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1 Introduction

Concurrent programming is indispensable. On the one hand, distributed and
mobile environments naturally involve concurrency. On the other hand, there
is a general trend towards multi-core processors that are capable of running
multiple threads in parallel.

With actors there exists a computation model which is especially suited for con-
current and distributed computations [16,1]. Actors are basically concurrent pro-
cesses which communicate through asynchronous message passing. When com-
bined with pattern matching for messages, actor-based process models have been
proven to be very e�ective, as the success of Erlang documents [3,25].

Erlang [4] is a dynamically typed functional programming language designed
for programming real-time control systems. Examples of such systems are tele-
phone exchanges, network simulators and distributed resource controllers. In
these systems, large numbers of concurrent processes can be active simultane-
ously. Moreover, it is generally di�cult to predict the number of processes and
their memory requirements as they vary with time.

For the implementation of these processes, operating system threads and threads
of virtual machines, such as the Java Virtual Machine [22], are usually too heavy-
weight. The main reasons are: (1) Over-provisioning of stacks leads to quick ex-
haustion of virtual address space and (2) locking mechanisms often lack suitable
contention managers [12]. Therefore, Erlang implements concurrent processes by
its own runtime system and not by the underlying operating system [5].

Actor abstractions as lightweight as Erlang's processes have been unavailable on
popular virtual machines so far. At the same time, standard virtual machines
are becoming an increasingly important platform for exactly the same domain of
applications in which Erlang{because of its process model{has been so successful:
Real-time control systems [23,27].

Another domain where virtual machines are expected to become ubiquitous are
applications running on mobile devices, such as cellular phones or personal digital
assistants [20]. Usually, these devices are exposed to severe resource constraints.
On such devices, only a few hundred kilobytes of memory is available to a virtual
machine and applications.



This has important consequences: (1) A virtual machine for mobile devices usu-
ally o�ers only a restricted subset of the services of a common virtual machine
for desktop or server computers. For example, the KVM1 has no support for re-

ection (introspection) and serialization. (2) Programming abstractions used by
applications have to be very lightweight to be useful. Again, thread-based con-
currency abstractions are too heavyweight. Furthermore, programming models
have to cope with the restricted set of services a mobile virtual machine provides.

A common alternative to programming with threads are event-driven program-
ming models. Programming in explicitly event-driven models is very di�cult [21].

Most programming models support event-driven programming only through in-

version of control. Instead of calling blocking operations (e.g. for obtaining user
input), a program merely registers its interest to be resumed on certain events

(e.g. an event signaling a pressed button, or changed contents of a text �eld).
In the process, event handlers are installed in the execution environment which
are called when certain events occur. The program never calls these event han-
dlers itself. Instead, the execution environment dispatches events to the installed
handlers. Thus, control over the execution of program logic is \inverted".

Virtually all approaches based on inversion of control su�er from the following
two problems: First, the interactive logic of a program is fragmented across
multiple event handlers (or classes, as in the state design pattern [13]). Second,
control 
ow among handlers is expressed implicitly through manipulation of
shared state [10].

To obtain very lightweight abstractions without inversion of control, we make
actors thread-less. We introduce event-based actors as an implementation tech-
nique for lightweight actor abstractions on non-cooperative virtual machines such
as the JVM. Non-cooperative means that the virtual machine provides no means
to explicitly manage the execution state of a program.

The central idea is as follows: An actor that waits in a receive statement is not
represented by a blocked thread but by a closure that captures the rest of the
actor's computation. The closure is executed once a message is sent to the actor
that matches one of the message patterns speci�ed in the receive. The execution
of the closure is \piggy-backed" on the thread of the sender. If the receiving
closure terminates, control is returned to the sender as if a procedure returns. If
the receiving closure blocks in a second receive, control is returned to the sender
by throwing a special exception that unwinds the receiver's call stack.

A necessary condition for the scheme to work is that receivers never return
normally to their enclosing actor. In other words, no code in an actor can depend
on the termination or the result of a receive block. We can express this non-
returning property at compile time through Scala's type system. This is not a
severe restriction in practice, as programs can always be organized in a way so
that the \rest of the computation" of an actor is executed from within a receive.

1 See http://java.sun.com/products/cldc/.



To the best of our knowledge, event-based actors are the �rst to (1) allow reactive
behavior to be expressed without inversion of control, and (2) support arbitrary
blocking operations in reactions, at the same time. Our actor library outper-
forms other state-of-the-art actor languages with respect to message passing
speed and memory consumption by several orders of magnitude. Our implemen-
tation is able to make use of multi-processors and multi-core processors because
reactions can be executed simultaneously on multiple processors. By extending
our event-based actors with a portable runtime system, we show how the essence
of distributed Erlang [31] can be implemented in Scala. Our library supports vir-
tually all primitives and built-in-functions which are introduced in the Erlang
book [4]. The portability of our runtime system is established by two working
prototypes based on TCP and the JXTA2 peer-to-peer framework, respectively.

All this has been achieved without extending or changing the programming
language. The event-based actor library is thus a good demonstrator of Scala's
abstraction capabilities. Beginning with the upcoming release 2.1.7, it is part of
the Scala standard distribution3.

Other Related Work. Actalk [8] implements actors as a library for Smalltalk-80
by extending a minimal kernel of pure Smalltalk objects. Their implementa-
tion is not event-based and Smalltalk-80 does not support parallel execution of
concurrent actors on multi-processors (or multi-core processors).

Actra [29] extends the Smalltalk/V virtual machine with an object-based real-
time kernel which provides lightweight processes. In contrast, we implement
lightweight actors on unmodi�ed virtual machines.

Chrysanthakopoulos and Singh [11] discuss the design and implementation of a
channel-based asynchronous messaging library. Channels can be viewed as spe-
cial state-less actors which have to be instantiated to indicate the types of mes-
sages they can receive. Instead of using heavyweight operating system threads
they develop their own scheduler to support continuation passing style (CPS)
code. Using CLU-style iterators blocking-style code is CPS-transformed by the
C# compiler.

SALSA (Simple Actor Language, System and Architecture) [30] extends Java
with concurrency constructs that directly support the notion of actors. A pre-
processor translates SALSA programs into Java source code which in turn is
linked to a custom-built actor library. As SALSA implements actors on the
JVM, it is somewhat closer related to our work than Smalltalk-based actors or
channels. Moreover, performance results have been published which enables us
to compare our system with SALSA, using ports of existing benchmarks.

Timber is an object-oriented and functional programming language designed for
real-time embedded systems [6]. It o�ers message passing primitives for both
synchronous and asynchronous communication between concurrent reactive ob-

2 See http://www.jxta.org/.
3 Available from http://scala.ep
.ch/.



class Counter extends Actor {
override def run(): unit = loop(0)

def loop(value: int): unit = {
Console.println("Value: " + value)
receive {
case Incr() => loop(value + 1)
case Value(a) => a ! value; loop(value)
case Lock(a) => a ! value

receive { case UnLock(v) => loop(v) }
case _ => loop(value)

}
}

}

Fig. 1. A simple counter actor.

jects. In contrast to event-based actors, reactive objects cannot call operations
that might block inde�nitely. Instead, they install call-back methods in the com-
puting environment which executes these operations on behalf of them.

Frugal objects [14] (FROBs) are distributed reactive objects that communicate
through typed events. FROBs are basically actors with an event-based computa-
tion model, just as our event-based actors. The goals of FROBs and event-based
actors are orthogonal, though. The former provide a computing model suited for
resource-constrained devices, whereas our approach o�ers a programming model

(i.e. a convenient syntax) for event-based actors, such as FROBs. Currently,
FROBs can only be programmed using a fairly low-level Java API. In the fu-
ture, we plan to cooperate with the authors to integrate our two orthogonal
approaches.

The rest of this paper is structured as follows. Section 2 shows how conventional,
thread-based actors are represented as a Scala library. Section 3 shows how to
modify the actor model so that it becomes event-based. Section 4 outlines Scala's
package for distributed actors. Section 5 evaluates the performance of our actor
libraries. Section 6 concludes.

2 Decomposing Actors

This section describes a Scala library that implements abstractions similar to
processes in Erlang. Actors are self-contained, logically active entities that com-
municate through asynchronous message passing. Figure 1 shows the de�nition
of a counter actor. The actor repeatedly executes a receive operation, which
waits for three kinds of messages:



{ The Incr message causes the counter's value to be incremented.
{ The Value message causes the counter's current value to be communicated
to the given actor a.

{ The Lock message is thrown in to make things more interesting. When re-
ceiving a Lock, the counter will communicate its current value to the given
actor a. It then blocks until it receives an UnLock message. The latter mes-
sage also speci�es the value with which the counter continues from there.
Thus, other processes cannot observe state changes of a locked counter until
it is unlocked again.

Messages that do not match the patterns Incr(), Value(a), or Lock(a) are
ignored. A typical communication with a counter actor could proceed as follows.

val counter = new Counter
counter.start()
counter ! Incr()
counter ! Value(this)
receive { case cvalue => Console.println(cvalue) }

This creates a new Counter actor, starts it, increments it by sending it the
Incr() message, and then sends it the Value query with the currently executing
actor this as argument. It then waits for a response of the counter actor in a
receive. Once some response is received, its value is printed (this value should
be one, unless there are other actors interacting with the counter).

Messages in this model are arbitrary objects. In contrast to channel-based pro-
gramming [11] where a channel usually has to be (generically) instantiated with
the types of messages it can handle, an actor can receive messages of any type.

In our example, actors communicate using instances of the following four message
classes.

case class Incr()
case class Value(a: Actor)
case class Lock(a: Actor)
case class UnLock(value: int)

All classes have a case modi�er which enables constructor patterns for the class
(see below). Neither class has a body. The Incr class has a constructor that
takes no arguments, the Value and Lock classes have a constructor that takes
an Actor as a parameter, and the UnLock class has a constructor that takes an
integer argument.

A message send a!m sends the message m to the actor a. The communication
is asynchronous: if a is not ready to receive m, then m is queued in a mailbox of
a and the send operation terminates immediately.

Messages are processed by the receive construct, which has the following form:



receive {
case p1 => e1
: : :
case pn => en

}

Here, messages in an actor's mailbox are matched against the patterns p1; : : : ; pn.
Patterns consist of constructors and variables. A constructor pattern names a
case class; it matches all instances of this class. A variable pattern matches every
value and binds the value to the variable. For example, the pattern Value(a)

matches all instances v of the Value class and binds the variable a to the con-
structor argument of v.

A receive will select the �rst message in an actor's mailbox that matches any
of its patterns. If a pattern pi matches, its corresponding action ei is executed.
If no message in the mailbox matches a pattern, the actor will suspend, waiting
for further messages to arrive.

Looking at the example above, it might seem that Scala is a language specialized
for actor concurrency. In fact, this is not true. Scala only assumes the basic
thread model of the underlying host. All higher-level operations shown in the
example are de�ned as classes and methods of the Scala library. In the rest of
this section, we look \under the covers" to �nd out how each construct is de�ned
and implemented.

An actor is simply a subclass of the host environment's Thread class that de�nes
methods ! and receive for sending and receiving messages.

abstract class Actor extends Thread {
private var mailbox: List[Any]
def !(msg: Any) = ...
def receive[a](f: PartialFunction[Any, a]): a = ...
...

}

The ! method is used to send a message to an actor. The send syntax a!m

is simply an abbreviation of the method call a.!(m), just like x+y in Scala is
an abbreviation for x.+(y). The method does two things. First, it enqueues
the message argument in the actor's mailbox, which is represented as a private
�eld of type List[Any]. Second, if the receiving actor is currently suspended
in a receive that could handle the sent message, the execution of the actor is
resumed.

The receive { ... } construct is more interesting. Here, the pattern matching
expression inside the braces is treated in Scala as a �rst-class object that is passed
as an argument to the receive method. The argument's type is an instance of
PartialFunction, which is a subclass of Function1, the class of unary functions.
The two classes are de�ned as follows.



abstract class Function1[-a,+b] {
def apply(x: a): b

}
abstract class PartialFunction[-a,+b] extends Function1[a,b] {
def isDefinedAt(x: a): boolean

}

So we see that functions are objects which have an apply method. Partial func-
tions are objects which have in addition a method isDefinedAt which can be
used to �nd out whether a function is de�ned at a given value. Both classes are
parameterized; the �rst type parameter a indicates the function's argument type
and the second type parameter b indicates its result type4.

A pattern matching expression { case p1 => e1; ...; case pn => en } is
then a partial function whose methods are de�ned as follows.

{ The isDefinedAt method returns true if one of the patterns pi matches
the argument, false otherwise.

{ The apply method returns the value ei for the �rst pattern pi that matches
its argument. If none of the patterns match, a MatchError exception is
thrown.

The two methods are used in the implementation of receive as follows. First,
messages m in the mailbox are scanned in the order they appear. If receive's
argument f is de�ned for some of the messages, that message is removed from
the mailbox and f is applied to it. On the other hand, if f.isDefinedAt(m) is
false for every message in the mailbox, the thread associated with the actor is
suspended.

This sums up the essential implementation of thread-based actors. There is also
some other functionality in Scala's actor libraries which we have not covered.
For instance, there is a method receiveWithin which can be used to specify
a time span in which a message should be received allowing an actor to time-
out while waiting for a message. Upon timeout the action associated with a
special TIMEOUT() pattern is �red. Timeouts can be used to suspend an actor,
completely 
ush the mailbox, or to implement priority messages [4].

Thread-based actors are useful as a higher-level abstraction of threads, which
replace error-prone shared memory accesses and locks by asynchronous message
passing. However, like threads they incur a performance penalty on standard
platforms such as the JVM, which prevents scalability. In the next section we
show how the actor model can be changed so that actors become disassociated
from threads.
4 Parameters can carry + or - variance annotations which specify the relationship
between instantiation and subtyping. The -a, +b annotations indicate that functions
are contravariant in their argument and covariant in their result. In other words
Function1[X1, Y1] is a subtype of Function1[X2, Y2] if X2 is a subtype of X1 and
Y1 is a subtype of Y2.



3 Recomposing Actors

Logically, an actor is not bound to a thread of execution. Nevertheless, virtu-
ally all implementations of actor models associate a separate thread or even an
operating system process with each actor [8,29,9,30].

In Scala, thread abstractions of the standard library are mapped onto the thread
model and implementation of the corresponding target platform, which at the
moment consists of the JVM and Microsoft's CLR [15].

To overcome the resulting problems with scalability, we propose an event-based
implementation where (1) actors are thread-less, and (2) computations between
two events are allowed to run to completion. An event in our library corresponds
to the arrival of a new message in an actor's mailbox.

3.1 Execution Example

First, we want to give an intuitive explanation of how our event-based imple-
mentation works. For this, we revisit our counter example from section 2.

Let c be a new instance of a lockable counter (with an empty mailbox). After
starting c it immediately blocks, waiting for a matching message. Consider the
case where another actor p sends the message Lock(p) to c (c ! Lock(p)).
Because the arrival of this Lock message enables c to continue, send transfers
control to c. c resumes the receive statement that caused it to block. Instead
of executing the receiving actor on its own thread, we reuse the sender's thread.

According to the semantics of receive, the new message is selected and removed
from the mailbox because it matches the �rst case of the outer receive. Then,
the corresponding action is executed with the pattern variables bound to the
constituents of the matched message:

{ case Incr() => loop(value + 1)
case Value(a) => a ! value; loop(value)
case Lock(a) => a ! value

receive { case UnLock(v) => loop(v) }
case _ => loop(value)

}.apply(Lock(p))

Intuitively, this reduces to

p ! value
receive { case UnLock(v) => loop(v) }

After executing the message send p ! value, the call to receive blocks as
there are no other messages in c's mailbox. Remember that we are still inside
p's original message send (i.e. the send did not return, yet). Thus, blocking the
current thread (e.g., by issuing a call to wait()) would also block p.



This is illegal because in our programming model the send operation (!) has
a non-blocking semantics. Instead, we need to suspend c in such a way that
allows p to continue. For this, inside the (logically) blocking receive, �rst, we
remember the rest of c's computation. In this case, it su�ces to save the closure
of

receive { case UnLock(v) => loop(v) }

Second, to let p's call of the send operation return, we need to unwind the
runtime stack up to the point where control was transferred to c. We do this by
throwing a special exception. The ! method catches this exception and returns
normally, keeping its non-blocking semantics.

In general, though, it is not su�cient to save a closure to capture the rest of the
computation of an actor. For example, consider an actor executing the following
statements:

val x = receive { case y => f(y) }
g(x)

Here, receive produces a value which is then passed to a function. Assume
receive blocks. Remember that we would need to save the rest of the compu-
tation inside the blocking receive.

To save information about statements following receive, we would need to save
the call-stack, or capture a (�rst-class) continuation. Virtual machines such as
the JVM provide no means for explicit stack management, mainly because of
security reasons. Thus, languages implementing �rst-class continuations have
to simulate the run-time stack on the heap which poses serious performance
problems [7]. Moreover, programming tools such as debuggers and pro�lers rely
on run-time information on the native VM stack which they are unable to �nd
if the stack that programs are using is allocated on the heap. Consequently,
existing tools cannot be used with programs compiled using a heap-allocated
stack.

Thus, most ports of languages with continuation support (e.g. Scheme [18], Ruby
[24]) onto non-cooperative virtual machines abandon �rst-class continuations al-
together (e.g. JScheme [2], JRuby5). Scala does not support �rst-class continua-
tions either, primarily because of compatibility and interoperability issues with
existing Java code.

To conclude, managing information about statements following a call to receive
would require changes either to the compiler or the VM. Following our rationale
for a library-based approach, we want to avoid those changes.

Instead, we require that receive never returns normally. Thus, managing infor-
mation about succeeding statements is unnecessary. Moreover, we can enforce
this \no-return" property at compile time through Scala's type system which

5 See http://jruby.sourceforge.net/.



states that statements following calls to functions (or methods) with return type
Nothing will never get executed (\dead code") [26]. Note that returning by
throwing an exception is still possible. In fact, as already mentioned above, our
implementation of receive relies on it.

Using a non-returning receive, the above example could be coded like this:

receive { case y => x = f(y); g(x) }

Basically, the rest of the actor's computation has to be called at the end of each
case inside the argument function of receive (\continuation passing" style).

3.2 Single-Threaded Actors

As we want to avoid inversion of control receive will (conceptually) be executed
at the expense of the sender. If all actors are running on a single thread, sending
a message to an actor A will resume the execution of receive which caused
A to suspend. The code below shows a simpli�ed implementation of the send
operation for actors that run on a single thread:

def !(msg: Any): unit = {
mailbox += msg
if (continuation != null && continuation.isDefinedAt(msg))
try { receive(continuation) }
catch {
case Done => // do nothing

}
}

The sent message is appended to the mailbox of the actor which is the target of
the send operation. Let A denote the target actor. If the continuation attribute
is set to a non-null value then A is suspended waiting for an appropriate message
(otherwise, A did not execute a call to receive, yet). As continuation refers
to (the closure of) the partial function with which the last blocking receive was
called, we can test if the newly appended message allows A to continue.

Note that if, instead, we would save receive(f) as continuation for a blocking
receive(f) we would not be able to test this but rather had to blindly call the
continuation. If the newly appended message would not match any of the de�ned
patterns, receive would go through all messages in the mailbox again trying to
�nd the �rst matching message. Of course, the attempt would be in vain as only
the newly appended message could have enabled A to continue.

If A is able to process the newly arrived message we let A continue until it
blocks on a nested receive(g) or �nishes its computation. In the former case,
we �rst save the closure of g as A's continuation. Then, the send operation that
originated A's execution has to return because of its non-blocking semantics. For
this, the blocking receive throws a special exception of type Done (see below)



which is caught in the send method (!). Technically, this trick unwinds the call-
stack up to the point where the message send transferred control to A. Thus,
to complete the explanation of how the implementation of the send operation
works, we need to dive into the implementation of receive.

The receive method selects messages from an actor's mailbox and is responsible
for saving the continuation as well as abandoning the evaluation context:

def receive(f: PartialFunction[Any, unit]): Nothing = {
mailbox.dequeueFirst(f.isDefinedAt) match {
case Some(msg) => continuation = null

f(msg)
case None => continuation = f

}
throw new Done

}

Naturally, we dequeue the �rst message in our mailbox which matches one of
the cases de�ned by the partial function which is provided as an argument to
receive. Note that f.isDefinedAt has type Any => boolean. As the type of
the resulting object is Option[Any] which has two cases de�ned, we can se-
lect between these cases using pattern matching. When there was a message
dequeued we �rst reset the saved continuation. This is necessary to prevent a
former continuation to be called multiple times when there is a send to the
current actor inside the call f(msg).

If we didn't �nd a matching message in the mailbox, we remember the continu-
ation which is the closure of f. In both cases we need to abandon the evaluation
context by throwing a special exception of type Done, so the sender which orig-
inated the call to receive can continue normally (see above).

3.3 Multi-Threaded Actors

To leverage the increasingly important class of multi-core processors (and also
multi-processors) we want to execute concurrent activities on multiple threads.
We rely on modern VM implementations to execute concurrent VM threads on
multiple processor cores in parallel.

A scheduler decides how many threads to spend for a given workload of concur-
rent actors, and, naturally, implements a speci�c scheduling strategy. Because of
its asychronous nature, a message send introduces a concurrent activity, namely
the resumption of a previously suspended actor. We encapsulate this activity in a
task item which gets submitted to the scheduler (in a sense this is a rescheduling

send [28]):



def send(msg: Any): unit = synchronized {
if (continuation != null

&& continuation.isDefinedAt(msg)
&& !scheduled) {

scheduled = true
Scheduler.putTask(new ReceiverTask(this, msg))

} else mailbox += msg
}

If a call to send �nds the current continuation of the receiving actor A to be
unde�ned, A is not waiting for a message. Usually, this is the case when a task for
A has been scheduled that has not been executed, yet. Basically, send appends
the argument message to the mailbox unless the receiving actor is waiting for a
message and is able to process the argument message. In this case, we schedule
the continuation of the receiving actor for execution by submitting a new task
item to the scheduler.

The scheduler maintains a pool of worker threads which execute task items. A
ReceiverTask is basically a Java java.lang.Runnable that receives a speci�ed
message and has an exception handler that handles requests for abandoning the
evaluation context:

class ReceiverTask(actor: Actor, msg: Any) extends Runnable {
def run(): unit =
try { actor receiveMsg msg }
catch {
case Done => // do nothing

}
}

receiveMsg is a special form of receive which processes a given message ac-
cording to the actor's continuation.

Actors are not prevented from calling operations which can block inde�nitely.
In the following we describe a scheduler which guarantees progress even in the
presence of blocking operations.

3.4 Blocking Operations

The event-based character of our implementation stems from the fact that (1)
actors are thread-less, and (2) computations between the reception of two mes-
sages are allowed to run to completion. The second property is common for
event-driven systems [17] and re
ects our assumption of a rather interactive
character for most actors. Consequently, computations between arrival of mes-
sages are expected to be rather short compared to the communication overhead.

Nevertheless, we also want to support long-running, CPU-bound actors. Such
actors should not prevent other actors from making progress. Likewise, it would



be unfortunate if a single blocking actor could cause the whole application to
stop responding, thereby hindering other actors to make progress.

We face the same problems as user-level thread libraries: Processes yield control
to the scheduler only at certain program points. In between they cannot be pre-
vented from calling blocking operations or executing in�nite loops. For example,
an actor might call a native method which issues a blocking system call.

In our case, the scheduler is executed only when sending a message leads to the
resumption of another actor. Because send is not allowed to block, the receiver
(which is resumed) needs to be executed on a di�erent thread. This way, the
sender is not blocked even if the receiver executes a blocking operation.

As the scheduler might not have an idle worker thread available (because all of
them are blocked), it needs to create new worker threads as needed. However, if
there is at least one worker thread runnable (i.e. busy executing an actor), we
do not create a new thread. This is to prevent the creation of too many threads
even in the absence of blocking operations.

Actors are still thread-less, though: Each time an actor is suspended because of
a blocking (which means unsuccessful) receive, instead of blocking the thread, it
is detached from its thread. The thread now becomes idle, because it has �nished
executing a receiver task item. It will ask the scheduler for more work. Thereby,
threads are reused for the execution of multiple actors.

Using this method, an actor-based application with low concurrency can be
executed by as few as two threads, regardless of the number of simultaneously
active actors.

Implementation. Unfortunately, it is impossible for user-level code to �nd out
if a thread running on the JVM is blocked. We therefore implemented a simple
heuristic that tries to approximate if a worker thread which executes an actor is
blocked, or not.

The basic idea is that actors provide the scheduler with life-beats during their
execution. That is, the send (!) and receive methods call a tick method of
the scheduler. The scheduler then looks up the worker thread which is currently
executing the corresponding actor, and updates its time stamp. When a new
receiver task item is submitted to the scheduler, it �rst checks if all worker
threads are blocked. Worker threads with \recent" time stamps are assumed not
to be blocked. Only if all worker threads are assumed to be blocked (because
of old time stamps), a new worker thread is created. Otherwise, the task item
is simply put into a queue waiting to be consumed by an idle worker thread.
Figure 2 shows the main part of the scheduler implementation.

Note that using the described approximation, it is impossible to distinguish
blocked threads from threads that perform long-running computations. This
means basically that compute-bound actors execute on their own thread.



def execute(item: ReceiverTask): unit = synchronized {
if (idle.length > 0) {
val worker = idle.dequeue
executing.update(item.actor, worker)
worker.execute(item)

} else {
val iter = workers.elements
var foundBusy = false
while (iter.hasNext && !foundBusy) {
val worker = iter.next
ticks.get(worker) match {
case None => foundBusy = true
case Some(ts) => {
val currTime = System.currentTimeMillis
if (currTime - ts < TICKFREQ)
foundBusy = true

}
}

}
if (!foundBusy) {
val worker = new WorkerThread(this)
workers += worker
executing.update(item.actor, worker)
worker.execute(item)
worker.start()

} else tasks += item
}

}

Fig. 2. Scheduling work items.

For some applications it might be worth using a scheduler which optimizes the
number of spare worker threads depending on runtime pro�les. User-de�ned
schedulers are easy to implement and use with our library.

In summary, additional threads are created only when needed to support (unex-
pected) blocking operations. The only blocking operation that is handled with-
out thread support is receive. Thus, a large number of non-cooperative actors
(those using blocking operations other than what our library provides), may lead
to a signi�cant increase in memory consumption as the scheduler creates more
and more threads.

On the other hand, our approach adds signi�cant 
exibility, as the library does
not need to be changed when the user decides to use a blocking operation which
has no special library support. This also means that actors and standard VM
threads can be combined seamlessly. We discovered an important use case when
porting our runtime system to use JXTA as transport layer: Providing an actor-
based interface to a thread-based library.



4 Distributed Actors

With the help of a portable runtime system actors can be executed in a dis-
tributed fashion. More speci�cally, message sends are location transparent and
actors can be spawned on remote nodes. As we also target resource-constrained
devices, runtime services need to be runnable on virtual machines which o�er
only a subset of the functionality of standard desktop virtual machines. For ex-
ample, the KVM6 does not support re
ection. Thus, our serialization mechanism
is not based on a general re
ective scheme. Instead, we provide a combinator
library which allows e�cient picklers for custom datatypes to be constructed
easily. The pickler combinators are based on Kennedy's library for Haskell [19].
The generated byte arrays are compact because of (1) structure sharing, and (2)
base128 encoded integers.

Our runtime system is portable in the sense that network protocol dependent
parts are isolated in a separate layer which provides network services (connec-
tion management, message transmission, etc.). Two working prototype imple-
mentations of the service layer based on TCP and JXTA, respectively, establish
portability in practice. TCP and JXTA are protocols di�erent enough that we
expect no di�culties porting our runtime system to other network protocols in
the future.

We are currently working on the addition of the SOAP7 XML-over-HTTP pro-
tocol as transport layer. One of the goals is to provide an actor-based interface
to web services such as the publicly exposed APIs of Google and Amazon. More-
over, we want to build web services in terms of actors.

5 Performance Evaluation

In this section we examine performance properties of our event-based imple-
mentation of actors. In the process, we compare benchmark execution times
with SALSA [30], a state-of-the-art Java-based actor language, as well as with
a thread-based version of our library. As a reference we also show the perfor-
mance of a straight-forward implementation using threads and synchronized data
structures. In addition to execution time we are also interested in scalability with
respect to the number of simultaneously active actors each system can handle.

Experimental Set-Up. We measure the throughput of blocking operations in
a queue-based application. The application is structured as a ring of n produc-
ers/consumers (in the following called processes) with a shared queue between
each of them. Initially, k of these queues contain tokens and the others are empty.

6 See http://java.sun.com/products/cldc/.
7 See http://www.w3.org/2000/xp/Group/.



Each process loops removing an item from the queue on its right and placing it
in the queue on its left.

The following tests were run on a 1.60GHz Intel Pentium M processor with 512
MB memory, running Sun's Java HotSpot Client VM 1.5.0 under Linux 2.6.12.
We set the JVM's maximum heap size to 256 MB to provide for su�cient physical
memory to avoid any disk activity. In each case we took the median of 5 runs.
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Fig. 3. Start-up time.

The execution times of three equivalent actor-based implementations written
using (1) our event-based actor library, (2) a thread-based version of a similar
library, and (3) SALSA, respectively, are compared.

Benchmark Results. Figure 3 shows start-up times of the ring for up to 2000
processes (note that both scales are logarithmic). For event-based actors and the
na��ve thread-based implementation, start-up time is basically constant. Event-
based actors are about 60% slower than pure threads. However, we have reasons
to suggest that this is due to the di�erent benchmark implementations. In all
actor-based implementations, start-up time is measured by starting all actors
and letting them wait to receive a special \continue" message. In contrast, the
thread-based implementation only creates all required threads without starting
them. Our measurements suggest that the used JVM optimizes thread creation,
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Fig. 4. Throughput (number of token passes per second) for a �xed number of
10 tokens.

potentially creating required runtime structures lazily on start-up. For thread-
based actors, start-up time increases exponentially when the number of processes
approaches a thousand. With 4000 processes the JVM crashes because of exhaus-
tion of maximum heap size.

Using SALSA, the VM was unable to create 2000 processes. As each actor has a
thread-based state object associated with it, the VM is unable to handle stack
space requirements at this point. In contrast, using event-based actors the ring
can be operated with up to 310000 processes that are created in about 10 seconds.

Looking at the generated Java code shows that SALSA spends a lot of time
setting up actors for remote communication (creating locality descriptors, name
table management, etc.), whereas in our case, an actor must announce explicitly
that it wants to participate in remote communications (by calling alive()).
Creation of locality descriptors and name table management can be delayed up
to this point. Also, when an actor is created in SALSA, it sends itself a special
\construct" message which takes additional time.

Figure 4 shows the number of token passes per second depending on the ring
size. We chose a logarithmic scale for the number of processes to better depict
e�ects which are con�ned to a high and strongly increasing number of processes.
For up to 1000 processes, increase in throughput for event-based actors com-



pared to pure threads averages 22%. As blocking operations clearly dominate,
overhead of threads is likely to stem from context switches and contention for
locks. Interestingly, overhead vanishes for a small number of processes (10 and 20
processes, respectively). This behavior suggests that contention is not an issue
in this case, as uncontended lock management is optimized in Sun's HotSpot
VM 1.5. Contention for locks becomes signi�cant at about 2000 processes. Fi-
nally, when the number of processes reaches 4000, the threads' time is consumed
managing the shared bu�ers rather than exchanging tokens through them. At
this point throughput of event-based actors is about 3 times higher.

For SALSA, throughput is about two orders of magnitude lower compared to
event-based actors. The average for 10 to 1000 processes amounts to only 1700
token passes per second. Looking at the generated Java source code revealed
that every message send involves a re
ective method call. We found re
ective
method calls to be about 30 times slower than JIT-compiled method calls on
our testing machine.

For thread-based actors, throughput is almost constant for up to 200 processes
(on average about 38000 token passes per second). At 500 processes it is already
less than half of that (15772 token passes per second). Similar to pure threads,
throughput breaks in for 2000 processes (only 5426 token passes per second).
Again, contended locks and context switching overhead are likely to cause this
behavior. The VM is unable to create 4000 processes, because it runs out of
memory.

Performance Summary. Event-based actors support a number of simulta-
neously active actors which is two orders of magnitude higher compared to
SALSA. Measured throughput is over 50 times higher compared to SALSA.
A na��ve thread-based implementation of our benchmark performs surprisingly
well. However, for high numbers of threads (about 2000), lock contention causes
performance to break in. Also, the maximum number of threads is limited due
to their memory consumption.

6 Conclusion

Scala is di�erent from other concurrent languages in that it contains no language
support for concurrency beyond the standard thread model o�ered by the host
environment. Instead of specialized language constructs we rely on Scala's gen-
eral abstraction capabilities to de�ne higher-level concurrency models. In such
a way, we were able to de�ne all essential operations of Erlang's actor-based
process model in the Scala library.

However, since Scala is implemented on the Java VM, we inherited some of the
de�ciencies of the host environment when it comes to concurrency, namely low
maximum number of threads and high context-switch overhead. In this paper



we have shown how to turn this weakness into a strength. By de�ning a new
event-based model for actors, we could increase dramatically their e�ciency and
scalability. At the same time, we kept to a large extent the programming model
of thread-based actors, which would not have been possible if we had switched
to a traditional event-based architecture, because the latter causes an inversion
of control.

The techniques presented in this paper are a good showcase of the increased

exibility o�ered by library-based designs. It allowed us to quickly address prob-
lems with the previous thread-based actor model by developing a parallel class
hierarchy for event-based actors. Today, the two approaches exist side by side.
Thread-based actors are still useful since they allow returning from a receive op-
eration. Event-based actors are more restrictive in the programming style they
allow, but they are also more e�cient.

In future work we plan to extend the event-based actor implementation to other
communication infrastructures. We are also in train of discovering new ways to
compose these actors.
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