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Abstract This paper proposes a novel approach to im-
age deblurring and digital zooming using sparse local

models of image appearance. These models, where small

image patches are represented as linear combinations of

a few elements drawn from some large set (dictionary)

of candidates, have proven well adapted to several im-
age restoration tasks. A key to their success has been to

learn dictionaries adapted to the reconstruction of small

image patches. In contrast, recent works have proposed

instead to learn dictionaries which are not only adapted
to data reconstruction, but also tuned for a specific

task. We introduce here such an approach to deblur-

ring and digital zoom, using pairs of blurry/sharp (or

low-/high-resolution) images for training, as well as an

effective stochastic gradient algorithm for solving the
corresponding optimization task. Although this learn-

ing problem is not convex, once the dictionaries have

been learned, the sharp/high-resolution image can be
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recovered via convex optimization at test time. Exper-
iments with synthetic and real data demonstrate the

effectiveness of the proposed approach, leading to state-

of-the-art performance for non-blind image deblurring

and digital zoom.
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1 Introduction

With recent advances in sensor design, the quality of

the signal output by digital reflex and hybrid/bridge

cameras is remarkably high. Point-and-shoot cameras,

however, remain susceptible to noise at high sensitiv-
ity settings and/or low-light conditions, and this prob-

lem is exacerbated for mobile phone cameras with their

small lenses and sensor areas. Photographs taken with

a long exposure time are less noisy but may be blurry

due to movements in the scene or camera shake. Like-
wise, although the image resolution of modern cameras

keeps on increasing, there is a clear demand for high-

quality digital zooming from amateur and professional

photographers, whether they crop their family vacation
pictures or use footage from camera phones in news-

casts. Thus, the classical image restoration problems of

denoising, deblurring, multi-frame super-resolution and

digital zooming (also called single-image super-resolution)

are still of acute and in fact growing importance, and
they have received renewed attention lately with the

emergence of computational photography (e.g., [8,12,

16]).

The image deblurring problem is naturally ill-posed:
Indeed, perfect low-pass filters remove all high-frequen-

cy information from images. They are non-invertible

operators, and different sharp images can give rise to
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the same blurry one. Thus, an appropriate image model

is required to regularize the deblurring process. Several

explicit priors for natural images have been proposed in

the past for different tasks in image restoration. Early

work relied on various smoothness assumptions, or im-
age decompositions on fixed bases such as wavelets [20].

More recent approaches include non-local means filter-

ing [1], learned sparse models [6,28,19], piecewise lin-

ear estimator [29], Gaussian scale mixtures [22], fields
of experts [24], kernel regression [26], and block match-

ing with 3D filtering (BM3D) [3]. Pairs of low-/high-

resolution images have also been used as an implicit

image prior in digital zooming tasks [11], and com-

bining the exemplar-based approach with image self-
similarities at different scales has recently led to im-

pressive results [12].

We propose in this paper to build on several of these

ideas with a new approach to non-blind image deblur-
ring (the blur kernel is assumed to be fixed and known)

and digital zooming. Like Freeman et al. [11], we use

training pairs of blurry/sharp or low-/high-resolution

image patches readily available for these tasks to learn
our model parameters. We also exploit learned sparse

local models of image appearance, as in [6,28], which

have been known to be very effective for several im-

age reconstruction tasks. Our method shares some ideas

with the work of Yang et al. [28], but our formulation
combines several novelties that improves the results:

- Whereas the approach of [28] is purely generative

(this model learns how to simultaneously reconstruct

pairs of low- and high-resolution patches), our approach
learns how to reconstruct a high-resolution patch given

a low-resolution one. In essence, the difference is the

same as between generative and discriminative models

in machine learning.

- We present a novel formulation for non-blind im-

age deblurring and digital zooming, combining a linear

predictor with dictionary learning, and show with ex-

tensive experiments on both synthetic and real data
that our approach is competitive with the state of the

art for these two tasks.

- We adapt the stochastic gradient descent of [17]

for solving the corresponding learning problem allowing
the use of large databases of training patches (typically

several millions).

Notation. We define for p ≥ 1 the ℓp norm of

a vector x in R
m as ‖x‖p = (

∑m
i=1 |x[i]|

p)1/p, where
x[i] denotes the i-th coordinate of x. We denote the

Frobenius norm of a matrix X in R
m×n by ‖X‖F =

(
∑m

i=1

∑n
j=1 |X[i, j]|2)1/2.

2 Related Work

2.1 Deblurring and Digital Zoom

Blur is a common image degradation, and the literature

on the subject is quite large (see, e.g., [5,8–10,16,26]).

Most existing methods assume a shift-invariant blur op-

erator such that a blurry image B can be modelled as
the convolution of the sharp image S with a fixed blur

kernel k:

B = k ∗ S+ n, (1)

where n is an additive noise, usually i.i.d. Gaussian with
zero mean. This model, while often satisfactory, does

not take into account the fact that blur due to defocus

or rotational camera motion is not uniform [16]. But,

at least locally, it is sufficient to describe many types of
blurs.

In the noiseless case when the filter is a known im-

perfect low-pass filter—that is, there is no zero in its

Fourier transform, the blurring operator is invertible

and deblurring amounts to inverting the Fourier trans-
form. However, noise is always present in natural im-

ages, and even a small amount dominates the signal in

high frequencies, leading to numerous artefacts. Reg-

ularization methods have been extensively studied to
tackle this problem [14]. They usually impose smooth-

ness constraints on the reconstructed images. The most

recent and effective algorithms in this line of work usu-

ally adopt a two-step approach [4,10,13]: first, a sim-

ple regularized inversion of the blur is performed, then
the resulting image is processed with classical denois-

ing algorithms to remove artefacts. Various denoising

methods have been used for this task: for instance, a

Gaussian scale mixture model (GSM) [13], the shape-
adaptive discrete cosine transform [10], or block match-

ing with 3D-filtering kernel regression [4].

The digital zooming literature has seen in recent

years the development of another line of research, fol-
lowing the exemplar-based method introduced by Free-

man et al. [11]. Correspondences between high-resolu-

tion patches and low-resolution ones are learned by

building a large database of such pairs. This idea has

been successfully exploited by Glasner et al. [12], lead-
ing to state-of-the-art results. Along the same line, but

using sparse image representations instead, pairs of cor-

responding patches are used by Yang et al. [28] to jointly

learn high and low-resolution dictionaries. As shown
in Section 3, the method we propose exploits these

exemplar-based ideas as well, but in a significantly dif-

ferent way.
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2.2 Learned Sparse Representations

Like several recent approaches to image restoration [6,

28], our method is based on the sparse decomposition of

image patches. Using a dictionary matrixD = [d1, . . . ,dk]

in R
m×k, a signal x in R

m is reconstructed as a linear
combination of a few columns of D, called atoms or

dictionary elements. In typical image processing appli-

cations, m is relatively small, for instance m = 64 for

image patches of size 8 × 8 pixels, and k can be larger

than m, e.g., k = 256. We say that the dictionary D is
well adapted to a vector x when there exists a sparse

vector α in R
k such that x can be approximated by the

product Dα.

Exploiting these types of models usually requires a

“good” dictionary. It can either be prespecified or de-

signed by adapting its content to fit a given set of sig-

nal examples. Choosing prespecified atoms is appealing:

The theoretical properties of the corresponding dictio-
naries can often be analysed, and, in many cases, it

leads to fast algorithms for computing sparse repre-

sentations. This is indeed the case for wavelets [20],

curvelets, steerable wavelet filters, short-time Fourier
transforms, etc. The success of the corresponding dic-

tionaries in applications depends on how suitable they

are to sparsely describe the relevant signals.

Another approach consists of learning the dictionary
on a set of signal examples. The sparse decomposition

of a patch x on a fixed dictionary D can be achieved by

solving an optimization problem called Lasso in statis-

tics [27] or basis pursuit in signal processing [2]:

min
α∈Rk

‖x−Dα‖22 + λ‖α‖1, (2)

where the code α in R
k is the representation of x over

the dictionary D, and λ is a parameter for controlling

the sparsity of the solution.1 Following an idea origi-
nally introduced in the neuroscience community by Ol-

shausen and Field [21], Aharon et al. [6] have empir-

ically shown that learning a dictionary D adapted to

natural images could lead to better performance for
image denoising than using off-the-shelf ones. For a

database of n patches of size m, a dictionary is learned

by solving the following optimization problem

min
D∈D,αi∈Rk

1

n

n
∑

i=1

‖xi −Dαi‖
2
2 + λ‖αi‖1, (3)

where xi is the i-th patch of the training set, and αi

is its associated sparse code. To prevent the columns

1 It is well known that ℓ1 regularization yields a sparse
solution for α, but there is no direct analytic link between
the value of λ and the corresponding effective sparsity that it
yields.

of D from being arbitrarily large (which would lead

to arbitrarily small values of α), the dictionary D is

constrained to belong to the set D of matrices in R
m×k

whose columns have an ℓ2 norm less than or equal to

one.

Several algorithms have been designed to address
this problem. They either update D and the vectors αi

in a sequential way [6], or are based on stochastic ap-

proximations [18,21].

2.3 Deblurring with Dictionaries

Several methods using dictionaries for deblurring have
been presented in recent years [28,29]. Yu et al. [29],

while not learning a dictionary as presented in the pre-

vious section, uses orthogonal basis obtained with prin-

cipal component analysis (PCA). By “learning” several
such dictionaries (one for each edge direction), and by

choosing the best dictionary for each patch, the sharp

patch can be reconstructed.

In the pioneering work by Yang et al. [28], a pair of

dictionaries (Db,Ds) is used, one dictionary for prepro-

cessed blurred patches and the other for sharp patches.
The preprocessing consists in the concatenation of ori-

ented high-pass filters (gradients and Laplacian filters).

During training,Db andDs are learned for representing

simultaneously (with the same sparse code) the sharp

patches with Ds and the preprocessed blurred patches
with Db. At test time, given a new preprocessed blurry

patch x, a sparse code α is obtained by decomposing x

using Db, and ones hopes Dsα to be a good estimate

of the unknown sharp patch.

This method, while appealing by its simplicity, suf-

fers from an asymmetry between training and testing:
Whereas in the learning phase, both blurred and sharp

patches are used to obtain the sparse codes, at test time

the code is only computed using the blurry patches. Our

method addresses this problem by a different training
formulation. Moreover preprocessing the data has em-

pirically not shown to be necessary.

3 Proposed Approach

We show in this section how to learn dictionaries ada-

pted to the deblurring and digital zoom tasks. As in
exemplar-basedmethods [11,12,28], we are given a train-

ing set of n pairs of patches (obtained from pairs of

blurry/sharp images), that are used to estimate model

parameters. Unlike the classical dictionary learning prob-
lem of Eq. (3) which is unsupervised, our deblurring and

digital zoom formulation is therefore supervised, trying

to predict the sharp patches from the blurry ones.
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To predict a sharp pixel value, it is necessary to

observe neighbouring blurry pixels. Sharp patches and

blurry patches may therefore have different sizes, which

we denote respectively by mb and ms, with mb larger

than ms. During the test phase, we observe a test im-
ageB and try to estimate the underlying sharp image S

according to Eq. (1), assuming of course that its blur is

of the same nature as the one used during the training

phase. The following sections present different formula-
tions to recover an estimate of S.

3.1 Linear Model

Blurring is, at least locally, a linear operation resulting
from the convolution of a sharp image with a filter.

When the support of the blur kernel is small compared

to the patch sizes ms and mb, one can assume a linear

relation between the blurry and sharp patches. Thus,

a simple approach to the deblurring problem consists
of learning how to invert this linear transform with a

simple ridge regression model.

Training Step: A training set (bi, si), i = 1, . . . , n

of pairs of blurry/sharp patches is given. The training

step amounts to finding the matrix W in R
ms×mb that

solves the following optimization problem:

min
W∈R

ms×mb

1

n

n
∑

i=1

‖si −Wbi‖
2
2 + µ‖W‖2F , (4)

where ‖W‖F denotes the Frobenius norm of the ma-

trix W, n is the number of training pairs of patches,
and µ is a regularization parameter, which prevents

overfitting on the training set and ensures that the

learning problem is well posed. When n is very large

(several millions), overfitting is unlikely to occur and

setting µ to a small value (e.g., µ = 10−8 in our exper-
iments) leads to acceptable results in practice. For this

reason, and for simplifying the notation, we drop the

term µ‖W‖2F in the rest of the paper.

Testing Step: The parameters W are now fixed,

and we are given a noisy test image B, the goal being

to recover a sharp estimate S. However, as mentioned

in Section 2, the noise dominates the signal in high
frequencies, and in practice the linear model, which ba-

sically tries to invert the blur operator, leads to poor

results despite the large amount of training data. Im-

provements can be achieved using recent denoising al-

gorithms, either by pre-processing B to remove some of
its noise, and/or by post-processing the sharp estimate

to remove artefacts.

We now pre-process B and call B̃ its denoised ver-

sion, which is obtained with a denoising algorithm [19],

and respectively denote by b̃i and si the patches of B̃

and S centered at the pixel i, using any indexing of the

image pixels. Note that the patches si are here different

from the ones in the training set, even though we use

for simplicity the same notation. We assume with our

learned linear model that the relation si ≈ Wb̃i holds
for the patch indexed by i. According to this model,

the problem of reconstructing the sharp image S can

be written as:

min
S

1

ns

ns
∑

i=1

‖si −Wb̃i‖
2
2, (5)

where ns is the number of patches in the image S. By

using such a local linear model, and since the patches
overlap, each pixel of the image S admits as many pre-

dictions as patches it belongs to. The solution of Eq. (5)

is the average of the different predictions at each pixel,

which is a classical way of aggregating estimates in
patch-based methods [6].

This model is easy to optimize and to understand

but has several limitations. First, small mistakes made
during the denoising process can be amplified by the

deblurring step.

Second, when the blur kernel totally suppresses some

of the high frequencies of the image, putting them to

zero, one cannot recover them with a local linear model:

in the Fourier domain it correspond to a multiplication

of the nullified coefficient by a finite number. This is one
of the motivations for introducing a nonlinear model

based on sparse representations to overcome these lim-

itations.

3.2 Dictionary Learning Formulation

In a recent paper, Yang et al. [28] have shown that

learning multiple dictionaries to establish correspon-
dences between low- and high-resolution image patches

is an effective approach to digital zoom. Following this

idea, we propose to learn a pair of dictionaries Ds in

R
ms×k and Db in R

mb×k to reconstruct patterns that
the linear model presented in the previous section can-

not recover.

Training step: Given again a training set (bi, si),
i = 1, . . . , n of pairs of blurry-noisy/sharp patches, we

address

min
Db∈D,Ds,W

1

n

n
∑

i=1

‖si −Wb̃i −Dsα
⋆(bi,Db)‖

2
2, (6)

where α⋆(bi,Db) is the solution of the following sparse

coding problem

α⋆(bi,Db)
△

= argmin
α∈Rk

‖bi −Dbα‖22 + λ‖α‖1, (7)
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which is unique and well defined under a few reason-

able assumptions on the dictionary Db (see [18] and

references therein for more details).2 The patch b̃i is

a denoisied version of bi. The matrices Db and Ds

are two dictionaries jointly learned such that for all i,
Wb̃i +Dsα

⋆(bi,Db) is a good estimator of the sharp

patch si. Summing two different predictors is a classi-

cal way of combining two models. In this case, we are

hoping that the addition of the dictionary term to the
linear term will permit a better recovery of the high fre-

quencies. The two models are optimized jointly and are

not just an averaging of two independent predictors.

Note that Ds does not need to be regularized in our

formulation. We indeed assume that a large amount
of training data is available and as a consequence our

model does not suffer from overfitting.

Testing step: According to our model, and using

the same notations as in Eq. (5), our estimate Ŝ at test
time is achieved by solving the following optimization

problem

min
S

1

ns

ns
∑

i=1

‖si −Wb̃i −Dsα
⋆(bi,Db)‖

2
2, (8)

where si,bi, b̃i are respectively here the patches cen-

tered at pixel i of the sharp image S, the blurry, noisy
image B and the blurry, denoisied image B̃.

The optimization problem defined in Eq. (6) is harder

than the classical dictionary learning of Eq. (3) or the

one formulated by Yang et al. [28], but this formulation

presents advantages.
In the work of Yang et al. [28], the sparse coef-

ficients α are obtained during the training phase by

jointly decomposing blurry patches bi and sharp patches si
onto two learned dictionaries Db and Ds. Such a model
aims to ensure that there always exists a sparse code α

that both fits the patches bi and si. However, at test

time, since the sharp patches are not available, the vec-

tors α can only be computed from blurry patches bi,

and the fact that the resulting α should be good for
the corresponding sharp patch si is not guaranteed.

Our approach does not suffer from this issue since

the sparse coefficients α are always obtained on blurry

patches only, both during the training and testing phase.
We learn the dictionariesDb and Ds and the linear pre-

dictorW such that si is well predicted given a patch bi.

Whereas this solves the issue mentioned above, it leads

to more challenging optimization problems than [28].

The optimization method we propose builds upon [17],

2 We have empirically found for our deblurring and super-
resolution tasks on natural image patches and our dictionaries
that the solution of Eq.(7) was always unique. For different
tasks or data, the possible non-uniqueness of the Lasso solu-
tion could be an issue (see [17]).

which provides a general framework for solving such

dictionary learning problems. The method is presented

briefly in Section 4.

We have presented so far a framework adapted to

the deblurring task, where we wanted to obtain a sharp
image from a blurry one. The problem of digital zoom

consists of increasing the resolution of an image, but

can be formulated as a deblurring problem in a simple

way: A low-resolution image can indeed be turned into
a blurry high-resolution image with any interpolation

technique, the task of digital zoom being then to de-

blur this new image. The training pairs of images can

be generated by downsampling high-resolution images.

Note that the antialiasing filter applied during down-
sampling and the choice of the interpolation method

are important. We worked with the antialiasing from

the Matlab function imresize.

4 Optimization

The formulation of Eq (6) for learning a pair of dic-

tionaries Db and Ds and a linear predictor W for the
deblurring task is a large-scale learning problem, where

many training samples (bi, si) can easily be available.

The main difficulty in the optimization comes from

the terms α⋆(bi,Db), which are defined as solutions

to the sparse coding problem of Eq. (7). The vectors
α⋆(bi,Db) therefore depend on the dictionary Db and

are not differentiable with respect to it, preventing us

from using a direct gradient descent method.

However, despite these two drawbacks, it has been

shown in [17] that such problems enjoy a few asymp-
totic properties that make it possible to use stochastic

gradient descent when the number of training samples is

large. Assuming an infinite training set (bi, si) that are

i.i.d. samples drawn from some probability distribution,
and under mild assumptions, we define the asymptotic

cost function

f(Db,Ds,W)
△

= lim
n→+∞

1

n

n
∑

i=1

‖si−Wbi−Dsα
⋆(bi,Db)‖

2
2,

= E(b,s)

[

‖s−Wb−Dsα
⋆(b,Db)‖

2
2

]

,

(9)

where (b, s) are random variables distributed accord-

ing to the joint probability distribution of low/high-

resolution patches.

The optimization of cost functions that have the

form of an expectation over a supposedly infinite train-
ing set is usually tackled with stochastic gradient tech-

niques (see [17,18] and references therein), that are iter-

ative procedures drawing randomly one element of the
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training set at a time. Of course training sets are in

practice finite, but we have empirically obtained good

results by optimizing on a large training set of 10 mil-

lions of training patches. This is indeed the approach

proposed in [17] for such problems, from which the fol-
lowing proposition can be derived.

Proposition 1 [Differentiability of f ] Assume that

the training data (b, s) admits a continuous probability
density, and assume the same hypotheses on the dictio-

nary Db as in [17]. Then, f is differentiable and

∇Wf = −E(b,s)[2(s−Dsα
⋆ −Wb)bT ],

∇Ds
f = −E(b,s)[2(s−Dsα

⋆ −Wb)α⋆T ],

∇Db
f = −E(b,s)[2(bβ

⋆T −Dbα
⋆β⋆T −Dbβ

⋆α⋆T )],

(10)

where α⋆ denotes α⋆(b,Db), and

β⋆
ΛC = 0 and β⋆

Λ = −(DT
bΛDbΛ)

−1DT
sΛ(s−Dsα

⋆−Wb),

(11)

where Λ denotes the indices of the nonzero coefficients

of α⋆, for any vector u, the vector uΛ contains the val-

ues of the vector u corresponding to the indices Λ, and

for any matrix U, the matrix UΛ contains the columns
of U corresponding to the indices Λ.

Algorithm 1 presents our method for learningDs,W

and Db. It is a stochastic gradient descent algorithm,

which adapts [17] to our formulation. It draws randomly
one element of the training set at each iteration, com-

putes the terms inside the expectations of Eq. (10), and

moves the parameters Ds,W,Db one step in these di-

rections.

Since Db is constrained to be in the set D defined in

Eq. (3), an orthogonal projection on this set is required

at each iteration of the algorithm. It is denoted by ΠD.

To improve the efficiency of the algorithm, we use a

classical heuristic often referred to as : Instead of draw-

ing a single pair of the training set at the same time,

we draw η of them, e.g., η = 500, compute η direc-

tions given by Eq. (10), and move the model parameters
Db,Ds,W in the average direction. This improves the

stability of the stochastic gradient descent algorithm,

and experimentally gives a faster convergence. Since

our optimization problem is not convex, it requires a
good initialization. We proceed as follows: (i) We learn

a dictionary Db using the unsupervised formulation of

Eq. (3) with the software3 accompanying [18] on the

set of patches bi. (ii) We fix Db and optimize Eq. (6)

3 The SPAMS toolbox is an open-source software available
at: http://www.di.ens.fr/willow/SPAMS/

Algorithm 1 Dictionary Learning for Deblurring and

Digital Zoom

Require: (bi, si), i = 1, . . . , n (training set); λ, µ ∈ R (pa-
rameters); Db ∈ D (initial “blurry” dictionary), Ds (initial
“sharp” dictionary); T (number of iterations); t0, ρ (learn-
ing rate parameters for the stochastic gradient descent).
for t = 1 to T do

Draw (bt, st) from the training set.

Sparse coding: compute α⋆ △

= α⋆(bt,Db).
Compute the active set: Λ← {j : α⋆[j] 6= 0}.
Compute β⋆ according to Eq. (11).
Choose the learning rate ρt ←

ρ

t+t0
.

Update parameters:

W←W + ρt(st −Dsα
⋆ −Wbt)b

T
t ,

Ds ← Ds + ρt(st −Dsα
⋆ −Wbt)α

⋆T ,

Db ← ΠD

[

Db + ρt
(

bβ⋆T −Dbα
⋆β⋆T −Dbβ

⋆α⋆T
)

]

.

end for

return (Db,Ds,W) (learned model parameters).

with respect to W and Ds, which is a convex optimiza-

tion problem. In experiments, this procedure provides
us with a good initialization.

5 Experiments

We present here experimental results obtained with our

method and comparisons with state-of-the-art meth-

ods. In all our experiments, after an initialization step

described in the previous section, we use the stochas-
tic gradient descent algorithm with one pass over a

database of approximately 10 millions of training patches,

which are extracted from a set of natural images. All

the images from this dataset are unrelated with the im-

ages used for testing our method. Our implementation
is coded in C++ and Matlab. Learning a dictionary

takes usually a few hours on a recent computer, while

testing an image is faster (less than one minute for most

of our test images).

5.1 Non-Blind Deblurring with Isotropic Kernels

To compare our method for the non-blind deblurring

task, we have chosen a classical set of images and types
of blurs, which has been used in several recent im-

age processing papers (see [29] and references therein).

Even though addressing such a synthetic non-blind de-

blurring task of course slightly deviates from real restora-
tion problems with digital cameras, it is still an active

topic in the image processing community, and has in

fact proven useful in the past, leading to high-impact
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Table 1 Experiments settings for the non-blind deblurring.

Exp. Blur kernel k noise σ2

1 9 x 9 uniform blur 0.308
2 k(x1, x2) = 1/(1 + x2

1 + x2
2) 2

3 k(x1, x2) = 1/(1 + x2
1 + x2

2) 8
4 k = [1 4 6 4 1]T [1 4 6 4 1]/256 49
5 Gaussian blur of variance σb = 1 25
6 Gaussian blur of variance σb = 2 25

applications in astronomic imaging [25] for example (see

Section 5.2).

The different combinations of blurs and noises are
detailed in Table 5.1, with the shape of the blur ker-

nel and the variance of the noise (which is Gaussian

and white). They are used in other papers and go from

strong-blur/weak-noise to weak-blur/strong-noise cases.

For each blur level, we have generated pairs of blurry/sharp

images from our training database, and learned dictio-

naries of size k = 512 elements. We have observed that

the results quality usually improves with the dictionary

size, 512 being a good compromise between quality and
computational cost. Since our database is large, the pa-

rameters µ is always set to a negligible value, µ = 10−8.

The size of patches ms and mb are respectively set

to 7 and 11 for all experiments. The only parameter
which should be carefully tuned to obtain good results

is the regularization parameter λ. Following [4,10,13],

we have manually chosen a value of λ via a rough grid

search for each type of blur and used it for every image.

We report quantitative results in Table 5.1 in terms of
improvement in signal-to-noise ratio (ISNR),4 and com-

pare our method to the classical Richardson-Lucy algo-

rithm [23], and to recent state-of-the-art methods [4,10,

16]. A few values are missing in the table: these exper-
iments were not done by the authors of the papers. We

observe that our method is competitive or better than

the state of the art in experiments 2, 3, 4, 5, 6, where

the supports of the blur kernels are relatively small. On
the contrary, our algorithm is significantly behind other

approaches in the case 1, probably because our patches

are too small compared to the kernel size. The simple

linear model while not at the state of the art, is giv-

ing surprisingly good results for most of the blurs. Its
combination with the dictionaries shows a significant

improvement, leading to state-of-the-art performances.

Qualitative results are presented in Figures 1, 2 and 3.

4 Denoting by MSE the mean-squared-error for images
whose intensities are between 0 and 255, the PSNR is de-
fined as PSNR = 10 log10(255

2/MSE) and is measured in
dB. A gain of 1dB reduces the MSE by approximately 20%.

Fig. 5 Anisotropic kernels from [16] used in our experiments.

5.2 Astronomical Images

Our method is not designed specifically for the restora-

tion of natural images. It adapts itself to the training

set and can so be applied on various data. This versa-

tility is illustrated here on astronomical imaging, which
is a field where non-blind deblurring has had a major

industrial impact. The experiment setting is based on a

classical astronomical case. A star image has to be re-

covered from a blurred and noisy version of it. The blur
kernel is the Hubble Space Telescope kernel as given

in [25]. The additive noise is Gaussian. The training set

is constructed from several others star images.

Figure 4 presents the results with several deblurring
algorithm. Our method result is quantitatively better

than the other algorithms: While the two algorithms

adapted to natural images [4,15] gives a PSNR of 30.8

and 31.3, our method gets 33.5. In particular, our al-

gorithm manages to recover really high values on the
brightest stars. This is not surprising, several of these

algorithms use priors that do not fit well astronomical

images, but it validates the capability of our method to

adapt to various data.

5.3 Non-Blind Deblurring with Anisotropic Kernels

While deblurring isotropic blurs is sufficient in many

applications, anisotropic blurring appears in practical
cases, e.g., camera-shaking blur. To test our algorithm

on this setting, we used the kernels from the database

by Levin et al. [16]. The local nature of our algorithm

makes computationally challenging the treatment of large

blurs and so we only worked with downsampled versions
of the proposed kernels (by a factor 2). The 8 kernels

used are shown in Figure 5. White Gaussian noise of

variance 2 is added to the blurry images before deblur-

ring. We compare in Table 3 with the sparse-gradient-
based algorithm from Levin et al. [15] which is, to the

best of our knowledge, the one giving the state-of-the-

art results for this type of kernels.
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Table 2 Isotropic deblurring results in ISNR (PSNR improvement). For each image/experiment, the best result is in bold.
Four values are missing: the results for this experiment were taken from [29], who does not test on the exact same set of images
than us.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp .6 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp .6

Cameraman Lena
PSNR input image 20.76 22.35 22.29 24.7 25.53 23.44 25.84 27.57 27.35 29.00 30.74 28.97
Richardson-Lucy [23] 4.47 5.53 3.58 0.49 1.21 1.04 4.80 5.29 2.71 0.02 0.26 0.53
Sparse gradient [15] 7.73 6.89 4.78 2.24 2.64 2.70 7.02 2.83 5.44 4.06 3.30 3.33
SA-DCT [10] 8.55 8.11 6.33 3.37 - - 7.79 7.55 6.10 4.49 3.56 3.46
BM3D [4] 8.34 8.19 6.40 3.34 3.73 3.83 7.97 7.95 6.53 4.81 4.18 4.12
Linear 3.34 7.72 6.00 3.20 3.47 2.69 3.58 7.30 5.82 4.64 3.89 3.58
Linear + Dictionary 4.76 8.35 6.47 3.57 3.94 3.35 4.83 7.79 6.13 5.16 4.34 4.17

House Barbara
PSNR input image 24.11 26.28 26.10 28.51 30.16 28.18 22.49 23.49 23.35 24.28 25.02 23.46
Richardson-Lucy [23] 6.46 5.86 3.68 0.04 0.25 0.59 2.26 2.70 1.13 -0.06 0.12 0.02
Sparse gradient [15] 10.16 8.03 6.43 4.09 3.47 3.92 2.88 6.87 1.51 0.57 0.66 1.11
SA-DCT [10] 10.5 9.02 7.74 4.99 4.14 4.21 4.79 5.45 2.54 1.31 - -
Dabov et al. [4] 10.85 9.32 8.14 5.13 4.79 5.30 5.86 7.80 3.94 1.90 3.17 1.94

Linear 4.25 8.90 7.58 5.22 4.51 4.26 2.39 7.18 4.27 1.86 2.89 1.56
Linear + Dictionary 6.99 9.32 7.71 5.74 4.98 5.09 2.65 7.64 4.59 2.00 3.11 1.70

Table 3 Anisotropic deblurring results in mean ISNR
(PSNR improvement) over 5 images. The kernels used are
downsampled versions of those from [16].

Kernel 1 2 3 4
Sparse gradient [15] 9.04 6.91 7.49 10.67

Ours 10.67 7.17 9.02 6.63

Kernel 5 6 7 8
Sparse gradient [15] 8.64 9.18 11.15 10.24

Ours 10.52 10.03 9.64 7.75

Our method does significantly worse than [15] on

three of these kernels: there are the ones where the ker-
nel is large and we think it is probably due to the local-

ity of our predictor. For the 8 kernels, we worked with

patches of size 13 and it might be not sufficient for too

big kernels.

5.4 Digital Zoom

Following the same experimental protocol than for the

deblurring experiments, we have evaluated our method
for the digital zooming task. The dictionary size is k =

512, and the patch sizes are mb = 11 and ms = 7.

Digital zooming is usually done on good quality images,

with a very small noise: for this reason we use a small

regularization parameter λ, which is set to 0.005.

It is always difficult to evaluate quantitatively the

results of digital zoom algorithms. Indeed, upsampling

and downsampling methods are often subject to sub-
pixel misalignments, which are visually imperceptible,

but make important mean square error differences. More-

over, the antialiasing filter that has to be applied during

the downsampling is rarely detailed, making compar-

isons difficult. For this experiment, we used the Matlab

function imresize with a bicubic interpolation to create
the low-resolution images. The choice of the antialias-

ing, which allows to create the training set, is really

important. With a too strong antialiasing our method

might sharpen too much the images, while with a weak

antialiasing it might not deblur enough.

We compare quantitatively with the method from
Yang et al. [28] that also uses dictionaries, proving the

efficiency of the discriminative approach. The dictionar-

ies sizes are the same as ours (512), and the parameter

λ is chosen on a validation set of images. This method

works in two steps, first, it predicts a high-resolution
image from a filtered version of the low resolution one

using pairs of dictionaries, then, the image is cleaned

using a backprojection. We compare the results at both

steps with our method in Table 4.

Our method outperforms the full method from Yang

et al. [28] by a small margin. But their results ob-
tained only with dictionaries are significatively worse

than ours. The discriminative learning of the dictio-

naries and the addition of the linear predictor improve

greatly the results. Figure 6 compares our results with

the ones of Yang et al. using one image from [28]. We
have observed that both methods improve significantly

upon the bicubic interpolation and gives similar re-

sults (with the backprojection step for Yang et al. [28]

method).

We have also compared qualitatively our method

with others works: In Figure 7, we present digital zoom-
ing results (by a factor 4) obtained on one image from

[7,12]. Our results are in general slightly better visually

than [7] (see the texture of the baby’s hat for instance),
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Fig. 1 Examples of deblurring and close-up for the case 2. First two lines, from top to bottom, left to right: original image,
blurry image, Richardson-Lucy, sparse gradient [15], SA-DCT [10], our method. Last two lines: close-ups in the same order.
Best seen by zooming on a computer screen.

but slightly behind [12] in terms of sharpness of edges

(e.g. the baby’s mouth). On the other hand, Glasdner

et al. [12]’s algorithm reconstructs sometimes structures

not present in the original image (e.g., square edges in

the baby eye). In textured areas, we perform as good
as [12].

6 Conclusion

In this paper, we have presented a new formulation for

image deblurring and digital zooming using a super-

vised formulation of dictionary learning combined with
a linear predictor. With a stochastic gradient descent

algorithm, our approach is efficient and allows the use

of millions of training samples. Experiments on natural
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Fig. 2 Examples of deblurring for the case 3. First two line, from top to bottom, left to right: original image, blurry image,
Richardson-Lucy, sparse gradient [15], SA-DCT [10], our method. Last two lines: close-ups in the same order. Best seen by
zooming on a computer screen.

images show that our method is competitive with the

state of the art for the non-blind deblurring and digital

zooming tasks. Future work will consist of extending

the approach to the blind deblurring problem, where

a blur kernel has to be learned at the same time as
the learned dictionaries, and exploiting self-similarities

in images, which have proven to be very successful for

digital zooming [12] and image denoising[19].
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Fig. 3 Examples of deblurring for the case 4. From top to bottom, left to right: original image, blurry image, Richardson-Lucy,
sparse gradient [15], SA-DCT [10], our method. Best seen by zooming on a computer screen.

Table 4 Digital zoom (by a factor 2) quantitative results in
PSNR. We present two values for Yang et al. method: the
first one is the result given by their dictionaries, the second
one is obtained by adding a backprojection algorithm to the
dictionaries. For each image, the best result is in bold.

Cubic spline Yang et al. [28] Ours

Lena 31.91 32.13 / 33.06 33.31

Girl 31.44 31.48 / 31.93 32.00

Flower 38.48 38.69 / 39.59 39.92
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