() and
develop an snapshot algorithm that resolves it.

3. We describe a fast replication algorithm called Tick-
Tock for NVMM data structures that combines atomic
update with error detection and recovery.

4. We adapt state-of-the-art techniques for data protection
to work in NOVA and to accommodate DAX-style
mmap().

5. We quantify NOVA’s vulnerability to scribbles and
develop techniques to reduce this vulnerability.

6. We quantify the performance and storage overheads of
NOVA’s data protection mechanisms.

7. We describe additional steps NOVA and other NVMM
file systems can take to further improve reliability.
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We find that providing strong reliability guarantees
in NOVA increases storage requirements by 14.9% and
reduces application-level performance by between 2% and
38%.

To describe hardened NOVA, we start by providing a
brief primer on NVMM’s implications for system design-
ers, existing NVMM file systems, key issues in file system
reliability, and the original NOVA [97] filesystem (Sec-
tion 2). Then, we describe NOVA’s snapshot and (meta)data
protection mechanisms (Sections 3 and 4). Section 5 evalu-
ates these mechanisms, and Section 6 presents our conclu-
sions.

2. Background
NOVA targets memory systems that include emerging non-
volatile memory technologies along with DRAM. This
section first provides a brief survey of NVMM technologies
and the opportunities and challenges they present. Then we
describe recent work on NVMM file systems and discuss
key issues in file system reliability.

2.1 Non-volatile memory technologies

Modern server platforms have support of NVMM in form
of NVDIMMs [37, 52] and the Linux kernel includes
low-level drivers for identifying physical address regions
that are non-volatile, etc. NVDIMMs are commercially
available from several vendors in form of DRAM DIMMs
that can store their contents to an on-board flash-memory
chip in case of power failure with the help of super-
capacitors.

NVDIMMs that dispense with flash and battery backup
are expected to appear in systems soon. Phase change
memory (PCM) [12, 17, 46, 67] and resistive RAM
(ReRAM) [26, 84], and 3D XPoint memory technology [3]
are denser than DRAM, and may enable very large, non-
volatile main memories. Their latencies are longer than
DRAM, however, making it unlikely that they will fully re-
place DRAM as main memory. Other technologies, such as
spin-torque transfer RAM (STT-RAM) [40, 58] are faster,
but less dense and may find other roles in future systems
(e.g., as non-volatile caches [104]). These technologies are
all under active development and what we understand about
their reliability and performance are evolving rapidly [87].

Commercial availability of these technologies appears
to be close at hand. The 3D XPoint memory technology
recently announced by Intel and Micron is rumored to offer
performance up to 1,000 times faster than NAND flash [3],
has already appeared in SSDs [35], and is expected to ap-
pear on the processor memory bus shortly [2]. In addition
all major memory manufacturers have candidate technolo-
gies that could compete with 3D XPoint. Consequently, we
expect hybrid volatile/non-volatile memory hierarchies to
become common in large systems.

Allowing programmers to build useful data structures
with NVMMs requires CPUs to make new guarantees
about when stores become persistent that programmers
can use to guarantee consistency after a system crash [5, 9].
Without these guarantees it is impossible to build data
structures in NVMM that are reliable in the face of power
failures [18, 48, 55, 60, 90, 93, 101].

NVMM-aware systems provide some form of “persist
barrier” that allows programmers to ensure that earlier
stores become persistent before later stores. Researchers
have proposed several different kinds of persist barri-
ers [19, 43, 63]. Under x86 a persist barrier comprises
a clflush or clwb [36] instructions to force cache
lines into the system’s “persistence domain” and a con-
ventional memory fence to enforce ordering. Once a store
reaches the persistence domain, the system guarantees it
will reach NVMM, even in the case of crash. NOVA and
other NVMM file systems assume these or similar instruc-
tions are available.

2.2 NVMM File Systems

Several groups have designed NVMM file systems [19,
23, 92, 95, 96, 97] that address the unique challenges
that NVMMs’ performance and byte-addressible interface
present. One of these, NOVA [97], is the basis for NOVA,
and we describe it in more detail in Section 2.4.

NVMMs’ low latencies make software efficiency much
more important than in block-based storage devices [10,
13, 78, 94, 98, 103].

NVMM-aware CPUs provide a load/store interface
with atomic 8-byte 1 operations rather than a block-based
interface with block- or sector-based atomicity. NVMM file
systems can use these atomic updates to implement features
such as complex atomic data and metadata updates, but
doing so requires different data structures and algorithms
than block-based file systems have employed.

Since NVMMs reside on the processor’s memory bus,
applications should be able to access them directly via
loads and stores. NVMM file systems [23, 96, 97] bypass
the DRAM page cache and access NVMM directly using
a technique called Direct Access (DAX), avoiding extra
copies between NVMM and DRAM in the storage stack.
DAX has been deployed in Windows [32] and Linux file
systems [16, 95].

Most NVMM file systems also provide a DAX version
of mmap() that allows applications to perform loads and
stores directly to NVMM.

2.3 File System Consistency and Reliability

Apart from their core function of storing and retrieving data,
file systems also provide facilities to protect the data they

1 NVMM-aware Intel CPUs provide 8-byte atomic operations. Other
architectures may provide different atomicity semantics.
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hold from corruption due to system failures, media errors,
and software bugs (both in the file system and elsewhere).

File systems have devised a variety of different tech-
niques to guarantee system-wide consistency of file system
data structures, including journaling [23, 89], Copy-on-
Write [11, 19, 69] and log-structuring [61, 70, 71]. Trans-
actional file systems [15, 53, 59, 62, 65, 81, 91] provide
stronger consistency guarantee that application data up-
dates are atomic.

The most reliable file systems provide two key features
that significantly improved their reliability: The ability to
take snapshots of the file system (to facilitate backups)
and set of mechanisms to detect and recover from data
corruption due to media errors and other causes.

Existing NVMM file systems provide neither of these
features, limiting their usefulness in mission-critical appli-
cations. Below, we discuss the importance of each feature
and existing approaches.

2.3.1 Snapshots

Snapshots provide a consistent image of the file system
at a moment in time. Their most important application is
facilitating consistent backups without unmounting the file
system, affording protection against catastrophic system
failures and the accidental deletion or modification of files.

Many modern file systems have built-in support for
snapshots [11, 42, 44, 69]. In other systems the underlying
storage stack (e.g., LVM in Linux) can take snapshots of
the underlying block device. Other work [22, 64, 73, 80,
85] tries to improve the efficiency and reduce the space
consumption of snapshots.

Neither existing DAX-enabled NVMM file systems
nor current low-level NVMM drivers support snapshots,
making consistent online backups impossible. Several file
systems for NVMM do provide snapshots [47, 90, 105], but
none of them support DAX-style mmap(). Ext4-DAX [95]
and xfs-DAX [38] do not support snapshots.

2.3.2 Data Corruption

File systems are subject to a wide array of data corrup-
tion mechanisms. These include both media errors that
cause storage media to return incorrect values and soft-
ware errors that store incorrect data to the storage media.
Data corruption and software errors in the storage stack
have been thoroughly studied for hard disks [6, 7, 74, 75],
SSDs [50, 57, 76] and DRAM-based memories [77, 82, 83].
The results of DRAM-based studies apply to DRAM-based
NVDIMMs, but there have been no (publicly-available)
studies of error behaviors in emerging NVMM technolo-
gies.

Storage hardware, including NVMMs, uses error-
correcting codes (ECC) to provide some protection against
media errors. Errors that ECC detects but cannot correct

result in an error. For block-based storage, this error ap-
pears as read or write failure from the storage driver. Intel
NVMM-based system report these media errors via a high-
priority exception (see Section 4.1).

Software errors can also cause data corruption. If the
file system is buggy, it may write data in the wrong place
or fail to write at all. Other code in the kernel can corrupt
file system data by “scribbling” [45] on file system data
structures or data buffers.

Scribbles are an especially critical problem for NVMM
file systems, since the NVMM is mapped into the kernel’s
address space. As a result, all of file system’s data and
metadata are always vulnerable to scribbles.

We discuss other prior work on file system reliability as
it relates to NOVA in Section 4.7.

2.4 The NOVA File System

NOVA’s initial design focused on two goals: Fully exposing
the performance that NVMMs offer and providing very
strong consistency guarantees – all operations in NOVA
are atomic. Below, we describe the features of NOVA that
are most relevant to our description of NOVA.

NOVA divides NVMM into five regions. NOVA’s 512 B
superblock contains global file system information and the
recovery inode. The recovery inode represents a special file
that stores recovery information (e.g., the list of unallocated
NVMM pages). NOVA divides its inode tables into per-
CPU stripes. It also provides per-CPU journals for complex
file operation (see below). The rest of the available NVMM
stores logs and file data.

NOVA is log-structured and stores a separate log for
each inode to maximize concurrency and provide atomicity
for operations that affect a single file. The logs only
store metadata and comprise a linked list of 4 KB pages.
Log entries are small – between 32 and 64 bytes. Logs
are generally non-contiguous, and log pages may reside
anywhere in NVMM.

NOVA keeps read-only copies of most file metadata in
DRAM during normal operations, eliminating the need to
access metadata in NVMM during reads.

NOVA uses copy-on-write to provide atomic updates
for file data and appends metadata about the write to the
log. For operations that affect multiple inodes NOVA uses
lightweight, fixed-length journals – one per core.

NOVA divides the allocatable NVMM into multiple
regions, one region per CPU core. A per-core allocator
manages each of the regions, minimizing contention during
memory allocation.

After a system crash, NOVA must scan all the logs to
rebuild the memory allocator state. Since, there are many
logs, NOVA aggressively parallelizes the scan. Recovering
a 50 GB NOVA file system takes just over 1/10th of
second [97].
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Figure 1: Taking snapshot in NOVA NOVA takes a snap-
shot by incrementing the epoch ID to start a new epoch.
When a data block or log entry becomes dead in the current
epoch, NOVA records its death in the snapshot log for most
recent snapshot it survives in.

3. Snapshots
NOVA’s snapshot support lets system administrators take
consistent snapshots of the file systems while applications
are running. The system can mount a snapshot as a read-
only file system or roll the file system back to a previous
snapshot. NOVA supports an unlimited number of snap-
shots, and snapshots can be deleted in any order. NOVA
is the first NVMM file system that supports taking consis-
tent snapshots when applications modify file data via DAX
mmap().

Below, we described the three central challenges that
NOVA’s snapshot mechanisms addresses: Taking snapshots,
managing storage for snapshots, and taking usable snap-
shots of DAX mmap()’d files.

3.1 Taking Snapshots

NOVA implements snapshots by maintaining a current
epoch number for the whole file system, and storing the
epoch number in each new log entry. To create a snapshot,
NOVA increments the file system’s epoch number and
records the old epoch number in a list of snapshots.

Figure 1 shows an example in which NOVA creates two
snapshots and the current epoch number is 2. Snapshot
creation does not block file system write operations as it
does in some other file systems [33, 85, 105].

3.2 Snapshot Storage Management

Supporting snapshots requires NOVA to preserve file con-
tents from previous snapshots while also being able to
recover the space a snapshot occupied after its deletion.

Preserving file contents requires a small change to how
NOVA implements write operations. To perform a write,
NOVA appends a write log entry to the file’s log. The log
entry includes pointers to newly-allocated and populated
NVMM pages that hold the written data. If the write
overwrites existing data, NOVA locates the previous write
log entry for that portion of the file, and performs an epoch

check that compares the old log entry’s epoch ID to the file
system’s current epoch ID. If the comparison matches, the
old write log and the file data blocks it points to no longer
belong to any snapshot, and NOVA reclaims the data blocks.
In Figure 1, an application overwrites the same block of
the file for four times. The epoch check for the third write
reclaims the second write’s data block, since they belong
to the same epoch.

If the epoch IDs do not match, then the data in the old
log entry belongs to an earlier snapshot and NOVA leaves
the old entry and data alone.

Determining when to reclaim data belonging to deleted
snapshots requires additional bookkeeping. For each snap-
shot, NOVA maintains a snapshot log that records the in-
odes and blocks that belong to that snapshot, but are not
part of the current file system image.

NOVA populates the snapshot log during the epoch
check: If the epoch IDs for the new and old log entries do
not match, it appends a tuple to the snapshot log that the
old log entry belongs to. The tuple contains the old log
entry, and the current epoch ID, called the delete epoch ID.
In Figure 1, the log entry for snapshot 0 shows that page
0x100 is part of the snapshot 0 and that a write in epoch 1
overwrote it.

To delete a snapshot, NOVA removes the snapshot from
the list of live snapshots and appends its log to the following
snapshot’s log. Then, a background thread traverses the
combined log and reclaims dead inode/data based on the
delete epoch ID: If the delete epoch ID for an entry in
the log is less than or equal to the snapshot’s epoch ID, it
means the log entry and/or the associated data blocks are
now dead.

NOVA keeps the list of live snapshots in NVMM, but
it keeps the contents of the snapshot logs in DRAM. On a
clean unmount, it writes the snapshot logs to NVMM in the
recovery inode. This is safe since NOVA can reconstruct the
snapshot logs while it scans the inode logs during recovery
after an unclean unmount.

3.3 Snapshots for DAX-mmap’d Files

Taking consistent snapshots while applications are modify-
ing files using DAX-style mmap requires NOVA to reckon
with the order in which stores to NVMM become persis-
tent (i.e., reach physical NVMM so they will survive a
system failure). These applications rely on the processor’s
“memory persistence model” [63] to make guarantees about
when and in what order stores become persistent. These
guarantees allow the application to restore their data to a
consistent state during recovery from a system failure.

From the application’s perspective, reading a snapshot
is equivalent to recovering from a system failure. In both
cases, the contents of the memory-mapped file reflect its
state at a moment when application operations might be
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Figure 2: Snapshots of mmap()’d Data NOVA marks
mmap()’d pages as read-only to capture their contents in
the snapshot. Naively marking pages one at a time, can
result in an inconsistent snapshot (a). Instead, NOVA marks
all the pages read-only before satisfying any subsequent
page faults, guaranteeing consistency (b).

in-flight and when the application had no chance to shut
down cleanly.

A naive approach to checkpointing mmap()’d files in
NOVA would simply mark each of the read/write mapped
pages as read-only and then do copy-on-write when a store
occurs to preserve the old pages as part of the snapshot.

However, this approach can leave the snapshot in an
inconsistent state: Setting the page to read-only captures
its contents for the snapshot, and the kernel requires NOVA
to set the pages as read-only one at a time. So, if the order
in which NOVA marks pages as read-only is incompatible
with ordering that the application requires, the snapshot
will contain an inconsistent version of the file.

Figure 2 (a) shows an example: Consider a data value D,
and a flag V that is true when D contains valid data. To
enforce this invariant, a thread could issue a persist barrier
between the stores to D and V .

In the figure, D and V reside in different pages, and
NOVA marks D’s page as read-only before the program
updates D and marks V ’s page as read-only after setting V .
As a result, the snapshot has V equal to true, but D with
its old, incorrect value.

To resolve this problem, when NOVA starts marking
pages as read-only, it blocks page faults to the read-only
mmap()’d pages until it has marked all the pages read-
only and finished taking the snapshot. Figure 2 (b) shows
how this solves the problem: D’s page fault will not
complete (and the store to V will not occur) until all the
pages (including V ’s) have been marked read-only and the
snapshot is complete.

This solution is also correct for multi-threaded programs.
If thread 1 updates D and, later, thread 2 should update V ,
the threads must use some synchronization primitive to
enforce that ordering. For instance, thread 1 may release
a lock after storing to D. If D’s page is marked read-only
before D changes, the unlock will not occur until all the

page have been marked read-only, ensuring that the store
to V will not appear in the snapshot.

This approach guarantees that, for each thread, the snap-
shot will reflect a prefix of the program order-based se-
quence of NVMM store operations the thread has per-
formed. This model is equivalent to strict persistence [63],
the most restrictive model for how NVMM memory op-
erations should behave (i.e., in what order updates can
become persistent) in a multi-processor system. CPUs may
implement more aggressive, relaxed models for memory
persistence, but strict persistence is strictly more conser-
vative than all proposed models, so NOVA’s approach is
correct under those models as well 2.

3.4 Design Decisions and Evaluation

There are several ways we could have addressed the prob-
lems of creating snapshots, managing the data they contain,
and correctly capturing mmap()’d data. Other file systems
have leveraged reference counts [68, 69], tracked the re-
lationships between blocks [22], relied on an SSD’s flash
translation layer [85], or maintains a bitmap for all blocks
per snapshot [42].

None of these approaches is a good fit for NOVA: It
does not rely on reference counts or bitmap for space
management, and adding them just to support snapshots
would penalize all operations that modify data or metedata.
There is also no FTL to rely on.

Our approach stores snapshot logs in DRAM. The
maximum total size of the snapshot logs is proportional
to the size of the file system rather than the number of
checkpoints, since each data block and log entry would be
referred to by at most one snapshot log.

In practice, the size of the logs is manageable. We ran
the fileserver workloads described in Section 5 while taking
snapshots every 10 seconds. The size of the logs ranged
from 0.02% to 0.026% of the space in use in the file system.

Taking snapshots has different effects on the perfor-
mance of applications that use file-based access and those
that use DAX-style mmap(). Figure 1 measures the impact
on both groups. On the right, it shows results for the WHIS-
PER [56] suite of eight applications optimized for DAX-
mmap(). On the left, are results for four Filebench [88]
workloads.

For all the applications, the figure compares perfor-
mance without snapshots to performance while taking a
snapshot every 10 seconds. For the WHISPER applica-
tions, taking periodic snapshots only reduces performance
by 6.2% on average. For filebench workloads, the impact
is negligible – 0.6% on average.

2 This is directly analogous to sequential memory consistency being a
valid implementation of any more relaxed memory consistency model.
Indeed, strict persistence is a natural extension of sequential consistency
to include a notion of persistence.
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Figure 3: Snapshots’ Performance Impact For file-based
application (“Filebench”), taking a snapshot every 10s
reduces performance by just 0.6% on average. Frequent
snapshots are more costly for the DAX-mmap()-optimized
applications (“DAX-mmap()”): Performance drops by 6.2%
on average.

4. Handling Data Corruption in NOVA
Like all storage media, NVMM is subject to data and
metadata corruption from media failures and software
bugs. To prevent, detect, and recover from data corruption,
NOVA relies on the capabilities of the system hardware
and operating system as well as its own error detection and
recovery mechanisms.

This section describes the interfaces that NOVA expects
from the memory system hardware and the OS and how
it leverages them to detect and recover from corruption.
We also discuss a technique that prevents data corruption
in many cases, and NOVA’s ability to trade reliability
for performance. Finally, we discuss NOVA’s protection
mechanisms in the context of recent work on file system
reliability.

4.1 Media Errors

NOVA detects NVMM media errors with the same mecha-
nisms that processors provide to detect DRAM errors. The
details of these mechanisms determine how NOVA and
other NVMM file systems can protect themselves from
media errors.

This section describes the interface that recent Linux
kernels (e.g., Linux 4.10) and Intel processors provide via
the PMEM low-level NVDIMM driver. Porting NOVA to
other architectures or operating systems may require NOVA
to adopt a different approach to error detection.

NOVA assumes the memory system provides ECC for
NVMM that is similar to (or perhaps stronger than) the
single-error-correction/double-error-detection (SEC-DED)
scheme that conventional DRAM uses. We assume the
controller transparently corrects correctable errors, and
silently returns invalid data for undetectable errors.

For detectable but uncorrectable errors, Intel’s Machine
Check Architecture (MCA) [34] raises a machine check
exception (MCE) in response to uncorrectable memory
errors. After the exception, MCA registers hold information
that allows the OS to identify the memory address and
instruction responsible for the exception.

The size of the ECC code word depends on the memory
used in the system. DRAM-based NVMMs uses a 9-byte
code word for every 8-byte data word, so an uncorrectable
error destroys at least 64-bits. Other memories may use a
larger or smaller code word size. The memory controller
and/or processor may track errors at a coarser granularity
(e.g., the size of a cache line). We refer to this granularity
as the poison radius (PR) of an error. We assume that PRs
are a power of two in size and aligned to that size. We say
that an uncorrectable error in a PR “poisons” the entire PR.

The system can clear a poisoned PR by issuing a “Clear
Uncorrectable Error” [1] through the kernel’s Advanced
Configuration and Power Interface (ACPI) driver. The
poisoned status of PR persists across system failures and
the PMEM driver collects a list of poisoned PRs at boot.

The default response to an MCE in the kernel is a
kernel panic. However, recent Linux kernels include a
version of memcpy(), called memcpy_mcsafe() [41],
that returns an error to the caller instead of crashing in
response to most MCEs. NOVA always uses this function
when reading from NVMM. In rare cases, MCEs are not
recoverable because the processor’s state is corrupted and
a kernel panic is inevitable.

4.2 Tick-Tock Metadata Protection

NOVA use replication and checksums to protect its meta-
data from media errors and corruption. NOVA protects
each data structure by keeping two copies – a primary and
a replica – and adding a CRC32 checksum to each.

To update a metadata structure, NOVA first copies the
contents of the data structure into the primary (the tick),
and issues a persist barrier to ensure that data is written to
NVMM. Then it does the same for the replica (tock). This
scheme ensures that, at any moment, one of the two copies
is correctly updated and has a consistent checksum.

To access a metadata structure and check for corruption
NOVA copies the primary and replica into DRAM buffers
using memcpy_mcsafe() to detect media errors. Then
it confirms the checksums for each copy. If either of them
has suffered a media error or has an inconsistent checksum,
NOVA recovers using the other copy. If both copies are
consistent but not identical, the system failed between the
tick and tock phases, and NOVA copies the primary to the
replica.

If both copies suffered a media error or are inconsistent,
the metadata is lost, and NOVA returns an error.

Design Decisions and Alternatives Tick-tock meta-
data protection provides strong protection against both
media errors and scribbles and is easy to implement. We
considered several other designs and evaluated alternative
in the details of our implementation.

Using checksums to detect data corruption and relying
on replication for error correction more than double the
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storage required for metadata storage. We could rely on
error correction codes instead to handle detection and
correction and avoid full replication. For instance, using
Reed Solomon codes to protect a 32-byte log entry would
require storing two bytes of ECC information, a 6.2%
overhead, but it could only correct a single byte error.
Computing Reed Solomon (and other ECC codes) is much
slower than CRC. Intel’s CRC32 acceleration instructions
can compute a 32-byte CRC in 13 ns compared to more
than 1000 ns to compute the Reed Solomon code word
using the implementation in Linux.

Replication also provides better resilience to scribbles.
Though we know of no systematic study of scribble size in
real systems, we expect that some of them may arise from
misdirected memcpy()-like operations. Since NOVA’s
metadata structures are small, it is likely that such a scribble
will obliterate an entire data structure. Full replication can
recover from these, but ECC cannot.

We could adopt a log-based mechanism for committing
changes, but that would require at least as many stores and
persist barriers as tick-tock. It would also eliminate full
replication, increasing vulnerability to scribbles.

4.3 Protecting File Data

NOVA adapts RAID-style parity protection and checksums
to protect file data and it includes features to maximize
protection for files that applications access via DAX-style
mmap().

RAID Parity and Checksums NOVA makes each file
data page its own stripe, and divides each page into equally
sized stripe segments, or strips. The strip size is config-
urable, but it must be larger than 512 B (the default) and
smaller than a page. It also must be a least one PR. NOVA
stores an additional parity strip for each page and it main-
tains two separate copies of CRC32 checksums for each
data strip. Figure 4 shows the checksum and parity layouts
in the NVMM space.

When NOVA performs a read it checks the target strip’s
checksum. If the strip is corrupted, NOVA performs RAID-
5-style recovery to restore the lost data. If more than one
of the strips is corrupted, the page is lost.

Writes are simple since NOVA uses copy-on-write by
default: For each file page write, NOVA allocates new
pages, populates them with the written data, computes the
checksums and parity strip, and finally commits the write
with an atomic log appending operation.

Protecting DAX-mmap’d data By design, DAX-style
mmap() lets application modify file data without involving
the file system, so it is impossible for NOVA to keep the
checksums and parity for read/write mapped pages up-to-
date. Instead, NOVA provides the following guarantee: The
checksums and parity for data pages are up-to-date at all

times, except when those pages are mapped read/write into
an application’s address space.

We believe this is the strongest guarantee that NOVA
can provide on current hardware, and it raises several chal-
lenges. First users that use DAX-mmap() take on responsi-
bility for detecting and recovering from both media errors
(which appear as SIGBUS in user space) and scribbles.
This is an interesting problem but beyond the scope of
this paper. Second, NOVA must be able to tell when a
data page’s checksums and parity should match the data it
contains and when they may not.

To accomplish this, when a portion a file is mmap()’d,
NOVA records this fact in the log, signifying that the check-
sums and parity for the affected pages are no longer valid.
NOVA only recomputes the checksums and parity for dirty
pages on msync() and munmap(). On munmap(), it
adds a log entry that restores protection for these pages
when the last mapping for the page is removed. If the sys-
tem crashes while pages are mapped, the recovery process
will identify these pages while scanning the logs, recom-
pute checksums and parity, and add a log entry to mark
them as valid.

Design Decisions and Alternatives Using RAID parity
and checksums to protect file data is similar to the approach
that ZFS [11] and IRON ext3 [66] take, but we store
parity for each page rather than one parity page per file.
The approach incurs storage overheads for both the parity
strip (which grows with strip size) and the checksums
(which shrinks with strip size, because the number of
strips drops). For 512 B strips the total overhead is about
13.4%. Increasing the NVMM page size reduces the storage
overhead, but it would lead to more fragmentation in log
pages or require a more complex NVMM page allocator.

We also considered a simpler scheme that would allow
users to mark files as RAID-protected or not. This elimi-
nates the need for tracking which parts of which files are
protected, but places an administrative burden on the file
system’s user and raises policy questions without obvious
answers. For instance, if a user copies an unprotected file,
should the copy also be unprotected? and What should
happen if an application mmap()’s a protected file? On
balance, the benefits of a clearer, simpler rule about when
file data is protected outweighs the costs of implementing
our more sophisticated scheme.

4.4 Minimizing Vulnerability to Scribbles

Scribbles pose significant risk to NOVA’s data and meta-
data, since a scribble can impact large, continuous regions
of memory. We are not aware of any systematic study
of the prevalence of these errors, but scribbles, lost, and
misdirected writes are well-known culprits for file system
corruption [23, 29, 45, 102]. In practice, we expect that
smaller scribbles are more likely that large ones, in part
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cating metadata pages and taking care to allocate the repli-
cas separately improves resilience to scribbles. The most
effective technique enforces a 1 MB “dead zone” between
replicas and eliminates the threat of a single scribble smaller
than 1 MB. The graph omits zero values due to the vertical
log scale.

since the bugs that result in larger scribbles would be more
severe and more likely to be found and fixed.

To quantify the risk that these errors pose, we define
bytes-at-risk (BAR) for a scribble as the number of bytes it
may render irretrievable.

NOVA packs log entries in to log pages, and it must
scan the page to recognizing each entry. Without protection,
losing a single byte can corrupt a whole page. For replicated
log pages, a scribble that spans both copies of a byte will
corrupt the page. To measure the BAR for a scribble of size
N we measure the number of pages each possible N-byte
scribble would destroy in an aged NOVA file system.

Figure 5 shows the maximum and average metadata
BAR for a 64 GB NOVA file system with four different
metadata protection schemes: “no replication” does not
replicate metadata; “simple replication” allocates the pri-
mary and replicas naively and tends to allocate lower ad-
dresses before higher address, so the primary and replica
are often close; “two-way replication” separates the pri-
mary and replica by preferring low addresses for the pri-

mary and high addresses for the replica; and “dead-zone
replication” extends “two-way” by enforcing a 1 MB “dead
zone” between the primary and replica. Figure 4 shows an
example of NOVA two-way allocator with dead zone sep-
aration. For each pair of mirrored pages, the dead zone
forbids the primary and replica from becoming too close,
but data pages can reside between them.

We aged the file system by spawning multiple, multi-
threaded, filebench workloads. When each workload fin-
ishes, we remove about half of its files, and then restart the
workload. We continue until the file system is 99% full.

The data show that even for the smallest 1-byte scribble,
the unprotected version will lose up to a whole page (4 kB)
of metadata and an average of 0.06 pages. With simple
replication, scribbles smaller than 4 kB have zero BAR.
Under simple replication, an 8 kB scribble can corrupt up
to 4 kB, but affects only 0.04 pages on average.

Two-way replication tries to allocate the primary and
replica farther apart, and it reduces the average bytes at risk
with an 8 kB scribble to 2.9× 10−5 pages, but the worst
case remains the same.

Enforcing the dead zone further improves protection:
A 1 MB dead zone can eliminate corruption for scribbles
smaller than 1 MB. The dead zone size is configurable,
so NOVA can increase the 1 MB threshold for scribble
vulnerability if larger scribbles are a concern.

Scribbles also place data pages at risk. Since NOVA
stores the stripes of data pages contiguously, scribbles
that are larger than the strip size may causes data loss,
but smaller scribbles do not. NOVA could tolerate larger
scribbles to data pages by interleaving strips from different
pages, but this would make disallow DAX-style mmap().
Increasing the strip size can also improve scribble tolerance,
but at the cost of increased storage overhead for the parity
strip.

4.5 Preventing Scribbles

The mechanisms described above let NOVA detect and
recover from data corruption. NOVA also includes a mech-
anism that leverages the memory protection system in Intel
processors to prevent most scribbles.

By default, NVMM is mapped read/write into the ker-
nel’s address space. This provide easy access for NOVA,
but leaves the NVMM exposed to scribbles from other parts
of the kernel [14]. We can reduce this vulnerability by map-
ping NVMM as read-only, and then using the WriteProtect
Enable (WP) bit in the per-core CR0 control register to
disable write protection on all kernel memory when NOVA
needs to modify NVMM. WAFL [45] and PMFS [23] both
use this mechanism to protect data as well.

The approach also requires disabling local interrupts to
prevent a context switch while write protection is disabled.
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Clearing and restoring the WP bit and disabling and re-
enabling local interrupts takes 400 ns on our machines.

Using the WP bit means that NOVA no longer needs to
trust the rest of the kernel, but it also requires that the rest
of the kernel trust NOVA to not accidently modify other
data in the kernel that is read-only.

We are careful to limit the risk that NOVA poses to
other kernel data. We have implemented a version of
memcpy() that we use for writing to NVMM, called
memcpy_to_pmem(). It includes the code to clear and
restore the WP bit, disable and enable interrupts, and a
sanity check to ensure that the target address range is in
NVMM.

The WP approach will only protect against scribbles
from other kernel code. It cannot prevent NOVA from
corrupting its own data by performing “misdirected writes,”
a common source of data corruption in file systems [8].

4.6 Relaxing Data and Metadata Protection

Many existing file systems can trade off reliability for
improved performance (e.g., the data journaling option
in Ext4). NOVA can do the same: It provides a relaxed
mode that relaxes atomicity constraints on file data and
metadata.

In relaxed mode, write operations modify existing data
directly rather than using copy-on-write, and metadata
operations modify the most recent log entry for an inode
directly rather than appending a new entry. Relaxed mode
guarantees metadata atomicity by journaling the modified
pieces of metadata. These changes improve performance
and we evaluate their impact in Section 5.

4.7 Related and Future Work

File system reliability has been the focus of a great deal
of research driven by the file systems’ importance, their
complexity, and the complex (and error-prone) behavior
of other parts of the storage stack. Below, we describe
proposed “best practices” for file system design and how
NOVA addresses them. Then, we describe other tools,
techniques, and studies that would further improve NOVA’s
reliability.

4.7.1 Is NOVA Ferrous?

InteRnally cONistent (IRON) file systems [66] provide a
set of principles to that lead to improved reliability. We
designed NOVA to embody these principles:

Check error codes Uncorrectable ECC errors are the
only errors that the NVMM memory system delivers to
software (i.e., via memcpy_mcsafe()). NOVA uses
memcpy_mcsafe() for all NVMM access and triggers
recovery if it detects an MCE. NOVA also interacts with
the PMEM driver that provides low-level management of

NVDIMMs. For these calls, we check and respond to error
codes appropriately.

Report errors and limit the scope of failures NOVA
reports all unrecoverable errors as -EIO, and never calls
panic().

Use redundancy for integrity checks and distribute re-
dundancy information NOVA’s tick-tock replication
scheme stores the checksum for each replica with the
replica, but it is careful to allocate the primary and replica
copies far from one another. Likewise, NOVA stores the
parity and checksum information for data pages separately
from the pages themselves.

Type-aware fault injection For testing, we built a
NOVA-specific error injection tool that can corrupt data and
metadata structures in specific, targeted ways, allowing us
to test all of NOVA’s detection and recovery mechanisms.

4.7.2 Other Reliability Techniques

Several groups have proposed techniques and built tools
that help verify file systems. SQCK [30] provides a declar-
ative languages for specifying file system invariants, and
FiSC [100] provide a model checking framework for the
same. Crash refinement [79] and EXPLODE [99] can au-
tomatically check a file system’s implementation against
its specification or existing consistency checks. EDP [31]
would identify any error codes NOVA mishandles. All
these techniques would likely find bugs in NOVA. Other
techniques, such as Recon’s consistency invariants [28] and
Membrane’s restartability [86] could be applied to NOVA
to help it survive bugs that remain.

Other works highlight areas where NOVA’s (and most
other file systems’) reliability could be improved. Corrup-
tion of DRAM data structures can result in file system cor-
ruption [27, 102] and some file systems (e.g., WAFL [45]
and HARDFS [21]) protect DRAM structures with check-
sums.

4.7.3 Areas for Improvement

There are several additional steps NOVA could take to
further improve reliability. All of them are the subject of
ongoing development, and we do not expect any of them to
have a large impact or performance or storage overheads.

NOVA protects some, but not all, DRAM data structures.
Most DRAM structures that NOVA does not protect are
short lived (e.g., the DRAM copies we create of metadata
structures) or are not written back to NVMM. However, the
snapshot logs and allocator state are exceptions and they
are vulnerable to corruption. The allocator protects the
address and length of each free region with checksums, but
it does not protect the pointers that make up the red-black
tree that holds them, since we use the kernel’s generic red-
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black tree implementation. The snapshot logs are currently
unprotected.

Sector or block failures in disks are not randomly
distributed [6], and errors in NVMM are also likely to
exhibit complex patterns of locality [51, 82, 83]. For
instance, a NVMM chip may suffer from a faulty bank,
row, or column, leading to a non-uniform error distribution.
Or, an entire NVDIMM may fail.

NOVA’s allocator actively separates the primary and
replica copies of metadata structures to eliminate logical
locality, but it does not account for how the memory
system maps physical addresses onto the physical memory.
A layout-aware allocator could, for instance, ensure that
replicas reside in different banks or different NVDIMMs.

NOVA cannot keep running after an unrecoverable
MCE (since they cause a panic()), but it could recover
any corrupted data during recovery. The PMEM driver
provides a list of poisoned PRs on boot, and NOVA can use
this information to locate and recover corrupted file data
during mount. Without this step, NOVA will still detect
poisoned metadata, since reading from a poisoned PR
results in a normal MCE, NOVA reads all metadata during
recovery. Poisoned file data, however, could accumulate
over multiple unrecoverable MCEs, increasing the chances
of data loss.

Finally, NOVA does not scrub data or metadata. PMEM
detects media errors on reboot, but if a NOVA file system
ran continuously for a long time, undetected media errors
could accumulate. Undetected scribbles to data and meta-
data can accumulate during normal operation and across
reboots.

5. Performance Trade-offs
NOVA’s reliability features improve its resilience but also
incur overhead in terms of performance and storage space.
This section quantifies these overheads and explores the
trade-offs they allow.

5.1 Experimental setup

We use the Intel Persistent Memory Emulation Platform
(PMEP) [23] to emulate different types of NVMM and
study their effects on NVMM file systems. PMEP sup-
ports configurable latencies and bandwidth for the emu-
lated NVMM, and emulates clwb instruction with mi-
crocode. In our tests we configure the PMEP with 32 GB
of DRAM and 64 GB of NVMM, and choose two config-
urations for PMEP’s memory emulation system: We use
the same read latency and bandwidth as DRAM to emu-
late fast NVDIMM-N [72], and set read latency to 300 ns
and reduce the write bandwidth to 1/8th of DRAM to em-
ulate slower PCM. For both configurations we set clwb
instruction latency to 40 ns.
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Figure 6: File operation latency In most cases, NOVA’s
basic file operations are faster other available file systems.
The exceptions (e.g., writes and overwrites vs. Ext4-DAX
and XFS-DAX) are cases where NOVA provide stronger
consistency guarantees and/or data protections. Relaxing
these protections (“Relaxed mode”) dramatically improves
performance.

We compare NOVA against three other file systems.
Ext4-DAX and xfs-DAX are the two DAX-enabled file
systems currently supported available in Linux (PMFS [23]
has been deprecated). Neither of them provides strong
consistency guarantees (i.e., they do not guarantee that
all operations are atomic), while our baseline filesystem
does provide these guarantees. To compare to a file system
with stronger guarantees, we also compare to ext4 in data
journaling (ext4-dataj) mode running on the NVMM block
device that exposes block device interface to an NVMM
region. Ext4 and xfs have checksums for metadata, but
they do not provide any recovery mechanisms for NVMM
media errors or protection against stray writes.

We perform all our experiments on Linux x86-64 kernel
4.10.

5.2 Performance Impacts

To understand the impact of NOVA’s reliability mecha-
nisms, we begin by measuring the performance of individ-
ual mechanisms and basic file operations. Then measure
their impact on application-level performance.

We compare several version of NOVA: We start with
“Baseline”, which includes snapshot support but no meta-
data or data protection, and add metadata protection
(“MP”), data protection (“DP”), and CR0-based write pro-
tection (“WP”). “Relaxed mode” weakens consistency guar-
antees to improve performance and provides no data pro-
tection (Section 4.6).

5.3 Microbenchmarks

We evaluate basic file system operations: create, 4 KB
append, 4 KB write, 512 B write, and 4 KB read.
Figure 6 measures the latency for these operations with
NVDIMM-N configuration. Data for PCM has similar
trends. Create is a metadata-only operation and adding
metadata protection increases the latency by 47%. Append
affects metadata and data updates. The baseline append
operation is much more efficient than the existing file
systems (5.2× to 5.4× times faster). Adding metadata and
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Figure 7: NOVA Latencies for NVDIMM-N For most op-
erations, NOVA’s file data protection mechanisms have a
larger impact on operation latencies that metadata protec-
tion, especially since the cost of verifying checksums scales
with read and write size. For reads, in particular, verifying
checksums increases latency by 70%.
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Figure 8: NOVA random read/write bandwidth on
NVDIMM-N Read bandwidth is similar across all the file
systems we tested, but NOVA’s reliability mechanisms re-
duces throughput by between 14% and 19%. For writes the
cost of reliability is higher – up to 66%, and the benefits of
relaxing write atomicity (“relaxed mode” and “XFS-DAX”)
are greater (up to 37%).

data protection increase the latency by 36% and 100%,
respectively, and write protection increases the latency by
22% on average. With the maximum level of protection
NOVA is 146% slower than the baseline version of NOVA
and 2.1× faster than the existing alternatives.

For overwrite, NOVA performs copy-on-write for file
data to provide data atomicity guarantees, and the latency is
close to that of append. For 512 B overwrite, NOVA has
higher latency than other DAX file systems since its copy-
on-write amplifies the 512 B write to 4 kB. Full protection
increases the latency by 2.2×. Relaxed mode is 2.6× faster
than xfs-DAX and 3.8× faster than baseline for 512 B
overwrite, since it performs in-place updates. For read
operations, data protection adds 70% overhead because it
verifies the data checksum before returning to the user.

Figure 7 breaks down the latency for NOVA with full
protection (“w/ MP+DP+WP”). For create, inode allocation
and appending to the log consumes 48% of latency, due
to inode/log replication and checksum calculation. For

4 kB append and overwrite, data protection has almost the
same latency as memory copy (memcpy_nocache), and
it accounts for 31% of the total latency in 512 B overwrite.

Figure 8 shows FIO [4] measurements for the multi-
threaded read/write bandwidth of the file systems. For
writes, NOVA’s relaxed mode achieves the highest band-
width. With sixteen threads, Metadata protection re-
duces NOVA bandwidth by 24%, data protection impacts
throughtput by 37%, and full protection on NOVA reduces
bandwidth by 66%. For read, all the file systems scale well,
while NOVA data protection incurs 14% overhead on 16
threads, due to checksum verification.

5.4 Macrobenchmarks

We use eight application-level workloads to evaluate
NOVA: Four Filebench [88] workloads (fileserver, var-
mail, webproxy and webserver), two key-value stores
(RocksDB [25] and MongoDB [54]), the Exim email
server [24], and TPC-C running on Shore-MT [39]. Ta-
ble 1 summarizes the workloads.

Figure 9 measures their performance on our three com-
parison file systems and several NOVA configurations, nor-
malized to the NOVA baseline throughput on NVDIMM-N.
NOVA outperforms DAX file systems by between 3% and
4.4×, and outperforms ext4-dataj by between 20% and
17.5×. NOVA achieves larger improvement on metadata-
intensive workloads, such as varmail and Exim, confirming
NOVA’s efficiency on metadata operations.

Adding metadata protection reduces performance by
between 0 and 9% and using the WP bit to reduce scrib-
bles costs an additional 0.1% to 13.4%. Full protection
reduces performance by 2% to 38%, with write-intensive
workloads seeing the larger drops. The figure also shows
that the performance benefits of giving up atomicity in file
operations (“Relaxed mode”) are modest – no more than
6.4%.

RocksDB sees the biggest performance loss because
RocksDB uses LevelDB [20] which has large write ampli-
fication [49]. It also issues many non-page-aligned writes
that trigger copy-on-writes under NOVA. Relaxed modes
avoids the copies, so RocksDB benefits from relaxed mode
more than other workloads.

On the PCM configuration, fileserver, webserver and
RocksDB show the largest performance drop. This is
because fileserver and RocksDB are write-intensive and
saturate PCM’s write bandwidth, and webserver is read-
intensive and PCM’s read latency limits file systems’ per-
formance.

Compared to other file systems, NOVA is more sensitive
to NVMM performance, because it has lower software
overhead and reveals the underlying NVMM performance
more directly. Overall, the NOVA baseline outperforms
other DAX file systems by 1.9× on average, and adding

12 2017/5/23



Fileserver Varmail Webproxy Webserver RocksDB MongoDB Exim TPCC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

(a) NVDIMM-N

xfs-DAX ext4-DAX ext4-dataj NOVA baseline w/ MP w/ MP+WP w/ MP+DP w/ MP+DP+WP Relaxed mode

Fileserver Varmail Webproxy Webserver RocksDB MongoDB Exim TPCC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

to
 N

V
D

IM
M

-N

(b) PCM

Figure 9: Application performance on NOVA The costs of reliability and the benefits of relaxed mode are both smaller for
applications. Read-intensive workloads (e.g., web-proxy) show little change. Reliability impacts the performance of databases
and key-value stores more.

Application Data size Notes

Filebench-fileserver 64 GB R/W ratio: 1:2
Filebench-varmail 32 GB R/W ratio: 1:1
Filebench-webproxy 32 GB R/W ratio: 5:1
Filebench-webserver 32 GB R/W ratio: 10:1
RocksDB 8 GB db_bench’s overwrite test
MongoDB 10 GB YCSB’s 50/50-read/write
Exim 4 GB Mail server
TPC-C 26 GB The ’Payment’ query

Table 1: Application Benchmarks
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Figure 10: NVMM storage utilization. NOVA file system
utilization by a large file server workload.

full protection reduces performance by 11% on average
compared to the baseline.

5.5 NVMM storage utilization

Protecting data integrity via redundancy inevitably intro-
duces storage overheads. Figure 10 shows the break down
of space that different (meta)data structures occupy in an
aged, 64 GB NOVA file system. Overall, NOVA devotes
14.8% of storage space to improving reliability. Of this,
metadata redundancy accounts for 2.1% and data redun-
dancy occupies 12.7%.

6. Conclusion
We have used NOVA to explore the unique challenges that
improving NVMM file system reliability presents. The
solutions that NOVA implements facilitate backups by
taking consistent snapshots of the file system and provide
significant protection against media errors and corruption
due to software errors.

The extra storage required to implement these changes
is modest, but their performance impact is significant for
some applications. In particular, the cost of checking and
maintaining checksums and parity for file data incurs a
steep cost for both reads and writes, despite our use of
very fast (XOR parity) and hardware accelerated (CRC)
mechanisms. Providing atomicity for unaligned writes is
also a performance bottleneck.

These costs suggest that NVMM file systems should
provide users with a range of protection options that
trade off performance against the level of protection and
consistency. For instance, NOVA can selectively disable
checksum based file data protection and the CR0-based
write protection mechanism. Relaxed mode disables copy-
on-write.

Making these policy decisions rationally is currently
difficult due to a lack of two pieces of information. First,
the rate of uncorrectable media errors in emerging NVMM
technologies is not publicly known. Second, the frequency
and size of scribbles has not been studied in detail. Without
a better understanding in these areas, it is hard to determine
whether the costs of these techniques are worth the benefits
they provide.
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Despite these uncertainties, NOVA demonstrates that
NVMM file system can provide strong reliability guar-
antees while providing high performance and supporting
DAX-style mmap(). It also makes a clear case for devel-
oping special file systems and reliability mechanisms for
NVMM rather than adapting existing schemes: The chal-
lenges NVMMs presents are different, different solutions
are appropriate, and the systems built with these differences
in mind can be very fast and highly reliable.
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