N

N
N

HAL

open science

Dictionary Learning for Deblurring and Digital Zoom

Florent Couzinie-Devy, Julien Mairal, Francis Bach, Jean Ponce

» To cite this version:

Florent Couzinie-Devy, Julien Mairal, Francis Bach, Jean Ponce. Dictionary Learning for Deblurring

and Digital Zoom. [Technical Report] 2011. inria-00627402

HAL 1d: inria-00627402
https://inria.hal.science/inria-00627402v1

Submitted on 28 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00627402v1
https://hal.archives-ouvertes.fr

(will be inserted by the editor)

International Journal of Computer Vision manuscript No.

Dictionary Learning for Deblurring and Digital Zoom

Florent Couzinie-Devy - Julien Mairal -

Received: date / Accepted: date

Abstract This paper proposes a novel approach to im-
age deblurring and digital zooming using sparse local
models of image appearance. These models, where small
image patches are represented as linear combinations of
a few elements drawn from some large set (dictionary)
of candidates, have proven well adapted to several im-
age restoration tasks. A key to their success has been to
learn dictionaries adapted to the reconstruction of small
image patches. In contrast, recent works have proposed
instead to learn dictionaries which are not only adapted
to data reconstruction, but also tuned for a specific
task. We introduce here such an approach to deblur-
ring and digital zoom, using pairs of blurry/sharp (or
low-/high-resolution) images for training, as well as an
effective stochastic gradient algorithm for solving the
corresponding optimization task. Although this learn-
ing problem is not convex, once the dictionaries have
been learned, the sharp/high-resolution image can be
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recovered via convex optimization at test time. Exper-
iments with synthetic and real data demonstrate the
effectiveness of the proposed approach, leading to state-
of-the-art performance for non-blind image deblurring
and digital zoom.
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learning - sparse coding - digital zoom

1 Introduction

With recent advances in sensor design, the quality of
the signal output by digital reflex and hybrid/bridge
cameras is remarkably high. Point-and-shoot cameras,
however, remain susceptible to noise at high sensitiv-
ity settings and/or low-light conditions, and this prob-
lem is exacerbated for mobile phone cameras with their
small lenses and sensor areas. Photographs taken with
a long exposure time are less noisy but may be blurry
due to movements in the scene or camera shake. Like-
wise, although the image resolution of modern cameras
keeps on increasing, there is a clear demand for high-
quality digital zooming from amateur and professional
photographers, whether they crop their family vacation
pictures or use footage from camera phones in news-
casts. Thus, the classical image restoration problems of
denoising, deblurring, multi-frame super-resolution and
digital zooming (also called single-image super-resolution)
are still of acute and in fact growing importance, and
they have received renewed attention lately with the
emergence of computational photography (e.g., [8,12,
16)).

The image deblurring problem is naturally ill-posed:
Indeed, perfect low-pass filters remove all high-frequen-
cy information from images. They are non-invertible
operators, and different sharp images can give rise to
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the same blurry one. Thus, an appropriate image model
is required to regularize the deblurring process. Several
explicit priors for natural images have been proposed in
the past for different tasks in image restoration. Early
work relied on various smoothness assumptions, or im-
age decompositions on fixed bases such as wavelets [20].
More recent approaches include non-local means filter-
ing [1], learned sparse models [6,28,19], piecewise lin-
ear estimator [29], Gaussian scale mixtures [22], fields
of experts [24], kernel regression [26], and block match-
ing with 3D filtering (BM3D) [3]. Pairs of low-/high-
resolution images have also been used as an implicit
image prior in digital zooming tasks [11], and com-
bining the exemplar-based approach with image self-
similarities at different scales has recently led to im-
pressive results [12].

We propose in this paper to build on several of these
ideas with a new approach to non-blind image deblur-
ring (the blur kernel is assumed to be fixed and known)
and digital zooming. Like Freeman et al. [11], we use
training pairs of blurry/sharp or low-/high-resolution
image patches readily available for these tasks to learn
our model parameters. We also exploit learned sparse
local models of image appearance, as in [6,28], which
have been known to be very effective for several im-
age reconstruction tasks. Our method shares some ideas
with the work of Yang et al. [28], but our formulation
combines several novelties that improves the results:

- Whereas the approach of [28] is purely generative
(this model learns how to simultaneously reconstruct
pairs of low- and high-resolution patches), our approach
learns how to reconstruct a high-resolution patch given
a low-resolution one. In essence, the difference is the
same as between generative and discriminative models
in machine learning.

- We present a novel formulation for non-blind im-
age deblurring and digital zooming, combining a linear
predictor with dictionary learning, and show with ex-
tensive experiments on both synthetic and real data
that our approach is competitive with the state of the
art for these two tasks.

- We adapt the stochastic gradient descent of [17]
for solving the corresponding learning problem allowing
the use of large databases of training patches (typically
several millions).

Notation. We define for p > 1 the ¢, norm of
a vector  in R™ as ||, = (X1, |=[i]?)}/?, where
x[i] denotes the i-th coordinate of x. We denote the
Frobenius norm of a matrix X in R"™*" by | X]||p =

(o o0 X[, 4]12)2.

2 Related Work
2.1 Deblurring and Digital Zoom

Blur is a common image degradation, and the literature
on the subject is quite large (see, e.g., [5,8-10,16,26]).
Most existing methods assume a shift-invariant blur op-
erator such that a blurry image B can be modelled as
the convolution of the sharp image S with a fixed blur
kernel k:

B=k=x*S+n, (1)

where n is an additive noise, usually i.i.d. Gaussian with
zero mean. This model, while often satisfactory, does
not take into account the fact that blur due to defocus
or rotational camera motion is not uniform [16]. But,
at least locally, it is sufficient to describe many types of
blurs.

In the noiseless case when the filter is a known im-
perfect low-pass filter—that is, there is no zero in its
Fourier transform, the blurring operator is invertible
and deblurring amounts to inverting the Fourier trans-
form. However, noise is always present in natural im-
ages, and even a small amount dominates the signal in
high frequencies, leading to numerous artefacts. Reg-
ularization methods have been extensively studied to
tackle this problem [14]. They usually impose smooth-
ness constraints on the reconstructed images. The most
recent and effective algorithms in this line of work usu-
ally adopt a two-step approach [4,10,13]: first, a sim-
ple regularized inversion of the blur is performed, then
the resulting image is processed with classical denois-
ing algorithms to remove artefacts. Various denoising
methods have been used for this task: for instance, a
Gaussian scale mixture model (GSM) [13], the shape-
adaptive discrete cosine transform [10], or block match-
ing with 3D-filtering kernel regression [4].

The digital zooming literature has seen in recent
years the development of another line of research, fol-
lowing the exemplar-based method introduced by Free-
man et al. [11]. Correspondences between high-resolu-
tion patches and low-resolution ones are learned by
building a large database of such pairs. This idea has
been successfully exploited by Glasner et al. [12], lead-
ing to state-of-the-art results. Along the same line, but
using sparse image representations instead, pairs of cor-
responding patches are used by Yang et al. [28] to jointly
learn high and low-resolution dictionaries. As shown
in Section 3, the method we propose exploits these
exemplar-based ideas as well, but in a significantly dif-
ferent way.
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2.2 Learned Sparse Representations

Like several recent approaches to image restoration [6,
28], our method is based on the sparse decomposition of

image patches. Using a dictionary matrix D = [dy, ..., d]

in R™*F a signal & in R™ is reconstructed as a linear
combination of a few columns of D, called atoms or
dictionary elements. In typical image processing appli-
cations, m is relatively small, for instance m = 64 for
image patches of size 8 x 8 pixels, and k can be larger
than m, e.g., k = 256. We say that the dictionary D is
well adapted to a vector & when there exists a sparse
vector o in R¥ such that & can be approximated by the
product Da.

Exploiting these types of models usually requires a
“good” dictionary. It can either be prespecified or de-
signed by adapting its content to fit a given set of sig-
nal examples. Choosing prespecified atoms is appealing:
The theoretical properties of the corresponding dictio-
naries can often be analysed, and, in many cases, it
leads to fast algorithms for computing sparse repre-
sentations. This is indeed the case for wavelets [20],
curvelets, steerable wavelet filters, short-time Fourier
transforms, etc. The success of the corresponding dic-
tionaries in applications depends on how suitable they
are to sparsely describe the relevant signals.

Another approach consists of learning the dictionary
on a set of signal examples. The sparse decomposition
of a patch x on a fixed dictionary D can be achieved by
solving an optimization problem called Lasso in statis-
tics [27] or basis pursuit in signal processing [2]:
min ||z — Dall + A, (2)
aeRF
where the code a in R¥ is the representation of « over
the dictionary D, and A is a parameter for controlling
the sparsity of the solution.! Following an idea origi-
nally introduced in the neuroscience community by Ol-
shausen and Field [21], Aharon et al. [6] have empir-
ically shown that learning a dictionary D adapted to
natural images could lead to better performance for
image denoising than using off-the-shelf ones. For a
database of n patches of size m, a dictionary is learned
by solving the following optimization problem

1 n

min = — x; — D2 + M a1, 3
peliin_, o D e~ Dol + Al 3)
where x; is the i-th patch of the training set, and «;
is its associated sparse code. To prevent the columns

1 It is well known that ¢; regularization yields a sparse
solution for «, but there is no direct analytic link between
the value of A and the corresponding effective sparsity that it
yields.

of D from being arbitrarily large (which would lead
to arbitrarily small values of «), the dictionary D is
constrained to belong to the set D of matrices in R™*¥
whose columns have an ¢ norm less than or equal to
one.

Several algorithms have been designed to address
this problem. They either update D and the vectors «;
in a sequential way [6], or are based on stochastic ap-
proximations [18,21].

2.3 Deblurring with Dictionaries

Several methods using dictionaries for deblurring have
been presented in recent years [28,29]. Yu et al. [29],
while not learning a dictionary as presented in the pre-
vious section, uses orthogonal basis obtained with prin-
cipal component analysis (PCA). By “learning” several
such dictionaries (one for each edge direction), and by
choosing the best dictionary for each patch, the sharp
patch can be reconstructed.

In the pioneering work by Yang et al. [28], a pair of
dictionaries (Dj,Dy) is used, one dictionary for prepro-
cessed blurred patches and the other for sharp patches.
The preprocessing consists in the concatenation of ori-
ented high-pass filters (gradients and Laplacian filters).
During training, D and Dy are learned for representing
simultaneously (with the same sparse code) the sharp
patches with Dy and the preprocessed blurred patches
with Dy. At test time, given a new preprocessed blurry
patch @, a sparse code « is obtained by decomposing x
using Dy, and ones hopes Dy to be a good estimate
of the unknown sharp patch.

This method, while appealing by its simplicity, suf-
fers from an asymmetry between training and testing:
Whereas in the learning phase, both blurred and sharp
patches are used to obtain the sparse codes, at test time
the code is only computed using the blurry patches. Our
method addresses this problem by a different training
formulation. Moreover preprocessing the data has em-
pirically not shown to be necessary.

3 Proposed Approach

We show in this section how to learn dictionaries ada-
pted to the deblurring and digital zoom tasks. As in
exemplar-based methods [11,12,28], we are given a train-
ing set of n pairs of patches (obtained from pairs of
blurry/sharp images), that are used to estimate model
parameters. Unlike the classical dictionary learning prob-
lem of Eq. (3) which is unsupervised, our deblurring and
digital zoom formulation is therefore supervised, trying
to predict the sharp patches from the blurry ones.
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To predict a sharp pixel value, it is necessary to
observe neighbouring blurry pixels. Sharp patches and
blurry patches may therefore have different sizes, which
we denote respectively by m;, and mg, with m; larger
than ms. During the test phase, we observe a test im-
age B and try to estimate the underlying sharp image S
according to Eq. (1), assuming of course that its blur is
of the same nature as the one used during the training
phase. The following sections present different formula-
tions to recover an estimate of S.

3.1 Linear Model

Blurring is, at least locally, a linear operation resulting
from the convolution of a sharp image with a filter.
When the support of the blur kernel is small compared
to the patch sizes ms and my, one can assume a linear
relation between the blurry and sharp patches. Thus,
a simple approach to the deblurring problem consists
of learning how to invert this linear transform with a
simple ridge regression model.

Training Step: A training set (b;,s;),i=1,...,n
of pairs of blurry/sharp patches is given. The training
step amounts to finding the matrix W in R > that
solves the following optimization problem:

n

D llsi = W13+ ul| W7, (4)

i=1

. 1
min  —
WeR™sXmb N,
where |[W||r denotes the Frobenius norm of the ma-
trix W, n is the number of training pairs of patches,
and p is a regularization parameter, which prevents
overfitting on the training set and ensures that the
learning problem is well posed. When n is very large
(several millions), overfitting is unlikely to occur and
setting p to a small value (e.g., p = 1078 in our exper-
iments) leads to acceptable results in practice. For this
reason, and for simplifying the notation, we drop the
term p||W/||% in the rest of the paper.

Testing Step: The parameters W are now fixed,
and we are given a noisy test image B, the goal being
to recover a sharp estimate S. However, as mentioned
in Section 2, the noise dominates the signal in high
frequencies, and in practice the linear model, which ba-
sically tries to invert the blur operator, leads to poor
results despite the large amount of training data. Im-
provements can be achieved using recent denoising al-
gorithms, either by pre-processing B to remove some of
its noise, and/or by post-processing the sharp estimate
to remove artefacts.

We now pre-process B and call B its denoised ver-
sion, which is obtained with a denoising algorithm [19],

and respectively denote by b; and s; the patches of B

and S centered at the pixel 7, using any indexing of the
image pixels. Note that the patches s; are here different
from the ones in the training set, even though we use
for simplicity the same notation. We assume with our
learned linear model that the relation s; =~ Wf)i holds
for the patch indexed by i. According to this model,
the problem of reconstructing the sharp image S can
be written as:

1 & _
in — ; — Wb, |2, 5
mn - ;HS 5 (5)

where ng is the number of patches in the image S. By
using such a local linear model, and since the patches
overlap, each pixel of the image S admits as many pre-
dictions as patches it belongs to. The solution of Eq. (5)
is the average of the different predictions at each pixel,
which is a classical way of aggregating estimates in
patch-based methods [6].

This model is easy to optimize and to understand
but has several limitations. First, small mistakes made
during the denoising process can be amplified by the
deblurring step.

Second, when the blur kernel totally suppresses some
of the high frequencies of the image, putting them to
zero, one cannot recover them with a local linear model:
in the Fourier domain it correspond to a multiplication
of the nullified coefficient by a finite number. This is one
of the motivations for introducing a nonlinear model
based on sparse representations to overcome these lim-
itations.

3.2 Dictionary Learning Formulation

In a recent paper, Yang et al. [28] have shown that
learning multiple dictionaries to establish correspon-
dences between low- and high-resolution image patches
is an effective approach to digital zoom. Following this
idea, we propose to learn a pair of dictionaries Dy in
R™*k and Dy, in R™** to reconstruct patterns that
the linear model presented in the previous section can-
not recover.

Training step: Given again a training set (b, s;),
i =1,...,n of pairs of blurry-noisy /sharp patches, we
address

min li”s- — Wb, — D,a*(b;, D)3 (6)
D,eD.D. W - 7 7 s 79 b)ll2s
where a*(b;, Dy) is the solution of the following sparse
coding problem

o*(b;, Dy) £ argmin ||b; — Dyar||3 + Allex||s, (7)
acRk
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which is unique and well defined under a few reason-
able assumptions on the dictionary D; (see [18] and
references therein for more details).? The patch b; is
a denoisied version of b;. The matrices D, and Dy
are two dictionaries jointly learned such that for all i,
Wb, + D,a*(b;,Dy) is a good estimator of the sharp
patch s;. Summing two different predictors is a classi-
cal way of combining two models. In this case, we are
hoping that the addition of the dictionary term to the
linear term will permit a better recovery of the high fre-
quencies. The two models are optimized jointly and are
not just an averaging of two independent predictors.

Note that D4 does not need to be regularized in our
formulation. We indeed assume that a large amount
of training data is available and as a consequence our
model does not suffer from overfitting.

Testing step: According to our model, and using
the same notations as in Eq. (5), our estimate S at test
time is achieved by solving the following optimization
problem

1 & -
. — L L D * . D 2
msln Tls Zzzl lsi — Whb; sa”(bi, Dy)l|3, (8)

where s;, b;, b; are respectively here the patches cen-
tered at pixel 7 of the sharp image S, the blurry, noisy
image B and the blurry, denoisied image B.

The optimization problem defined in Eq. (6) is harder
than the classical dictionary learning of Eq. (3) or the
one formulated by Yang et al. [28], but this formulation
presents advantages.

In the work of Yang et al. [28], the sparse coef-
ficients @ are obtained during the training phase by

jointly decomposing blurry patches b; and sharp patches s;

onto two learned dictionaries D and D. Such a model
aims to ensure that there always exists a sparse code «
that both fits the patches b; and s;. However, at test
time, since the sharp patches are not available, the vec-
tors a can only be computed from blurry patches b;,
and the fact that the resulting a should be good for
the corresponding sharp patch s; is not guaranteed.
Our approach does not suffer from this issue since
the sparse coefficients a are always obtained on blurry
patches only, both during the training and testing phase.
We learn the dictionaries Dy and Dy and the linear pre-
dictor W such that s; is well predicted given a patch b;.
Whereas this solves the issue mentioned above, it leads
to more challenging optimization problems than [28].
The optimization method we propose builds upon [17],

2 We have empirically found for our deblurring and super-
resolution tasks on natural image patches and our dictionaries
that the solution of Eq.(7) was always unique. For different
tasks or data, the possible non-uniqueness of the Lasso solu-
tion could be an issue (see [17]).

which provides a general framework for solving such
dictionary learning problems. The method is presented
briefly in Section 4.

We have presented so far a framework adapted to
the deblurring task, where we wanted to obtain a sharp
image from a blurry one. The problem of digital zoom
consists of increasing the resolution of an image, but
can be formulated as a deblurring problem in a simple
way: A low-resolution image can indeed be turned into
a blurry high-resolution image with any interpolation
technique, the task of digital zoom being then to de-
blur this new image. The training pairs of images can
be generated by downsampling high-resolution images.
Note that the antialiasing filter applied during down-
sampling and the choice of the interpolation method
are important. We worked with the antialiasing from
the Matlab function imresize.

4 Optimization

The formulation of Eq (6) for learning a pair of dic-
tionaries Dy and Dy and a linear predictor W for the
deblurring task is a large-scale learning problem, where
many training samples (b;,s;) can easily be available.
The main difficulty in the optimization comes from
the terms a*(b;, D), which are defined as solutions
to the sparse coding problem of Eq. (7). The vectors
a*(b;,Dy) therefore depend on the dictionary Dy, and
are not differentiable with respect to it, preventing us
from using a direct gradient descent method.

However, despite these two drawbacks, it has been
shown in [17] that such problems enjoy a few asymp-
totic properties that make it possible to use stochastic
gradient descent when the number of training samples is
large. Assuming an infinite training set (b;,s;) that are
i.i.d. samples drawn from some probability distribution,
and under mild assumptions, we define the asymptotic
cost function

n

o1 X
f(Db,DS,W)éngxM;||stbesa (bi, Dy)|3,

= E(b,s) [HS — Wb — Dsa*(b, Db)”%],
)

where (b,s) are random variables distributed accord-
ing to the joint probability distribution of low/high-
resolution patches.

The optimization of cost functions that have the
form of an expectation over a supposedly infinite train-
ing set is usually tackled with stochastic gradient tech-
niques (see [17,18] and references therein), that are iter-
ative procedures drawing randomly one element of the
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training set at a time. Of course training sets are in
practice finite, but we have empirically obtained good
results by optimizing on a large training set of 10 mil-
lions of training patches. This is indeed the approach
proposed in [17] for such problems, from which the fol-
lowing proposition can be derived.

Proposition 1 [Differentiability of f] Assume that
the training data (b,s) admits a continuous probability
density, and assume the same hypotheses on the dictio-
nary Dy as in [17]. Then, [ is differentiable and

Vw/f = —Epg2(s — Dsa* — Wb)b],

Vp.f = —Epg2(s — D;a* — Whb)a*"],

Vp,f = —Ewps2(b8" — Dy — DB 7)),
(10)

where a* denotes a*(b,Dy), and

—(D{yDpa) "D, (s—Dsa*~Wh),
(11)

where A denotes the indices of the nonzero coefficients
of a*, for any vector u, the vector uy contains the val-
ues of the vector u corresponding to the indices A, and
for any matriz U, the matriz U, contains the columns
of U corresponding to the indices A.

Bhc =0and B} =

Algorithm 1 presents our method for learning D, W
and Dy. It is a stochastic gradient descent algorithm,
which adapts [17] to our formulation. It draws randomly
one element of the training set at each iteration, com-
putes the terms inside the expectations of Eq. (10), and
moves the parameters Dy, W, Dy, one step in these di-
rections.

Since Dy, is constrained to be in the set D defined in
Eq. (3), an orthogonal projection on this set is required
at each iteration of the algorithm. It is denoted by IIp.

To improve the efficiency of the algorithm, we use a
classical heuristic often referred to as : Instead of draw-
ing a single pair of the training set at the same time,
we draw 7 of them, e.g., n = 500, compute 7 direc-
tions given by Eq. (10), and move the model parameters
Dy, D,, W in the average direction. This improves the
stability of the stochastic gradient descent algorithm,
and experimentally gives a faster convergence. Since
our optimization problem is not convex, it requires a
good initialization. We proceed as follows: (i) We learn
a dictionary Dj using the unsupervised formulation of
Eq. (3) with the software® accompanying [18] on the
set of patches b;. (ii) We fix Dy and optimize Eq. (6)

3 The SPAMS toolbox is an open-source software available
at: hitp://www.di.ens.fr/willow/SPAMS/

Algorithm 1 Dictionary Learning for Deblurring and
Digital Zoom

Require: (b;,s;), ¢ = 1,...,n (training set); \,u € R (pa-
rameters); Dy € D (initial “blurry” dictionary), D (initial
“sharp” dictionary); T (number of iterations); to, p (learn-
ing rate parameters for the stochastic gradient descent).
fort =1to 7T do

Draw (by,s¢) from the training set.

Sparse coding: compute a* 2 a* (b, Dy).

Compute the active set: A < {j : a*[j] # 0}.

Compute 3* according to Eq. (11).

Choose the learning rate p; < t—jL%O

Update parameters:

W — W + pi(s: — Dea* — Why)b?,
D; < D + pi(st — Dsa* — Why)a* 7T,
D, « Ilp [Db +p:(bB*T — Dyar BT — Dbﬁ*a*T)]

end for
return (D;,D,, W) (learned model parameters).

with respect to W and Dy, which is a convex optimiza-
tion problem. In experiments, this procedure provides
us with a good initialization.

5 Experiments

We present here experimental results obtained with our
method and comparisons with state-of-the-art meth-
ods. In all our experiments, after an initialization step
described in the previous section, we use the stochas-
tic gradient descent algorithm with one pass over a
database of approximately 10 millions of training patches,
which are extracted from a set of natural images. All
the images from this dataset are unrelated with the im-
ages used for testing our method. Our implementation
is coded in C++ and Matlab. Learning a dictionary
takes usually a few hours on a recent computer, while
testing an image is faster (less than one minute for most
of our test images).

5.1 Non-Blind Deblurring with Isotropic Kernels

To compare our method for the non-blind deblurring
task, we have chosen a classical set of images and types
of blurs, which has been used in several recent im-
age processing papers (see [29] and references therein).
Even though addressing such a synthetic non-blind de-
blurring task of course slightly deviates from real restora-
tion problems with digital cameras, it is still an active
topic in the image processing community, and has in
fact proven useful in the past, leading to high-impact
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Table 1 Experiments settings for the non-blind deblurring.

| Exp. | Blur kernel k | noise o2 |
1 9 x 9 uniform blur 0.308
2 k(z1,22) = 1/(1 + 23 + 23) 2
3 k(z1,72) = 1/(1 + 22 + 22) 8
4 k=[14641]T[1464 1]/256 49
5 Gaussian blur of variance op, = 1 25
6 Gaussian blur of variance o, = 2 25

applications in astronomic imaging [25] for example (see
Section 5.2).

The different combinations of blurs and noises are
detailed in Table 5.1, with the shape of the blur ker-
nel and the variance of the noise (which is Gaussian
and white). They are used in other papers and go from
strong-blur /weak-noise to weak-blur /strong-noise cases.

For each blur level, we have generated pairs of blurry/sh

images from our training database, and learned dictio-
naries of size k = 512 elements. We have observed that
the results quality usually improves with the dictionary
size, 512 being a good compromise between quality and
computational cost. Since our database is large, the pa-
rameters p is always set to a negligible value, ;1 = 1078,
The size of patches mg and m; are respectively set
to 7 and 11 for all experiments. The only parameter
which should be carefully tuned to obtain good results
is the regularization parameter A. Following [4,10,13],
we have manually chosen a value of A via a rough grid
search for each type of blur and used it for every image.
We report quantitative results in Table 5.1 in terms of
improvement in signal-to-noise ratio (ISNR),* and com-
pare our method to the classical Richardson-Lucy algo-
rithm [23], and to recent state-of-the-art methods [4,10,
16]. A few values are missing in the table: these exper-
iments were not done by the authors of the papers. We
observe that our method is competitive or better than
the state of the art in experiments 2,3,4,5,6, where
the supports of the blur kernels are relatively small. On
the contrary, our algorithm is significantly behind other
approaches in the case 1, probably because our patches
are too small compared to the kernel size. The simple
linear model while not at the state of the art, is giv-
ing surprisingly good results for most of the blurs. Its
combination with the dictionaries shows a significant
improvement, leading to state-of-the-art performances.
Qualitative results are presented in Figures 1, 2 and 3.

4 Denoting by MSE the mean-squared-error for images
whose intensities are between 0 and 255, the PSNR is de-
fined as PSNR = 10log,,(2552/MSE) and is measured in
dB. A gain of 1dB reduces the MSE by approximately 20%.

Fig. 5 Anisotropic kernels from [16] used in our experiments.

5.2 Astronomical Images

Our method is not designed specifically for the restora-
tion of natural images. It adapts itself to the training
set and can so be applied on various data. This versa-
tility is illustrated here on astronomical imaging, which

arp

1S a field where non-blind deblurring has had a major
industrial impact. The experiment setting is based on a
classical astronomical case. A star image has to be re-
covered from a blurred and noisy version of it. The blur
kernel is the Hubble Space Telescope kernel as given
in [25]. The additive noise is Gaussian. The training set
is constructed from several others star images.

Figure 4 presents the results with several deblurring
algorithm. Our method result is quantitatively better
than the other algorithms: While the two algorithms
adapted to natural images [4,15] gives a PSNR of 30.8
and 31.3, our method gets 33.5. In particular, our al-
gorithm manages to recover really high values on the
brightest stars. This is not surprising, several of these
algorithms use priors that do not fit well astronomical
images, but it validates the capability of our method to
adapt to various data.

5.3 Non-Blind Deblurring with Anisotropic Kernels

While deblurring isotropic blurs is sufficient in many
applications, anisotropic blurring appears in practical
cases, e.g., camera-shaking blur. To test our algorithm
on this setting, we used the kernels from the database
by Levin et al. [16]. The local nature of our algorithm
makes computationally challenging the treatment of large
blurs and so we only worked with downsampled versions
of the proposed kernels (by a factor 2). The 8 kernels
used are shown in Figure 5. White Gaussian noise of
variance 2 is added to the blurry images before deblur-
ring. We compare in Table 3 with the sparse-gradient-
based algorithm from Levin et al. [15] which is, to the
best of our knowledge, the one giving the state-of-the-
art results for this type of kernels.
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Table 2 Isotropic deblurring results in ISNR (PSNR improvement). For each image/experiment, the best result is in bold.
Four values are missing: the results for this experiment were taken from [29], who does not test on the exact same set of images

than us.

|| ||Exp. 1|Exp. 2|Exp. 3|Exp. 4|Exp. 5|Exp .6||Exp. 1|Exp. 2|Exp. 3|Exp. 4|Exp. 5|Exp 6”

Cameraman Lena
PSNR input image 20.76 | 22.35 | 22.29 | 24.7 | 25.53 | 23.44 || 25.84 | 27.57 | 27.35 | 29.00 | 30.74 | 28.97
Richardson-Lucy [23]|| 4.47 | 5.53 | 3.58 | 0.49 | 1.21 | 1.04 4.80 | 5.29 | 2.71 | 0.02 | 0.26 | 0.53
Sparse gradient [15] 7.73 | 6.89 | 4.78 | 2.24 | 2.64 | 2.70 7.02 | 2.83 | 5.44 | 4.06 | 3.30 | 3.33
SA-DCT [10] 8.55 | 8.11 | 6.33 | 3.37 - - 7.79 | 7.55 | 6.10 | 4.49 | 3.56 | 3.46
BM3D [4] 834 | 819 | 6.40 | 3.34 | 3.73 | 3.83 || 7.97 | 7.95 | 6.53 | 4.81 | 4.18 | 4.12
Linear 3.34 | 7.72 | 6.00 | 3.20 | 3.47 | 2.69 3.58 | 7.30 | 5.82 | 4.64 | 3.89 | 3.58
Linear + Dictionary || 4.76 | 8.35 | 6.47 | 3.57 | 3.94 | 3.35 4.83 | 7.79 | 6.13 | 5.16 | 4.34 | 4.17
House Barbara

PSNR input image 24.11 | 26.28 | 26.10 | 28.51 | 30.16 | 28.18 || 22.49 | 23.49 | 23.35 | 24.28 | 25.02 | 23.46
Richardson-Lucy [23]|| 6.46 | 5.86 | 3.68 | 0.04 | 0.25 | 0.59 2.26 | 2.70 | 1.13 | -0.06 | 0.12 | 0.02
Sparse gradient [15] || 10.16 | 8.03 | 6.43 | 4.09 | 3.47 | 3.92 2.88 | 6.87 | 1.51 | 0.57 | 0.66 | 1.11
SA-DCT [10] 10.5 9.02 7.74 4.99 4.14 4.21 4.79 5.45 2.54 1.31 - -

Dabov et al. [4] 10.85| 9.32 | 8.14 | 5.13 | 4.79 | 5.30 || 5.86 | 7.80 | 3.94 | 1.90 | 3.17 | 1.94
Linear 4.25 | 890 | 7.58 | 5.22 | 4.51 | 4.26 239 | 7.18 | 4.27 | 1.86 | 2.89 | 1.56
Linear + Dictionary || 6.99 | 9.32 | 7.71 | 5.74 | 4.98 | 5.09 265 | 7.64 | 4.59 | 2.00 | 3.11 | 1.70

Table 3 Anisotropic deblurring results in mean ISNR
(PSNR improvement) over 5 images. The kernels used are
downsampled versions of those from [16].

Kernel 1 2 3 4
Sparse gradient [15] 9.04 6.91 7.49 | 10.67
Ours 10.67 | 7.17 9.02 6.63
Kernel 5 6 7 8
Sparse gradient [15] 8.64 9.18 | 11.15 | 10.24
Ours 10.52 | 10.03 9.64 7.75

Our method does significantly worse than [15] on
three of these kernels: there are the ones where the ker-
nel is large and we think it is probably due to the local-
ity of our predictor. For the 8 kernels, we worked with
patches of size 13 and it might be not sufficient for too
big kernels.

5.4 Digital Zoom

Following the same experimental protocol than for the
deblurring experiments, we have evaluated our method
for the digital zooming task. The dictionary size is k =
512, and the patch sizes are my = 11 and m, = 7.
Digital zooming is usually done on good quality images,
with a very small noise: for this reason we use a small
regularization parameter )\, which is set to 0.005.

It is always difficult to evaluate quantitatively the
results of digital zoom algorithms. Indeed, upsampling
and downsampling methods are often subject to sub-
pixel misalignments, which are visually imperceptible,
but make important mean square error differences. More-
over, the antialiasing filter that has to be applied during

the downsampling is rarely detailed, making compar-
isons difficult. For this experiment, we used the Matlab
function imresize with a bicubic interpolation to create
the low-resolution images. The choice of the antialias-
ing, which allows to create the training set, is really
important. With a too strong antialiasing our method
might sharpen too much the images, while with a weak
antialiasing it might not deblur enough.

We compare quantitatively with the method from
Yang et al. [28] that also uses dictionaries, proving the
efficiency of the discriminative approach. The dictionar-
ies sizes are the same as ours (512), and the parameter
A is chosen on a validation set of images. This method
works in two steps, first, it predicts a high-resolution
image from a filtered version of the low resolution one
using pairs of dictionaries, then, the image is cleaned
using a backprojection. We compare the results at both
steps with our method in Table 4.

Our method outperforms the full method from Yang
et al. [28] by a small margin. But their results ob-
tained only with dictionaries are significatively worse
than ours. The discriminative learning of the dictio-
naries and the addition of the linear predictor improve
greatly the results. Figure 6 compares our results with
the ones of Yang et al. using one image from [28]. We
have observed that both methods improve significantly
upon the bicubic interpolation and gives similar re-
sults (with the backprojection step for Yang et al. [28]
method).

We have also compared qualitatively our method
with others works: In Figure 7, we present digital zoom-
ing results (by a factor 4) obtained on one image from
[7,12]. Our results are in general slightly better visually
than [7] (see the texture of the baby’s hat for instance),
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blurry image, Richardson-Lucy, sparse gradient [15], SA-DCT [10],

Best seen by zooming on a computer screen.

but slightly behind [12] in terms of sharpness of edges
(e.g. the baby’s mouth). On the other hand, Glasdner

et al. [12]’s algorithm reconstructs sometimes structures

not present in the original image (e.g., square edges in

the baby eye). In textured areas, we perform as good
s [12].

o

Fig. 1 Examples of deblurring and close-up for the case 2. First two lines, from top to bottom, left to right: original image,

our method. Last two lines: close-ups in the same order.

6 Conclusion

In this paper, we have presented a new formulation for
image deblurring and digital zooming using a super-
vised formulation of dictionary learning combined with
a linear predictor. With a stochastic gradient descent
algorithm, our approach is efficient and allows the use
of millions of training samples. Experiments on natural
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Fig. 2 Examples of deblurring for the case 3. First two line, from top to bottom, left to right: original image, blurry image,

Richardson-Lucy, sparse gradient [15], SA-DCT [10],
zooming on a computer screen.

images show that our method is competitive with the
state of the art for the non-blind deblurring and digital
zooming tasks. Future work will consist of extending
the approach to the blind deblurring problem, where
a blur kernel has to be learned at the same time as
the learned dictionaries, and exploiting self-similarities
in images, which have proven to be very successful for
digital zooming [12] and image denoising[19].

our method. Last two lines: close-ups in the same order. Best seen by

Acknowledgements This research was partially supported
by the Agence Nationale de la Recherche (MGA Project) and
the European Research Council (SIERRA and VideoWorld
projects). In addition, Julien Mairal has been supported in
part by the NSF grant SES-0835531 and NSF award CCF-
0939370. The authors would like to thanks Jean-Luc Starck
for sharing the astronomical data used in subsection 5.2 and
Jianchao Yang for providing us with his code of digital zoom-

ing.



Dictionary Learning for Deblurring and Digital Zoom 11

ke

ST

1

Fig. 3 Examples of deblurring for the case 4. From top to bottom, left to right: original image, blurry image, Richardson-Lucy,
sparse gradient [15], SA-DCT [10], our method. Best seen by zooming on a computer screen.

Table 4 Digital zoom (by a factor 2) quantitative results in References

PSNR. We present two values for Yang et al. method: the

first one is the result given by their dictionaries, the second 1. Buades, A., Coll, B., Morel, J.: A non-local algorithm for
one is obtained by adding a backprojection algorithm to the

e ! ! US image denoising. In: Proceedings of the IEEE Conference
dictionaries. For each image, the best result is in bold.

on Computer Vision and Pattern Recognition (CVPR)
(2005)

2. Chen, S., Donoho, D., Saunders, M.: Atomic decomposi-
tion by basis pursuit. STAM Journal on Scientific Com-
puting 20, 33-61 (1999)

3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image
Denoising by Sparse 3-D Transform-Domain Collabora-

| [[Cubic spline[Yang et al. [28]] Ours |
Lena 31.91 32.13 / 33.06 |33.31
Girl 31.44 31.48 / 31.93 [32.00
Flower 38.48 38.69 / 39.59 [39.92
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Fig. 4 Example of deblurring of an astronomical image. Between parenthesis is indicated the PSNR. First line: Original,
blurred and noisy image (25.3) , Wiener deblurring (29.6). Second line: sparse gradient [15] (31.3), BM3D [4] (30.8), our
method (33.5). Best seen in color.

Fig. 6 Digital zoom by a factor 2. The top line shows the full image and the bottom one a zoom on one section. From left to
right: bicubic interpolation, Yang et al. [28] (dictionary only), Yang et al. [28] with backprojection, our results
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Fig. 7 Digital zoom by a factor 4. From left to right: bicubic interpolation, Fattal et al [7], Glasner et al. [12], our results.
Best seen by zooming on a computer screen.
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