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The advent of interferometric synthetic aperature radar for geophysical studies has resulted in the need for
accurate, efficient methods of two-dimensional phase unwrapping. Inference of the lost integral number of
cycles in phase measurements is critical for three-pass surface deformation studies as well as topographic map-
ping and can result in an order of magnitude increase in sensitivity for two-pass deformation analysis. While
phase unwrapping algorithms have proliferated over the past ten years, two main approaches are currently in
use. Each is most useful only for certain restricted applications. All these algorithms begin with the mea-
sured gradient of the phase field, which is subsequently integrated to recover the unwrapped phases. The
earliest approaches in interferometric applications incorporated residue identification and cuts to limit the
possible integration paths, while a second class using least-squares techniques was developed in the early
1990’s. We compare the approaches and find that the residue-cut algorithms are quite accurate but do not
produce estimates in regions of moderate phase noise. The least-squares methods yield complete coverage but
at the cost of distortion in the recovered phase field. A new synthesis approach, combining the cuts from the
first class with a least-squares solution, offers greater spatial coverage with less distortion in many instances.
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1. INTRODUCTION

Algorithms that relate individual phase measurements
on a two-dimensional field, motivated largely by interest
in interferometric synthetic aperture radar (SAR) tech-
niques, have proliferated over the past ten years.'™
These algorithms seek to infer the integral number of
cycles lost when a phase measurement is made from a
two-dimensional complex signal amplitude observation,
which uniquely identifies only the phase value modulo 2.
We refer to such algorithms here as phase unwrapping, as
distinguished from the use of that term for reconstruction
of signal amplitudes from frequency-domain phase data, a
common problem associated with one-dimensional signal
processing.

We report here a comparison of several of the phase un-
wrapping algorithms in more common use today and
identify and contrast the strengths and weaknesses of
each. We also present a synthesis approach that com-
bines some of the more effective features of the existing
algorithms and can extend the range of phase unwrap-
ping situations amenable to automated solution. Rather
than revolutionize present capabilities, these new algo-
rithms represent another approach for phase unwrapping
procedures that aid in some situations where the existing
algorithms fare poorly. Because we (1) do not review
each existing algorithm comprehensively, (2) do propose
new variations of the algorithms suited to particular
styles of input data, and (3) do not believe that the exist-
ing set of approaches is the final word on phase unwrap-
ping procedures, this article serves more as a progress re-
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port rather than as a review of phase unwrapping
procedures.

The advent of interferometric SAR for geophysical
studies, in particular, has resulted in the need for accu-
rate, efficient methods of two-dimensional phase unwrap-
ping. Radar methods for fast and precise measurement
of topographic data,>® determination of centimeter-level
surface deformation fields,”® and surface velocity
fields'®!! all require that the relative phases over large
areas be known. Strictly speaking, each of these tech-
niques requires, in addition, knowledge of the absolute
phase values;'? however, in practice contextual clues or
known fiducial values (tie points) often permit geophysi-
cal inference with only the relative phases, given that the
phase field is unwrapped.

Although many insights into underlying surface pro-
cesses may be obtained by visual inspection of the initial,
wrapped radar interferogram,'®'4 this unwrapping by eye
may be applied only to simple phase fields without signifi-
cant and complicated structure. Moreover, automated
topographic mapping approaches and the application of
three-pass deformation algorithms are precluded by the
necessity of human interaction on a pixel-by-pixel level
with the interferometric data. For instance, even a
small-area topographic map may contain millions of
meter-spaced posts. Accuracy also drives the require-
ment. In regions of finely spaced fringes, it may be diffi-
cult to estimate the phase manually to better than a large
fraction of a cycle accuracy, whereas performance of the
radar system itself allows accuracies corresponding to
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perhaps 3 deg of phase.'®!® Requirements for future

radar system performance typically imply that the
interferogram phase can be determined to similar if not
better levels.

All of the commonly used phase unwrapping algo-
rithms relate the phase values by first differentiating the
phase field and subsequently reintegrating, adding back
the missing integral cycles to obtain a more continuous
result. The many algorithms proposed for phase un-
wrapping over the past few years fall into two basic
classes: (1) algorithms based on identification of resi-
dues in the wrapped phase field and cuts, or “trees,” con-
necting a group of residues to limit the integration paths,
and (2) algorithms that derive a smooth field by integrat-
ing the gradient of the observations subject to smoothness
constraints as determined by least-squared-difference cri-
teria. Least-squares algorithms may be weighted or un-
weighted; that is, they may consider the closeness of fit as
dependent on ancillary data for each measurement point
such as the radar brightness or correlation, giving greater
weight to those points deemed to be more accurate. Note
that weighted least-squares solutions need not be smooth
or even continuous, if zero weights are assigned to some
points in the phase data. This property will form the ba-
sis of our proposed improvement on the traditional
weighted least-squares solution, consisting essentially of
a method to assign the zero weights that is dependent on
phase observables.

Another solution, derived from a mathematical theory
utilizing a Green’s-function reconstruction,* has recently
been shown to be equivalent to the least-squares solution,
differing only in terms of computational efficiency.'®
Other approaches in today’s literature use nested combi-
nations of least-squares techniques!” and methods em-
ploying measures of data integrity to guide unwrapping
paths,'® as well as several employing neural network or
“genetic” algorithms.!® However, these latter ap-
proaches have not gained widespread acceptance and we
will not analyze them here. They may be useful, or even
outperform the more common algorithms, for specialized
situations.

This paper is constructed as follows. First, we briefly
illustrate and summarize the phase unwrapping problem
and describe the solution approaches of the two principal
algorithm classes. We also introduce a synthesis algo-
rithm that combines features of both classes in a single
algorithm. Next, we illustrate the performance of each
algorithm in a variety of situations that differ in the char-
acter of the phase field to be unwrapped. We conclude by
stating that phase unwrapping remains a significant is-
sue in interferometric SAR analysis and that the synthe-
sis approach presented here contributes one more tech-
nique that is to be added to the collection of algorithms
available for any given application.

2. PHASE UNWRAPPING: THE PROBLEM
AND TWO SOLUTION APPROACHES

In interferometric SAR analysis, two radar images of the
same surface area are acquired and differenced in phase,
forming a radar interferogram. This is usually imple-

Vol. 15, No. 3/March 1998/J. Opt. Soc. Am. A 587

mented by cross multiplying the complex reflectivity at
each point of one image by its corresponding conjugate
value in the second image, so that the interferogram also
preserves useful information about the signal amplitudes.

The complex signal amplitude reflected from each ra-
dar resolution element in a single image consists of the
vector sum of contributions from many individual scatter-
ing elements within that resolution element. Because
the size of the resolution element is typically many wave-
lengths, randomness in the spatial distribution of the
scatterers yields an approximately uniform phase distri-
bution in the resultant coherent sum of the scattered
waves. The phases, however random, are nonetheless
deterministic in that they are calculable from knowledge
of the precise locations of each scattering center. If the
pair of images forming the radar interferogram are dupli-
cates precisely regarding viewing geometry and antenna
polarization, if receiver noise effects are minimal, and if
the surface itself is unchanged between observations, the
two images will be identical and the interferogram will
exhibit zero phase everywhere.

On the other hand, if the viewing geometry is altered
within certain limits, the phase differences comprising
the interferogram will vary across the terrain in a man-
ner related to the surface topography.>?° In addition, if
the viewing geometry is unchanged but one region of the
surface itself is displaced spatially with respect to the rest
of the image, the pixels corresponding to that section will
exhibit phase differences proportional to the line-of-sight
component of the displacement.” Finally, if displace-
ments are not coherent across each resolution element
but instead randomize the positions of each scatterer with
respect to others inside the element, the pair of echoes
will be less well related and the coherence, or correlation,
of the interferogram will decrease,?! resulting in a noise
that may mask the underlying phase signature.

The interferometric phase signatures vary relatively
smoothly from point to point in the interferogram and
may be inverted to recover surface topography, velocity,
or displacement fields. However, the phase observables
are measured modulo 2 7; that is, the integral number of
phase cycles on each measurement is lost. Consequently,
if the surface displacement in a scene is greater than one-
half radar wavelength and the resulting interferogram
phase excursion is greater than one cycle, or if the combi-
nation of interferometric baseline and surface topography
yields more than one fringe of topographic signature, the
interferogram cannot be uniquely inverted without a pro-
cedure to recover the missing cycles. We refer to such
procedures as phase unwrapping.

Phase unwrapping algorithms share a common initial
approach: the phase change, or gradient, from one point
to the next in an interferogram is computed and then in-
tegrated to form a single, smoother phase function incor-
porating the previously missing cycles. To date all algo-
rithms applied to interferometric SAR have used
variations of measured phase gradient integration proce-
dures.

The first constraint on a phase unwrapping algorithm
is that it produce consistent results; that is, the same
phase field should be recovered independently of the di-
rection and order chosen for the phase difference integra-
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tion. The problem can be illustrated by the following set
of measurements, corresponding to a four-by-four pixel in-
terferogram array, each expressed in cycles:

0.2 0.0 0.8 0.0
0.4 0.2 0.2 0.4
0.6 0.8 0.8 0.6
0.8 0.8 0.8 0.8

We assume that the data are adequately sampled; to sat-
isfy Nyquist we cannot have a jump of more than one-half
cycle from point to point. To unwrap these data, we can
integrate the top line across from left to right, adding in-
tegral cycles to ensure that the jump from one point to the
next in all directions is less one-half cycle, and then inte-
grate down each column. The result of this procedure is

0.2 0.0 -0.2 0.0
0.4 0.2 0.2 0.4
0.6 -0.2 -0.2 0.6
0.8 -0.2 -0.2 0.8

Now, transpose the directions of integration. First un-
wrap down the leftmost column and then across each row:

0.2 0.0 -0.2 0.0
0.4 0.2 0.2 0.4
0.6 0.8 0.8 0.6
0.8 0.8 0.8 0.8

These results are different, and only one of these solu-
tions at most can be correct. They differ in that four of
the measurements are one cycle greater in the second in-
stance than in the first. This inconsistency must be
eliminated in any practical algorithm.

A little reflection leads to the conclusion that for a con-
sistent result, any closed line integral in the phase field
must equal zero; that is, the phase along the path must
return to its starting value. Using this approach, the in-
consistency in the above example can be traced to the ex-
istence of residues in the measured phase field, regions
that are self-inconsistent. Consider a short circular
phase path extracted from the above example:

0.4 0.2
0.6 0.8

Integrating clockwise around the loop yields a net —1
cycle instead of the zero sum required by consistency.
We thus term this set of four phase measurements a
negative phase residue, drawing on a mathematical anal-
ogy with Cauchy integration in the complex plane. In
fact any closed path on the phase field containing this
residue will yield the same net —1 cycle unless the path
contains additional residues. If the net charge within
the integration paths is zero, the result will be consistent.
Therefore it is the goal of the phase unwrapping proce-
dure to eliminate potential integration paths enclosing
unequal numbers of positive and negative residues. The
residue-cut algorithms do this explicitly, whereas the
least-squares procedures described to date exhibit arti-
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facts generated by the existence of the residues. The
synthesis approach proposed here incorporates residue
avoidance with the least-squares solution.

Residues derive from two sources in the radar
measurements.! The first is actual discontinuities in the
data. The fringe spacing may be so fine on certain topo-
graphic slopes or from large interobservation displace-
ment as to exceed the Nyquist criterion of half-cycle spac-
ing. The second is noise in the data set, whether from
thermal and other noise sources or from decorrelation due
to baseline length and temporal change in the scene.?%22
Residues from whatever source require compensation in
the phase unwrapping procedure.

A. Residue-Cut Tree Algorithms

The initial residue-cut phase unwrapping procedure pro-
posed by Goldstein et al.! is implemented by first identi-
fying the locations of all residues in an interferogram and
then connecting the residues with branch cuts to prevent
the existence of integration paths that can encircle unbal-
anced numbers of positive and negative residues. Be-
cause of the terminology of branch cuts and the dendritic
appearance of the complete set of cuts, the interconnec-
tion of the residues was referred to as growing “trees” by
the authors.

The residue-cut algorithm of Goldstein et al., in com-
mon use today, is a relatively conservative algorithm in
that it tends to grow rather dense networks of trees in
residue-rich regions. The algorithm initially connects
closely spaced, oppositely charged, pairs of residues with
cuts that prevent integration paths between them, help-
ing to ensure consistency. If all permitted integration
paths enclose equal numbers of positive and negative
residues—that is, each tree connects the same number of
plus and minus charges and is in that sense uncharged—
consistency is assured. Progressively longer trees are
permitted until all residues are connected to at least one
other residue and until the net charge on each tree is
zero. Networks of small trees are used to prevent any
single branch from becoming too long and isolating large
subareas from the rest of the image.

Specifically, the tree-growth algorithm of Goldstein
et al.! consists of the following steps:

1. Residues are identified and marked as either posi-
tive or negative.

2. The interferogram phase field is scanned system-
atically until a residue is located.

3. From that residue, the surrounding area is
searched until another residue is found. A cut is formed
between the residues and the total charge is computed.

4. If the total charge along the tree is zero, the tree is
considered complete and the systematic scan of step (2) is
continued.

5. If the total charge is nonzero, the search continues
for nearby residues. As each residue is encountered, it is
connected to the tree by means of a branch cut and the
total charge is computed. Only when the total charge is
zero is the tree considered complete and the step (2) scan
allowed to proceed.

In the course of the search for residues, all residues, re-
gardless of whether each has been previously assigned to
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a tree, are added to the new tree. This yields the den-
dritic appearance of the cuts and the nomenclature
“trees.”

Finally, when a boundary of the scene is encountered, a
cut is drawn to the boundary and the tree is deemed com-
plete and uncharged. This superconducting property of
the edges prevents overly long trees from isolating large
areas of the image.

A consequence of the indiscriminate branch growth un-
til charge neutrality is achieved for all trees, and all resi-
dues are accounted for, is that in residue-rich regions,
such as heavily laid over or very noisy regions, the tree
growth is so dense that the region is isolated from the re-
mainder of the image and no unwrapped phase estimate
can be obtained. This conservative approach nearly
eliminates mistakes at the expense of providing an incom-
plete unwrapping result.

An unpublished variant of this algorithm was devel-
oped by Atsushi Hiramatsu at Caltech in the early 1990’s;
nevertheless, the algorithm and code survive among the
phase unwrapping underground. In the Atsushi ap-
proach, residues are determined as before, but the trees
are prevented from closing on themselves and thus a so-
lution is forced at every point in the image. This solu-
tion, although consistent and complete, is not always
correct—the algorithm typically generates regional errors
in the noisy and laid over portions of the interferogram
image. In many situations the gain from complete un-
wrapping solutions outweighs the cost of the errors, but
this must be determined on a case-by-case basis.

Another version of the residue-cut algorithm again be-
gins with the method of Goldstein et al.! but allows opera-
tor interaction to edit the trees manually before phase in-
tegration, thus permitting more integration paths than
the conservative initial algorithm allows. In this manner
integration paths may be opened up into areas that were
too densely packed with residues to unwrap. Here again
the trade-off is for increased areal coverage at the ex-
pense of possible errors, but the additional coverage and
errors may be precisely controlled by the skill of the op-
erator in identifying appropriate trees to prune. How-
ever, it transforms the procedure from a fully automated
one to one requiring intense operator interaction on each
interferogram. For limited applications this may be ac-
ceptable. (This editing approach was used by Zebker
et al.? to maximize the unwrapped area in the analysis of
surface deformation resulting from the Landers 1992
earthquake.)

B. Least-Squares Algorithms

The second major approach to phase unwrapping in com-
mon use today was presented by Ghiglia and Romero,?
who applied a mathematical formalism first developed by
Hunt?® to the radar interferometry phase unwrapping
problem. Hunt developed a matrix formulation suitable
for general phase reconstruction problems; Ghiglia and
Romero found that a discrete cosine transform technique
permits accurate and efficient least-squares inversion
even for the very large matrices encountered in the radar
interferometry special case. They examined both un-
weighted and weighted least-squares solution procedures.
In the least-squares methods, the vector gradient of the
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phase field is determined and then integrated, subject to
the constraint of a smooth solution.

One major difference between the residue-cut and
least-squares solutions is that in the residue-cut ap-
proach, only integral numbers of cycles are added to the
measurements to produce the result. In the least-
squares approach, any value may be added to ensure
smoothness and continuity in the solution. Thus the spa-
tial error distribution may differ between the approaches,
and the relative merits of each method must be deter-
mined, depending on the application.

The unweighted algorithm is implemented as follows.
Consider a sampled wrapped phase function ¢; ;, evalu-
ated at discrete points i,j corresponding to the row and
column locations, respectively, of a two-dimensional data
matrix. We want to determine a smooth, unwrapped
phase function ¢, ; that minimizes the difference between
the gradients calculated from the wrapped phase and the
presumed smooth, unwrapped phase. Hunt?? shows that
these may be related by a matrix-vector equation

s=P¢p+n D

in which s is derived from the measured row and column
phase differences of ¢, P is a matrix containing 1’s, —1’s,
and zeros describing row and column differencing opera-
tions, ¢ is the unwrapped phase field, and n is a vector
representing measurement noise. The least-squares so-
lution is the well-known

¢ = (PTP) 1PTs. (2)
Specifically, in the radar interferometry case we minimize
the function
M-2 N-1

2 z (¢i+1,j - ¢i,j - Af,j)2
1=0 j=0

M-1
+ 2
i=0

where A} ; and A} ; are the row differences and column
differences of the wrapped phases, respectively. The row
and column differences are calculated from the wrapped

phases as

N-2
z;) (bijs1— bij — A{j)2, (3)
i=

Af,j = Qit1,; T Py
AY =@ i1~ @ijs (4)

with appropriate cycles added to ensure that —m
< A} A s

The least-squared-error solution is obtained by differ-
entiating Eq. (3) with respect to ¢, ; and setting the re-

sult equal to zero, so that
(Piv1,j — 26 + bi1) + (i jo1 — 26 + & j-1)

= (Af,j - Ajic—l,j) + (A{j - A{j—l)- (5)

Equation (5), the unweighted case, is a discrete form of
Poisson’s equation and may be solved efficiently by using
a discrete cosine transform approach.?

Now, if some points in an interferogram are deemed
more reliable than others, for example, possessing higher
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correlation, a weighted algorithm may be used. Includ-
ing in Eq. (1) a matrix W of weights for each point yields

Ws = WP¢ + n. (6)

The resulting normal equations for the weighted least-
squares problem are then expressed as

¢ = (PTW'WP) 'PTWTWs. (7

Unfortunately, the weighted least-squares equation does
not reduce to the same simple Poisson’s equation form,
and thus the efficient discrete cosine algorithm cannot be
directly applied. Ghiglia and Romero? show, however,
that several iterative approaches using repeated discrete
cosine transforms are yet relatively efficient at achieving
an accurate solution. Following Ghiglia and Romero, we
used conjugate gradient methods to solve Eq. (7) itera-
tively. For the convergence criterion we chose

> |kt — gk 2

all 4, j

> [ghi

all i,j

N

€,

where € is set equal to a conservative value of 10712
which for a single-precision computation ensures that we
are limited by round-off errors.

The accuracy of the solution depends on the choice of
weights to apply to each point of the measured phase.
Choosing the same value for all weights reduces the prob-
lem to the unweighted solution. More typical choices are
functions of the signal-to-noise ratio or the observed inter-
ferometric correlation, both of which give greater empha-
sis to the phase estimates deemed more reliable. Various
methods for selecting weights are described by Pritt.”

All of the least-squares algorithms produce a continu-
ous solution unless zero weights are assumed at some
data points. In fact this constraint is fundamental to the
way the problem is framed. Thus we would expect the
algorithm to perform poorly in the presence of actual dis-
continuities in the underlying phase field, as can be
present if there is any layover or extreme foreshortening
in the radar image, unless the locations of the zero
weights are properly and carefully chosen. Weighted so-
lutions derived from correlation or signal-to-noise mea-
sures can lessen the errors by tying down the solution less
in the discontinuous areas; but some, albeit smaller,
smoothness is assumed everywhere the weights are non-
zero. If the continuity constraint is removed completely
in laid over regions but not in the remainder of the image,
the weighted least-squares solution can minimally distort
the result. This will be the synthesis approach that we
present in Section 3.

One advantage of the least-squares algorithms over
residue-cut algorithms is that results may be obtained
more readily in the residue-rich regions, permitting use
on noisy data that would have been difficult or impossible
to unwrap because of the dense tree network in the Gold-
stein et al.! algorithm. Although the Atsushi algorithm
would force unwrapping in the noisy regions, enough
phase unwrapping errors are often present to make these
data nearly unusable. The least-squares method pro-
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vides estimates in these regions that in many cases are
more accurate than those provided with the Atsushi
residue-cut algorithm.

Neither of the above least-squares algorithms explicitly
utilizes residue information. As we discussed above, the
residues are inherent in any measured data set and must
be accounted for in the phase unwrapping procedure to
ensure consistency and minimize error in the final result.
We will demonstrate in the next section that the existence
of residues in a phase field induces distortion in the least-
squares solution unless they are compensated for. This
compensation forms the basis of a synthesis algorithm
that we will introduce below, which under some condi-
tions permits more complete unwrapping than would be
possible with residue-cut algorithms yet less distortion
than is present under least-squares techniques.

C. Other Existing Algorithms

Additional algorithms proposed for interferometric SAR
phase unwrapping applications include Green’s-function
approaches,? multigrid algorithms,!” methods using esti-
mates of data integrity to guide phase unwrapping
paths,’® and neural-network or genetic algorithms.!®
The Green’s-function methods have recently been shown
to be mathematically equivalent to least-squares
solutions,'® but they differ in claimed computational effi-
ciency. Although it is beyond the scope of the present pa-
per to consider these efficiency issues in detail, a compre-
hensive study of them would be helpful for anyone
considering a large-scale application. The multigrid
methods achieve an increase in efficiency with a nested
procedure for evaluating phase fields on different size
scales, but the fundamental unwrapping considerations
are the same as described in the least-squares algorithms
discussed above. Data integrity algorithms unwrap pref-
erentially towards regions of, say, high correlation, but
without explicit reference to the residue locations. The
genetic algorithms are random-path integration proce-
dures with probabilistic quality metrics that seem to work
well on data with sparse residue distributions, but they
have not received the widespread testing and application
of the residue-cut or least-squares approaches. Thus
they have not yet been challenged by the variety of vexing
phase unwrapping situations, occurring in actual data
analysis, that the more common algorithms have con-
fronted.

3. SYNTHESIS ALGORITHM

In this section we propose a new algorithm for phase un-
wrapping designed to overcome limitations in both of the
above major approaches. As we shall illustrate below,
the principal limitation of the residue-cut method is that
the tree density may become so pronounced that large ar-
eas of the scene cannot be unwrapped. In more extreme
cases the image is subdivided into small, unwrappable is-
lands that we cannot relate to one another. Forcing the
residue-cut algorithm to unwrap the dense regions, as is
done in the Atsushi algorithm, leads to unpredictable and
incorrect phase estimates in the dense areas that may
propagate long distances in the image.
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The strength of the least-squares approach is that
phase values are obtained everywhere in the image. But
we will observe below that errors in the least-squares so-
lutions follow from the assumption that the unwrapped
phase field is everywhere continuous. This will be seen
to induce distortions that tend to underestimate recov-
ered phase slopes. The Goldstein et al.! algorithm does
not suffer from this problem, as the cuts in the surface en-
able the integration to proceed without enforcing continu-
ity at these sites. Adding this capability to the least-
squares result greatly improves performance of the
weighted least-squares approach, and it results in the
synthesis algorithm. In this sense the synthesis ap-
proach is an application of least-squares-solution weights
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defined by the residue-cut algorithm. The methods of so-
lution, once the weights are determined, are identical to
those given in the least-squares discussion above.

We add the capability by first calculating the trees, us-
ing either the Goldstein et al. or the Atsushi residue-cut
algorithm to calculate the surface cuts that define the in-
tegration paths and then adopting zero as the weight for
the points that lie along the trees. If these points are
given zero weight in the unwrapping algorithm, there is
no constraint implying continuity at these points. The
remaining points are weighted according to their inter-
ferometric correlation. Therefore solutions with true dis-
continuities (layover) are permitted, as are solutions in
very noisy areas where the traditional Goldstein et al. al-

0 WRAPPED PHASE (RAD) 2n

Fig. 1. Test data sets for algorithm intercomparison, in wrapped phase (raw interferogram) form. Two sets, (a) and (b), are simulated
data. One contains simple geometric shapes designed to illustrate the importance of residue distributions and proper tree locations, and
one, derived from topographic data, includes layover and thermal noise. The box outlined in the lower left of the scene depicts added
noise. Actual data comprise two more scenes: (c) a very high signal-to-noise interferogram of a fairly flat area in Hawaii and (d) rugged
terrain in central California. Radar brightness appears as the intensity at each point and the phase as color, with one color cycle cor-
responding to one fringe. (a) The simple geometrical target scene includes a pyramid structure that exhibits no phase discontinuities at
its edges, a two-sided ramp structure that is continuous with the background on the left and right edges but discontinuous along the top
and bottom, and a slanted wedge structure with exactly 27 phase change along its length. (b) The simulated topographic interferogram
is most rugged in the upper left-hand corner, leading to significant layover in this area and less elsewhere. Scene (b) possesses a very
high fringe rate, scene (c) a moderate rate, and in scene (d) the background flat-Earth fringes have been removed.
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(c) |||||”H||||||” (d)

0 PHASE ERROR(RAD) 10

Fig. 2. Phase errors after application of four unwrapping algorithms to the geometric-shape data set. (a) Results from the Goldstein
et al.! residue-cut tree algorithm; only a one-cycle error on half of the wedge is generated. The rest of the image unwraps perfectly.
Both the unweighted [(b)] and the weighted [(c)] least-squares algorithms exhibit large distortion fields associated with discontinuities at
the top and bottom of the ramp structure and from the half-wedge that showed the error in the tree case [(a)]. These results are iden-

tical, as the weights assigned were unity everywhere (see text).
cut algorithm here.

gorithm fails to return an answer. The mathematical de-
scription of the algorithm is that of the individual parts
described in the sections above.

The accuracy of the synthesis algorithm, as in the
least-squares solution, depends on the appropriate choice
for the weights accorded each phase estimate. Zero
weight is assigned along the branch cuts of the residue-
cut algorithm, and the remainder of the weights may be
assigned according to correlation or signal strength as
previously mentioned. We have found, though, that the
greatest gain in accuracy follows from the assignment of
the zero weights on the cuts, and the other weights affect
the solution minimally.

It is also true that the synthesis algorithm will gener-
ate errors if the branch cuts defining the zero weights are
placed in error. Unfortunately, no completely reliable al-
gorithm for placing the weights has yet been demon-

The synthesis algorithm [(d)] produces the same result as the residue-

strated. Simply balancing the number of positive and
negative residues along the cuts is an ambiguous method
of cut identification. The search for improved methods of
cut definition will have to continue if algorithms such as
those presented here are to be assuredly effective.

4. PERFORMANCE OF THE ALGORITHMS

In this section we illustrate the performance of the above
algorithms in different phase unwrapping situations and
compose a table that summarizes the relative merits of
each approach. We examine the accuracies achieved and
errors generated by several simple geometrical surface
shapes, as well as interferograms generated by using to-
pographic data and radar imaging geometries leading to
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significant layover. We also inject noise into the simu-
lated data to illustrate performance as a function of
signal-to-noise level.

The performance of both phase unwrapping approaches
has been shown in the existing literature to be excellent
in the case of high signal-to-noise ratio and continuous,
adequately sampled underlying phase fields. In other
words, these cases correspond to very low numbers of
residues. We therefore skip the simple illustrations and
proceed to cases in which the algorithms begin to fail.

We illustrate algorithms on several data sets, compris-
ing simulated data, where we know the true unwrapped
phase field, and also two sets of actual data where the
true phases are unknown. In the former cases we calcu-
late the errors explicitly, whereas for the latter we may
still examine the results visually and comment on algo-
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rithm performance. The simulated data consist of two
scenes, one containing simple geometric shapes designed
to illustrate the importance of residue distributions and
proper tree locations and one derived from topographic
data. The topographic data scene has been used to con-
struct a synthetic interferogram exhibiting layover, and
thermal noise has been added in one region to demon-
strate its deleterious affect. The real data also comprise
two scenes, one a very high signal-to-noise interferogram
of a fairly flat area in Hawaii acquired by NASA’s Space-
borne Imaging Radar—C (SIR-C), which is straightfor-
ward to unwrap by using all algorithms, and one of rug-
ged terrain in Central California acquired by the
European Space Agency’s ERS-1 satellite. This second
data set poses a challenge to all algorithms.

All four input interferograms are shown in wrapped

0 PHASE ERROR (RAD) 10

Fig. 3. Phase errors after application of four unwrapping algorithms to the synthetic topography data set. (a) Results from the Gold-

stein et al.! residue-cut tree algorithm. The algorithm fails to unwrap the heavily laid-over region in the upper-left and part of the noisy
inset and also generates a few local one-cycle (27) error regions. (b) The unweighted least-squares algorithm unwraps the image com-
pletely but exhibits distortion associated with residues from layover and thermal noise. It also underestimates the overall slope of the
scene from left to right. (c) The results from the weighted least-squares algorithm differs in detail but is similar. (d) The synthesis
algorithm produces a complete result much closer to the actual answer than the traditional least-squares approach, although errors
associated with layover in the upper left and the noise in the box remain.
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form in Fig. 1, where in each case we plot the radar
brightness as the intensity at each point and the phase as
color. One color cycle corresponds to one fringe, so that
the underlying fringe density may be compared. The
simple geometrical target scene [Fig. 1(a)] includes a
pyramid structure that exhibits no phase discontinuities
at its edges, a two-sided ramp structure that is continu-
ous with the background on the left and right edges but
discontinuous along the top and bottom, and a slanted
wedge structure with exactly 27 phase change along its
length. We will see that this last target embodies an er-
ror type that no existing algorithm can remove properly.

The simulated topographic interferogram [Fig. 1(b)] is
most rugged in the upper left-hand corner. We have
used an imaging geometry that generates significant lay-
over in this area and less elsewhere. We have also added
noise to a box approximately one quarter the size of the
scene so that we may compare performance in noisy and
noise-free regions—the box is visible and outlined in the
lower left part of the image. For this image the signal-
to-noise ratio in the box is 3 dB, and we examine the ef-
fects of varying noise levels in a subsequent section below.
The two actual data sets [Figs. 1(c) and 1(d)] are the Ha-
waii and the California data, respectively, described
above.

A. Error Magnitudes

In Fig. 2 we plot the phase errors after applying the four
unwrapping algorithms to the geometric-shape data set.
Panel (a) shows the results from the Goldstein et al.!
residue-cut tree algorithm. The algorithm generates
only a one-cycle error on half of the wedge, and the rest of
the image unwraps perfectly. Since exactly 27 of phase
change occurs on the wedge, it is impossible to identify
the end that is continuous with the background in a
wrapped image. Consequently, no algorithm will resolve
this target properly. Similar structures are all too com-
mon in real interferograms, so that there will always be
impossible unwrapping situations.

Both the unweighted [Fig. 2(b)] and the weighted [Fig.
2(c)] least-squares algorithms generate large distortion
fields emanating from discontinuities at the top and bot-
tom of the ramp structure and from the half-wedge that
showed the error in the tree case. These two algorithms
produce identical results because the weights assigned
were unity everywhere. If appropriate weights had been
used, the results would have been superior in the
weighted solution. These synthetic data are assumed to
have equal validity everywhere, leading to the choice of
unit weights in the weighted case. If data were known to
be on the edge of a discontinuity, reducing the weights
here would produce a less distorted result. This is what
the synthesis algorithm is designed to do—identify pos-
sible discontinuities and weight the least-squares solu-
tion appropriately. The synthesis algorithm [Fig. 2(d)]
produces the same result as the residue-cut algorithm for
this scene.

Figure 3 illustrates the difference between the un-
wrapped estimates and the true phase values at each
point for the synthetic-topography data set. In this case
also we can calculate the actual error distribution, be-
cause we know the original unwrapped solution. Again
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Table 1. Rms Errors from Four Algorithms

RMS Phase
Error (rad)

Unweighted Weighted

Goldstein Least- Least-
Region et al.! Squares Squares Synthesis
Scene (a)
Pyramid 0.000002* 0.000002* 0.000002¢ 0.000002¢
Ramp 0.000002* 24.7 24.7 0.00002°
Wedge 1.07¢ 0.92¢ 0.92¢ 1.06°
Scene (b)
Noise-free area
SNR: 1 0.827¢ 54.42 29.6 2.15
SNR: 3 0.756¢ 22.05 17.3 2.15
SNR: 10 0.744¢ 13.03 14.6 2.15
SNR: 30 0.7447 12.74 14.5 2.15
Noisy area
SNR: 1 2.533¢ 35.01 200 2.57
SNR: 3 1.2824 11.84 8.34 1.03
SNR: 10 0.591¢ 4.48 6.14 0.32
SNR: 30 0.543¢ 4.23 6.17 0.27

% Quantization noise only.

b Errors along cuts only.

¢ Half of wedge always one cycle (27) off.
@Includes only unwrapped area.

PHASE (RAD)

Fig. 4. Error signature of a dipole formed by a positive and
negative residue pair.

panel (a) shows the results from the Goldstein et al.l
residue-cut tree algorithm. The algorithm fails to un-
wrap the heavily laid-over region in the upper left and
part of the noisy inset and also generates a few local one-
cycle (2m) error regions. The results are generally accu-
rate, but incomplete, with the exceptions being a few
small parts of the laid-over and the noisy areas. The un-
weighted least-squares algorithm [Fig. 3(b)] produces a
complete result but exhibits distortion associated with
residues generated by layover and thermal noise. It also
underestimates the overall slope of the scene from left to
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right. The results from the weighted least-squares [Fig.
3(c)] differs in detail but is similar. Here we used the
value of the interferogram correlation as the weight for
each point, and the correlation is assumed to be unity ev-
erywhere except in the noise inset, where we calculate it
from the signal-to-noise ratio following Zebker and
Villasenor.2! The synthesis algorithm [Fig. 3(d)] pro-
duces a complete result that is much closer to the actual
answer than with the traditional least-squares approach,
although errors associated with layover in the upper left
and the noise in the box remain.

We calculate the root-mean-squared phase error for
portions of these two synthetic data scenes and present
the results for each of the four algorithms in Table 1. For
the simple geometrical targets, we calculate the error
over the object itself plus a border around the object 30
pixels in size so that the effect of discontinuities may be
counted. For the synthetic topography scene, we calcu-
late the errors in both the noise-free areas and the noise
regions independently. The noise-free areas are still
subject to residues caused by layover. For the Goldstein
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et al.! case, we did not count the areas that did not un-
wrap, so these numbers may be considered lower bounds
on the error.

We note that the Goldstein et al.! algorithm performs
quite well wherever it unwraps, with the single exception
here being the wedge feature. The wedge as chosen here
is ambiguous when shown in wrapped form, as it was de-
vised to exhibit exactly one cycle of phase along its length.
Thus when viewed as a wrapped data set, it appears con-
tinuous at both ends against the background, whereas in
reality only one end can be continuous. This situation
cannot be unwrapped without prior knowledge as to
which end the discontinuity applies to, independent of the
algorithm chosen. In this particular case two residues
are found on the edges halfway along the target, leading
to a cut across the middle of the wedge. Thus half the
wedge unwraps properly with this algorithm, and the
other half is off by one cycle.

The least-squares approaches offer completeness of so-
lution but at the cost of underestimating large-scale
slopes significantly. If we examine the error distribution

0 UNWRAPPED PHASE (RAD) 100

Fig. 5. Unwrapping of an easy scene, the Hawaii SIR-C data, by each of the four algorithms: (a) residue-cut trees, (b) unweighted
least-squares, (c) weighted least-squares, and (d) synthesis. All unwrap completely and get nearly the same result.
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(d)

0 UNWRAPPED PHASE (RAD) 100
Fig. 6. Results of applying the four algorithms [(a) residue-cut trees, (b) unweighted least-squares, (c) weighted least-squares, and (d)
synthesis] to a more difficult unwrapping problem, ERS-1 data over Parkfield, Calif. The residue-cut algorithm leaves significant gaps.
Both of the least-squares algorithms produce subtly different results that significantly underestimate the tilt from upper left to lower
right in the scene. The synthesis algorithm gives a complete answer and recovers the global tilt accurately. There are undoubtedly
errors of ~27 in magnitude in this solution, but they are not visible at this scale.

from the least-squares algorithm in greater detail, we
note that an interesting distortion pattern is produced
from each pair of residues in the input image. Illus-
trated in Fig. 4, the error signal radiates outward from
the residue pair and is reminiscent of an electromagnetic
dipole pattern. The more-complex error fields found in
the more-complicated scenes are a combination of many of
these individual dipole patterns. Therefore local discon-
tinuities in the phase field generate residues and propa-
gate errors throughout the image. These errors decay
with increasing distance from the residue dipole.

The weighted method outperformed the unweighted
method for the noisy region in cases of high noise and is
useful if we know the location of the noisy area and set
the weighting value in this area to be relatively low. For
those areas with discontinuities, the results are poor be-
cause of the least-squares algorithm property to tend to

smooth out the solution to make it everywhere continu-
ous. Therefore this method works poorly for the layover
region. But if we know the location of jumps and we set
the weighting values equal to zero at those discontinui-
ties, we can get a reasonably good solution. Once again,
the shortcoming of the existing least-squares algorithm is
in the choice of proper weights, not in any mathematical
limitations of the approach.

Other techniques for generating zero weights along
cuts have been examined. One approach is to threshold
the correlation coefficients so that values below some cut-
off are set equal to zero. This method works in laid-over
regions, which tend to have low correlation. It will, how-
ever, miss placing cuts along cliffs oriented perpendicular
to the flight path, as well as areas where a phase discon-
tinuity is a result of certain ground motions between in-
terferometric observations. These cases are identified by
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using the synthesis algorithm, which generates weights
without any additional knowledge of the scene character-
istics.

Figures 5 and 6 present the results of applying all four
algorithms to the Hawaii (Fig. 5) and the California (Fig.
6) data. The Hawaii data set unwraps well in all four
cases. But in the case of the California data, the Goldstein
et al.! algorithm leaves significant gaps in coverage. The
unweighted and weighted least-squares algorithms give
complete coverage but do not match the overall slope as
seen in the Goldstein et al. result. Only the synthesis al-
gorithm yields full coverage plus the correct image tilt.

B. Computational Efficiency

In addition to accuracy, computation time is important for
all applications requiring moderate to high throughput.
In Table 2 we give the time required on our Hewlett—
Packard 712 workstation for each of the four scenes, for
the Goldstein et al.! unweighted least-squares, weighted
least-squares, and synthesis algorithms. The variation
among algorithms is quite large, ranging from 2.7 to
1844.5 s. The synthesis algorithm is by far the least ef-
ficient on synthetic data but is comparable to weighted
least-squares for real data. It is likely that optimizing
the convergence criterion could lead to a drastic reduction
in execution time for the weighted least-squares and syn-
thesis approaches.

Table 2. Computational Efficiencies of the
Algorithms

Execution Time (s)

Unweighted Weighted

Goldstein Least- Least-
Scene et al.t Squares Squares Synthesis
A. Geometrical 12.9 19.7 19.7 1223.0
targets
B. Synthetic
topography
SNR: 1 7.2 18.9 225.1 1337.1
SNR: 3 5.2 19.0 224.5 1240.0
SNR: 10 9.0 18.9 224.3 939.7
SNR: 30 5.9 19.7 224.8 949.3
C. Hawaii 2.7 18.8 1844.5% 306.1

D. California 3.2 18.8 231.8 211.7

%Hawaii scene converged with 107'° error after approximately 2 min.
Continuing until 1072 required 30 min.

Table 3. Summary of Algorithm Intercomparisons

Algorithm Coverage  Accuracy Efficiency
Goldstein et al. Limited Excellent Fast
Unweighted least- Complete Much distortion Moderate

squares if many residues
exist
Weighted least- Complete Can be better than Slow
squares unweighted
Synthesis Complete Good/Excellent Slow
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5. CONCLUSIONS

Table 3 summarizes the comparison of the four algo-
rithms that we examined in this paper: the Goldstein
et al.' algorithm, the unweighted least-squares algo-
rithm, the weighted least-squares algorithm, and the syn-
thesis algorithm. The conservative Goldstein et al. algo-
rithm is fast and gives accurate results where it can
unwrap. Errors inherent in certain singular cases such
as the 27 wedge shown above are unwrapped in error by
all algorithms. The algorithm is limited to areas of mod-
erate residue density.

The unweighted least-squares algorithm also is reason-
ably efficient but performs poorly in all but the most be-
nign situations. A significant improvement is afforded
by using weighted algorithms, although a large penalty in
computational time is incurred. Substituting weighted
for unweighted solutions would be a useful trade-off for
analysis of a very few interferograms.

A synthesis algorithm that combines the integration
path isolation of the residue-cut methods with the better
noise-region performance of the least-squares algorithms
yields the greatest coverage with least error. However, it
suffers from the same computational complexity that af-
fects the weighted least-squares algorithm. Nonetheless
it remains the most accurate and complete method avail-
able. Algorithm improvements, along with increases in
the speed of inexpensive computers, may in time amelio-
rate this problem.

Phase unwrapping remains a significant issue in radar
interferometry. Particularly for cases involving large
amounts of data to be processed, the issue will require
further study. However, for scientific analysis of a lim-
ited number of interferograms, the algorithms presented
here may be usefully employed.

Correspondence should be sent to Howard A. Zebker,
tel: 650-723-8067; fax: 650-725-7344; e-mail: zebker
@jakey.stanford.edu.
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