
Complete instantiation for quantified formulas in

Satisfiability Modulo Theories

Yeting Ge1 and Leonardo de Moura2

1 Department of Computer Science, New York University, NY, NY 10012, USA
yeting@cs.nyu.edu

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
leonardo@microsoft.com

Abstract. Quantifier reasoning in Satisfiability Modulo Theories
(SMT) is a long-standing challenge. The practical method employed
in modern SMT solvers is to instantiate quantified formulas based on
heuristics, which is not refutationally complete even for pure first-order
logic. We present several decidable fragments of first order logic modulo
theories. We show how to construct models for satisfiable formulas in
these fragments. For richer undecidable fragments, we discuss conditions
under which our procedure is refutationally complete. We also describe
useful heuristics based on model checking for prioritizing or avoiding
instantiations.

1 Introduction

Applications in software verification have benefited greatly from recent advances
in automated reasoning. Applications in this field often require determining the
satisfiability of first-order formulas with respect to some background theories.
Satisfiability Modulo Theories (SMT) solvers have proven highly scalable, ef-
ficient and suitable for integrated theory reasoning. Most SMT solvers are re-
stricted to ground formulas. However, for numerous applications in software
verification, quantifiers are needed. For example, quantifiers are convenient for
capturing frame conditions over loops, summarizing auxiliary invariants over
heaps, and for supplying axioms of theories that are not already equipped with
decision procedures for ground formulas.

Quantifier reasoning in SMT is a long-standing challenge. Because most quan-
tified SMT formulas contain both interpreted and uninterpreted symbols, it is
difficult to have a general decision procedure for quantifiers in SMT. For exam-
ple, there is no sound and complete procedure for first-order logic formulas of
linear arithmetic with uninterpreted function symbols [1]. Some SMT solvers [2,
3] integrate the superposition calculus with ground decision procedures. These
solvers are refutationally complete for pure first-order logic with equality, but do
not provide any guarantee when other interpreted symbols appear in quantified
formulas. Several first-order calculi have been proposed based on the idea of the-
ory resolution [4]. These calculi provide nice theoretical results, yet no efficient

implementations, because the computation of theory unifiers is too expensive
or impossible for background theories of interest. In general, it is inefficient to
use general first-order theorem prover to check the satisfiability of SMT for-
mulas when the background theory does not have a finite axiomatization (e.g.,
arithmetic).

Most state-of-the-art SMT solvers with support for quantifiers use heuris-
tic quantifier instantiation [5–7, 3] for incorporating quantifier reasoning with
ground decision procedures. A well known heuristic instantiation-based approach
is the E-matching algorithm introduced by the Simplify theorem prover [8]. Al-
though heuristic instantiation is relatively effective for some software verification
applications [9, 10], it suffers from several problems: it is not refutationally com-
plete for first-order logic, hints (triggers) are usually required, it is sensitive to
the syntactic structure of the formula, and it fails to prove formulas that can be
easily discharged by saturation-based provers.

Instantiation-based approaches are attractive because SMT solvers have ef-
ficient ground decision procedures for many useful theories. For some fragments
of first order logic modulo theories, we have complete decision procedures based
on quantifier instantiation. We call this type of decision procedure complete
instantiation.

In this paper, we investigate several decidable fragments of first-order logic
modulo theories. The new fragments subsume well-known fragments such as the
Bernays-Schönfinkel class, stratified vocabularies for many-sorted logic [11], and
the Array Property Fragment [12]. We also consider richer fragments which are
not decidable, and we discuss conditions under which our procedure is refutation-
ally complete. The proposed decision procedures can be directly used to prove
complex quantified array properties. Arrays are common in most programming
languages and provide a natural model for memories. Decision procedures for
array theories are of great interest for verification applications. Our approach
is also suitable for formulas coming from verification of parameterized systems,
and the axiomatization application specific theories (e.g., the axiomatization of
the Spec# type system based on the theory of partial orders).

In software verification, models of satisfiable verification conditions are of
great interest because they usually suggest potential errors. Therefore, we also
show how to construct models for satisfiable quantified formulas in these frag-
ments. On the implementation side, we describe useful heuristics based on model
checking for prioritizing or avoiding instantiations.

The ground terms used for instantiating quantified formulas come from the
least solution of systems of set constraints. We first consider a fragment in which
quantified variables only occur as arguments of uninterpreted function (predi-
cate) symbols. Then, we introduce more fragments, by relaxing some restrictions
and by augmenting the system of constraints. We give examples to illustrate the
usefulness of these fragments as well.

2 Background

We will assume the usual notions and terminology of first order logic and model
theory. Let Σ be a signature consisting of a set of function and predicate symbols.
Each function symbol f is associated with a non-negative integer, the arity of
f , denoted by arity(f). We call 0-arity function symbols constant symbols, and
usually denote them by a, b, c and d. We use f , g, h to denote non-constant
function symbols, and x1, x2, x3,. . . to denote variables. We use t, r, s to denote
arbitrary terms. An f -application is a term of the form f(t1, . . . , tn). We call
an atomic formula a formula of the form p(t1, . . . , tn), where p is a predicate
symbol. A literal is an atomic formula or the negation of one. A clause is a
disjunction l1 ∨ . . .∨ ln of literals. A CNF formula is a conjunction C1 ∧ . . .∧Cn

of clauses. We use Ci to denote the i-th clause in a CNF formula. Without loss
of generality, we assume every formula that is being checked for satisfiability is
in CNF, and any variable in a clause C is universally quantified. We also assume
that existentially quantified variables were eliminated using Skolemization. For
instance, the formula ∀x : ∃y : ¬p(x) ∨ q(y) is converted into the equisatisfiable
formula ∀x : ¬p(x)∨ q(fy(x)), where fy is a fresh function symbol. We will write
CNF formulas replacing the ∧ connectives by commas. We use C[x1, . . . , xn] to
denote a clause that may contain variables x1, . . . , xn, and a similar notation
t[x1, . . . , xn] is defined for a term t. Where there is no confusion, we denote
C[x1, . . . , xn] by C[x] and t[x1, . . . , xn] by t[x]. In the rest of this paper, the
difference between functions and predicates is trivial, and we will thus only
discuss functions except at a few places.

A first order Σ-theory T is a set of deductively closed Σ-sentences. Inter-
preted symbols are those symbols whose interpretation is restricted to the models
of a certain theory T , whereas free or uninterpreted symbols are those symbols
not in Σ. In this paper we assume the usual interpreted symbols for equality,
linear arithmetic and bit-vectors. We use ≃ to denote the interpreted predicate
symbol for equality.

A Σ-structure M consists of a non-empty universe |M | and an interpreta-
tion for variables and symbols in Σ. For each symbol f in Σ, the interpre-
tation of f is denoted by M(f). For a function symbol f with arity(f) = n,
the interpretation M(f) is a total n-ary function on |M |. For each predicate
symbol p with arity(p) = n, M(p) is a subset of |M |n. For a variable x,
M(x) is an element in |M |. The interpretation of an arbitrary term t is de-
noted by M [[t]] and defined as: M [[m]] = M(m) for constant or variable m, and
M [[f(t1, . . . , tn)]] = M(f)(M [[t1]], . . . , M [[tn]]). If S is a set of terms, M(S) means
the set {M(t) | t ∈ S}.

We use M{x 7→ v} to denote a structure where the variable symbol x is
interpreted as v, v ∈ |M |, and all other variables, function and predicate symbols
have the same interpretation as in M . That is M{x 7→ v}(x) = v. M{x 7→ v}
denotes M{x1 7→ v1}{x2 7→ v2} . . . {xn 7→ vn}.

Satisfaction M |= φ is defined as usual. In particular, given atomic formula
p(t1, . . . , tn), M |= p(t1, . . . , tn) if and only if (M [[t1]], . . . , M [[tn]]) ∈ M(p). Given
a vector x of n variables, M |= C[x] if for all v ∈ |M |n there is a literal l in C[x]

such that M{x 7→ v} |= l. M is a model for a formula F if M |= F . A formula is
satisfiable if and only if it has a model. A formula F is satisfiable modulo theory
T if there is a model for {F} ∪ T . A formula F is satisfiable modulo a class Ω

of intended structures if there is a M in Ω that is a model for F .

3 Essentially Uninterpreted Formulas

Given a theory T , we say a formula F is essentially uninterpreted if any variable
in F appears only as an argument of uninterpreted function or predicate symbols.

Example 1 (essentially uninterpreted clause). In the following example, the sym-
bols + and ≤ are interpreted by the theory of arithmetic, and a, b, f , g, h and
p are uninterpreted symbols.

f(g(x1) + a) ≤ h(x1) ∨ p(f(x1) + b, x2)

We show that every essentially uninterpreted formula F is equisatisfiable to a
(potentially infinite) set of ground formulas F ∗. For that purpose, let us introduce
some additional notational conventions. For a term t[x1, . . . , xn], t[r1, . . . , rn] is
the result of simultaneously substituting ri for xi (1 ≤ i ≤ n) in t. When
Si (1 ≤ i ≤ n) are sets, we shall write t[S1, . . . , Sn] for {t[r1, . . . , rn] | r1 ∈
S1, . . . , rn ∈ Sn}. For a clause C, C[r1, . . . , rn] and C[S1, . . . , Sn] are defined in
the obvious way, where ri are ground terms and Si are sets of ground terms.
For each variable xi in every Ck, we introduce a set Sk,i. For each uninterpreted
function symbol f with arity n, we introduce the sets Af,1, . . . , Af,n. We obtain
the sets Sk,i and Af,j as the least solution to a system of set constraints ∆F

induced by F . The constraints in ∆F describe relationships between sets of
terms. We follow the set constraint conventions also used in [13]. We generate
∆F using the following rules based on the occurrences f(s) of uninterpreted
function symbols in F .

j-th argument of f in Ck Set constraint

a ground term t t ∈ Af,j

t[x1, . . . , xn] t[Sk,1, . . . , Sk,n] ⊆ Af,j

xi Sk,i = Af,j

Informally, the first two rules capture the relevant domain, a set of ground terms,
of an uninterpreted function symbol f . The first says that any ground argument
of an f -application in F is relevant, and the second says the relevant domain
of a function symbol f may be increased when we instantiate a non-ground
clause containing f . In the second rule, we are implicitly assuming t is a non
ground term. The last rule states that it is sufficient to instantiate xi using
terms of the relevant domain. Without loss of generality, we assume the least
solution of ∆F contains only non-empty sets of terms. We can always add extra
constraints of the form a ∈ S to ∆F to force S to be non-empty. Since we
are discussing essentially uninterpreted formulas, for each Sk,i there must be a

equation Sk,i = Af,j in ∆F . Intuitively, Af,j contains all ground terms that can
be the j-th argument of f , and Sk,i is the set of ground terms that can appear in
the place of xi in Ck. To illustrate the construction of ∆F , consider the following
example.

Example 2 (∆F construction). Let F be the following four clauses.

g(x1, x2) ≃ 0 ∨ h(x2) ≃ 0,

g(f(x1), b) + 1 ≤ f(x1),
h(b) ≃ 1, f(a) ≃ 0

∆F is:

S1,1 = Ag,1, S1,2 = Ag,2, S1,2 = Ah,1

S2,1 = Af,1, b ∈ Ag,2, f(S2,1) ⊆ Ag,1

b ∈ Ah,1, a ∈ Af,1

The least solution of ∆F is S1,1 = Ag,1 = {f(a)}, S1,2 = Ag,2 = Ah,1 = {b},
S2,1 = Af,1 = {a}.

Now we define F ∗ as the set of ground clauses {Ck[Sk,1, . . . , Sk,m] |Ck in F}.
That is, F ∗ is obtained by instantiating clauses with ground terms from Sk,i.
For the above example, F ∗ is

g(f(a), b) ≃ 0 ∨ h(b) ≃ 0, g(f(a), b) + 1 ≤ f(a), h(b) ≃ 1, f(a) ≃ 0

Proposition 1. For every ground term f(. . . , tj , . . .) in F ∗, where tj is the j-th
argument and f is uninterpreted, tj is in Af,j.

Suppose F ∗ has a model M , for each Af,j , we define a projection function πf,j

on |M | such that πf,j(v) ∈ M(Af,j) and πf,j(v) = v when v ∈ M(Af,j). The
projection functions essentially map the domain of f to its relevant subset. Sim-
ilarly we define a projection function πk,i for each Sk,i and require πk,i = πf,j if
Sk,i = Af,j appears in ∆F .

The functions πf,j and πk,i are well-defined because we assume the least
solution of ∆F contains only non-empty sets of terms. We use πk(v) to denote
the tuple 〈πk,1(v1), . . . , πk,m(vm)〉.

Suppose F ∗ has a model M , we construct a model Mπ for F. In other words,
if F ∗ is satisfiable, so is F . We say Mπ is a π-extension of M if |Mπ| = |M |,
Mπ(a) = M(a) for every constant a, Mπ(f) = M(f) for every interpreted
function symbol f , and Mπ(f)(v1, . . . , vn) = M(f)(πf,1(v1), . . . , πf,n(vn)) for
every uninterpreted function symbol f .

Lemma 1. For every ground term t in F ∗, M [[t]] = Mπ[[t]].

Proof. (Sketch)3 By induction on the complexity of t. The proof is based on
the observation that M [[si]] ∈ M(Af,i) whenever si is the i-th argument of an
uninterpreted function symbol f in the set F ∗.

3 The full proofs for the proof sketches in this paper can be found at [14]
(http://research.microsoft.com/˜leonardo/citr09.pdf).

Lemma 1 implies that Mπ is also a model of F ∗ if M is. Now, let us show that
Mπ is also a model for F .

Lemma 2. For every term t[x] in clause Ck, where t[x] is not a variable, we
have that for all tuples of v, Mπ{x 7→ v}[[t[x]]] = M{x 7→ πk(v)}[[t[x]]].

Proof. (Sketch) By induction on the complexity of t. The only interesting case is
when t is f(s), and f is an uninterpreted symbol. Then, it suffices to show that
πf,j(M

π{x 7→ v}[[sj[x]]]) = M{x 7→ πk(v)}[[sj [x]]], for each sj in s. We consider
three cases: sj [x] is ground, a variable, or a composite non-ground term. The
first case follows from Lemma 1. The second is based on the observation that
πk,i = πf,j whenever xi is the j-th argument of some f in a clause Ck. The final
case follows from the induction hypothesis, and the fact that ∆F contains the
constraint sj [Sk,1, . . . , Sk,m] ⊆ Af,j .

Theorem 1. F and F ∗ are equisatisfiable.

Proof. If F ∗ is unsatisfiable, then so is F , since F ∗ is the conjunction of ground
instances of F . Suppose that F ∗ is satisfiable, but F is not. Let M be a model for
F ∗ and Mπ be its π-extension. Since F is unsatisfiable, there is a clause Ck[x] in
F such that for some v, Mπ{x 7→ v} 6|= Ck[x]. By Lemma 2, M{x 7→ πk(v)} 6|=
Ck[x]. Let v be the tuple 〈v1, . . . , vm〉, then for every πk,i(vi) in πk(v), there is
some ground term rj in Sk,j such that M [[rj]] = πk,j(vj). Thus, M{x 7→ πk(v)} |=
Ck[x] if and only if M |= Ck[r], and consequently M 6|= Ck[r], contradicting the
assumption that F ∗ is satisfiable since Ck[r] is in F ∗.

We say a formula F is in the finite essentially uninterpreted fragment (FEU)
if every Sk,i is finite in the least solution of ∆F . A system ∆F is stratified if
there is a function level from set variables into natural numbers such that for
each constraint Sk,j = Af,i, level(Sk,j) = level(Af,i), and for each constraint
t[Sk,1, . . . , Sk,n] ⊆ Af,j , level(Af,j) < level(Sk,i), for all i = 1, . . . , n.

Proposition 2. The least solution of ∆F is finite if and only if ∆F is stratified.

By proposition 2, a formula F is in the FEU fragment if and only if ∆F is
stratified. Theorem 1 suggests a simple decision procedure for the formulas in
the FEU fragment. We just generate F ∗ and check its satisfiability using a SMT
solver such as Z3 [3]. The decidability problem for FEU-formulas is NEXPTIME-
hard, because F ∗ is finite for any formula in the Bernays-Schönfinkel (EPR)
class. The EPR class comprise of formulas of the form ∀x : ϕ(x), where ϕ(x)
is a quantifier-free formula with relations, equality, constants, but without non
constant function symbols. The size of F ∗ is at most doubly exponential in the
size of F . The first exponential blowup is caused by the construction of the least
solution of ∆F . For example, assume ∆F contains the following constraints:

a ∈ S1, b ∈ S1, f1(S1, S1) ⊆ S2, f2(S2, S2) ⊆ S3, . . . , fn(Sn, Sn) ⊆ Sn+1

The second exponential blowup is caused by the instantiation of the clauses
Ck[x].

Compactness The least solution of ∆F is infinite if some Sk,i in the least
solution of ∆F is infinite. If ∆F is infinite, then F ∗ is an infinite set of ground
clauses. Therefore, a tempting possibility is to assume a refutationally complete
procedure can be devised by using the Compactness Theorem for first-order
logic. The Compactness Theorem says that for any unsatisfiable set of first-order
formulas F , there is a finite subset F ′ that is also unsatisfiable. In this paper,
we are interested in the satisfiability of a Σ′-formula F modulo a Σ-theory T ,
where the signature Σ′ includes Σ. Then, in principle, the satisfiability of F

modulo T is equivalent to the satisfiability of F ∪T in pure first-order logic, and
the Compactness Theorem can be applied to F ∪ T . This approach can be used
to handle useful background theories such as: algebraic/real closed fields and
finite size bit-vectors. However, in practice, we are also interested in checking
the satisfiability of F modulo a class Ω of intended structures. Before continuing,
let us introduce some notational conventions. Let Σ′ be any signature including
Σ. An expansion M ′ to Σ′ of a Σ-structure M is a Σ′-structure that has the same
universe as M , and agrees with M on the interpretation of the symbols in Σ. We
denote by ExpΣ′(T) the class of all Σ′-structures that are expansions of the Σ-
structure T . Note that Theorem 1 guarantees that F and F ∗ are equisatisfiable
modulo a class ExpΣ′(T) of intended structures, because M and Mπ only differ
on the interpretation of symbols that are in Σ′ but not in Σ. Thus, if M is in
ExpΣ′(T), then so is Mπ. A Σ-theory Th(Ω) for a class Ω of Σ-structures is the
set of all Σ-sentences φ such that M |= φ for every M in Ω. Now, consider the
following example:

Example 3 (Nonstandard models of arithmetic). Let Σ be the signature
(0, 1, +,−, <). Let Z be the structure that interprets these symbols in the usual
way over the integers. Let Σ′ be the signature (0, 1, +,−, <, f). Now, let us check
the satisfiability of the following set of Σ′-clauses F modulo the background the-
ory Th(Z).

f(x1) < f(f(x1)), f(x1) < a, 1 < f(0)

By Theorem 1, these three clauses are equisatisfiable to the set of ground clauses
F ∗ = {f(0) < f2(0), f2(0) < f3(0), . . . , f(0) < a, f2(0) < a, . . . , 1 < f(0)}
modulo Th(Z). Since, every finite subset of F ∗ ∪ Th(Z) is satisfiable, then by
compactness F ∗ ∪ Th(Z) is satisfiable. This is counterintuitive, since clause
f(x1) < f(f(x1)) implies that the range of any interpretation of f contains
infinite strictly increasing chains M(f)(v) < M(f)2(v) < . . . < M(f)n(v) < . . .,
and clause f(x1) < a says there is a value M(a) greater than any value in
the range of M(f). The problem here is that Th(Z) has nonstandard models.
Now suppose we want to check the satisfiability of F modulo the class of struc-
tures ExpΣ′(Z). F ∗ is still equisatisfiable to F modulo ExpΣ′(Z), but we cannot
apply the Compactness Theorem. Therefore, if F ∗ is infinite, the procedures
described in this paper are not refutationally complete for satisfiability modulo
ExpΣ′(Z). Note also that Theorem 1 does not hold if the background theory is
Th(ExpΣ′(Z)) because this theory restricts the interpretations of the function

symbols in Σ′ \ Σ. For instance, it contains a sentence stating that if f is a
strictly increasing function, then the range of f does not have a supremum.

From hereafter, we only consider the problem of checking the satisfiability
of F modulo a theory T , instead of satisfiability modulo a class Ω of intended
structures. Therefore, if F ∗ is unsatisfiable, there is a finite subset of F ∗ that
is also unsatisfiable. Given a fair enumeration of F ∗, we obtain a refutationally
complete procedure. By fair, we mean a sequence F 1 ⊆ F 2 ⊆ . . . F i ⊆ . . . ⊆ F ∗,
where each F i is a finite set, and for each clause C in F ∗ there is an n such
that C is in Fn. A fair enumeration of F ∗ can be obtained by performing a fair
enumeration of the least solution of the system ∆F . It is not difficult to generate
such enumeration [14]. For each Sk,i in ∆F , we have a sequence S0

k,i ⊆ S1
k,i ⊆

S2
k,i ⊆ . . . ⊆ Sk,i, where each S

j
k,i is finite, and for each t in Sk,i, there is an n

such that t is in Sn
k,i. Note that these sequences are finite when ∆F is stratified.

4 Almost uninterpreted formulas

In an essentially uninterpreted formula, a variable x can only be the argument of
uninterpreted function and predicate symbols. In this section, we present many
extensions of the framework described so far. The first trivial extension is to use
destructive equality resolution (DER) as a preprocessing step. In DER, the clause
¬(x ≃ t)∨C[x] is simplified to C[t], when x does not occur in t. From hereafter,
all proposed extensions come equipped with new rules for generating constraints
for ∆F . As before, the idea is to show that a formula F in the extended fragment
is equisatisfiable to a set of ground formulas F ∗. Moreover, if the least solution
of ∆F is finite, the satisfiability of F can be determined in finite time.

Arithmetical literals First, let us consider literals of the form ¬(xi ≤ xj),
¬(xi ≤ t), ¬(t ≤ xi), and xi ≃ t, where t is a ground term. The literal xi ≃ t

is in the new fragment only if xi ranges over integers. We say these literals are
arithmetical. Positive literals of the form xi ≤ t can be rewritten into ¬(t+1 ≤ xi)
if xi ranges over integers. In order to support arithmetical literals, we use the
following additional rules to generate the system ∆F .

Literal of Ck Set constraint

¬(xi ≤ xj) Sk,i = Sk,j

¬(xi ≤ t),¬(t ≤ xi) t ∈ Sk,i

xi ≃ t {t + 1, t − 1} ⊆ Sk,i

We say a formula F is almost uninterpreted if any variable in F appears as an
argument of an arithmetical literal, or as an argument of uninterpreted function
or predicate symbols. To handle almost uninterpreted formulas, we define a new
projection function πk,i. With a small abuse of notation, we use v1 ≤ v2 to denote
(v1, v2) ∈ M(≤), and v1 > v2 to denote (v1, v2) 6∈ M(≤). Then, πk,i(v) = v1

such that v1 ∈ M(Sk,i), and either v1 ≤ v and for all v2 ∈ M(Sk,i), v2 ≤ v1 or

v2 > v; or v1 > v and for all v2 ∈ M(Sk,i), v1 ≤ v2. As before, πk,i = πf,j if
Sk,i = Af,j appears in ∆F . We remark that the range of πk,i is equal to M(Sk,i),
and πk,i(v) = v for any v ∈ M(Sk,i). Thus, the proof of Lemma 2 is not affected.

Proposition 3. The projection functions πk,j defined above are monotonic.
That is, for all v1 and v2 in |M |, v1 ≤ v2 implies πk,j(v1) ≤ πk,j(v2).

Theorem 2. F and F ∗ are equisatisfiable.

Proof. It suffices to show that for each arithmetical literal l[x], if Mπ{x 7→
v} 6|= l[x] then M{x 7→ πk(v)} 6|= l[x]. This is an immediate consequence of
Proposition 3, and the fact that πk,i = πk,j when l[x] is of the form ¬(xi ≤ xj).
The rest of the proof is identical to the proof of Theorem 1.

Example 4 (Stratified Arrays). The fragment described in this section can decide
the following set of satisfiable clauses. In this example, f should be viewed as
an array of pointers, and h as a heap from pointers to values, h′ is the heap
h after an update at position a with value b. The first clause states that the
array f is sorted in the range [0, n]. If we replace c with a, the example becomes
unsatisfiable.

¬(0 ≤ x1) ∨ ¬(x1 ≤ x2) ∨ ¬(x2 ≤ n) ∨ h(f(x1)) ≤ h(f(x2)),
¬(0 ≤ x1) ∨ ¬(x1 ≤ n) ∨ f(x1) 6≃ c,

¬(x1 ≃ a) ∨ h′(x1) ≃ h(x1), h′(a) = b

0 ≤ i, i ≤ j, j ≤ n, h′(f(i)) > h′(f(j))

Offsets We now consider terms of the form f(. . . , xi+r, . . .), where r is a ground
term. For this extension, we use the following additional rule:

j-th argument of f in Ck Set constraint

xi + r Sk,i + r ⊆ Af,j , Af,j + (−r) ⊆ Sk,i

Without this additional rule, it is not possible, for instance, to detect the un-
satisfiability of {p(f(x + 1)), ¬p(f(a))}. The set S + r is defined as the set of
ground terms {t ⊕ r | t ∈ S}, where t ⊕ r creates a term equivalent to t + r

modulo the simplification rules: (x + y) + (−y) ; x, and (x + (−y)) + y ; x.
For example, (t + (−r)) ⊕ r = t. These simplifications prevent ∆F from being
trivially infinite. Again, with a small abuse of notation, we use v1 + v2 to denote
M(+)(v1, v2). Similarly, v1−v2 denotes M(−)(v1, v2). For this extension, we use
the same projection functions used for handling arithmetical literals.

Proposition 4. If xi + r is the j-th argument of a term f(s) in clause Ck, then
for all v ∈ |M |, v ∈ M(Af,j) if and only if v − M [[r]] ∈ M(Sk,i).

The proof of Lemma 2 has to be updated, since xi +r can be the argument of
an f -application. For this extra case, it suffices to show that πf,j(vi + M [[r]]) =
πk,i(vi)+M [[r]]. This equality follows from Proposition 4, and from the definition
of the projection functions [14].

Example 5 (Shifting). The following clause states that the segment [2, n + 2] of
the array f is equal to the segment [0, n] of the array g.

¬(0 ≤ x1) ∨ ¬(x1 ≤ n) ∨ f(x1 + 2) ≃ g(x1)

Similarly, we can add support for literals of the form ¬(xi ≤ xj + r). The idea
is to include the constraints Sk,i + (−r) ⊆ Sk,j , and Sk,j + r ⊆ Sk,i, for each
literal ¬(xi ≤ xj + r) in a clause Ck.

4.1 Many-sorted first-order logic

Sorts naturally arise in SMT applications and in some cases sort information
significantly simplifies the problem. SMT solvers such as CVC3 [15] and Z3 [16]
have support for sorts. We say a sort σ is uninterpreted if it is not in the sig-
nature of the background theory. We use ≃σ to denote the equality predicate
for elements of sort σ. Given a formula F in many-sorted logic, we can support
any literal using the equality predicate ≃σ, when σ is an uninterpreted sort. The
basic idea is to axiomatize the equality predicate ≃σ, and treat it as an unin-
terpreted predicate symbol. That is, we add the clauses EQσ asserting that ≃σ

is reflexive, symmetric, transitive, and congruent. This is a standard technique
used in saturation-based provers that do not have built-in support for equality.
The previous theorems asserting the equisatisfiability of F and F ∗ can be eas-
ily adapted to the many-sorted case. In practice, we do not really need to add
the clauses EQσ, since any SMT solver has built-in support for equality. It is
sufficient to add to ∆F any constraints that are induced by EQσ. We denote by
domf,j the sort of the j-th argument of f . We introduce the auxiliary set Sσ in
∆F . Intuitively, Sσ contains the ground terms of sort σ. We use the following
additional rules to generate ∆F .

argument of ≃σ in Ck Set constraint

xi Sk,i = Sσ

t[x1, . . . , xn] t[Sk,1, . . . , Sk,n] ⊆ Sσ

Sort declaration Set constraint

domf,j = σ Af,j = Sσ

For example, now we can handle the anti-symmetry axiom used in the ax-
iomatization of the subtype relation in ESC/Java [10]: ¬subtype(x1, x2) ∨
¬subtype(x2, x1) ∨ x1 ≃σ x2. From hereafter, we suppress the σ in ≃σ.

5 Macros and pseudo-macros

In practice, many formulas contain non-ground clauses that can be seen as macro
definitions. These clauses have the following form: g(x) ≃ t[x], where g does not
occur in t[x]. For example, the macro g(x1) ≃ x1+c is not in any of the fragments
described so far. The simplest way to handle a macro g(x) ≃ t[x] is to remove it

from F , and replace every term of the form g(s) with t[s]. Clearly, the resultant
formula is equisatisfiable to F . More generally, we say g is a pseudo-macro defined
by the non-ground clauses Dg = {C1[x], . . . , Cn[x]} if all clauses in Dg contain
g(x), and are trivially satisfied (i.e., are equivalent to true) by replacing g(x)
with a term tg[x].

Example 6 (Pseudo-Macro). The function symbol g is a pseudo-macro in the
following example. Note that replacing g(x1) with 0 trivially satisfies the first
two clauses.

g(x1) ≥ 0 ∨ f(g(x1)) ≃ x1, g(x1) ≥ 0 ∨ h(g(x1)) ≤ g(x1), g(a) < 0

Many different heuristics may be used to find pseudo-macros. For example, it is
clear that g is a pseudo-macro if Dg = {C1[x]∨ g(x) ⊲⊳ tg[x], . . . , Cn[x]∨ g(x) ⊲⊳

tg[x]}, where ⊲⊳ is ≃, ≤, or ≥. From hereafter, we assume some heuristic was
used to select the pseudo-macros g, their definitions Dg, and the terms tg[x]. We
now describe how to incorporate pseudo-macros in our framework. A clause C

is regular if C is not in any set Dg. First we observe that a pseudo-macro g may
occur in regular clauses C if none of its arguments is a variable. Intuitively, a
pseudo-macro g is treated as an interpreted function symbol in regular clauses.
The rules for generating constraints from regular clauses are unchanged. For
clauses Ck[x] in Dg, we use slightly different rules. The main difference is the
rule for a variable xi occurring as an argument of f .

xi is an argument of f in Ck Set constraint

f = g Sk,i = Af,j

f 6= g Sk,i ⊆ Af,j

The construction of Mπ is also slightly modified. If g is a pseudo-macro, then
Mπ(g) is defined in the following way

Mπ(g)(v) = M [[g(s)]] if g(s) ∈ F ∗, and M [[s]] = v

= M{x 7→ v}[[tg[x]]] otherwise

The proof that F and F ∗ are still equisatisfiable, when F contains pseudo-
macros, is a direct consequence of Theorem 1 and the definition above.

6 Implementation

Some of the ideas described in this paper were already implemented in the Z3
theorem prover submitted to the SMT 2008 competition4. The extensions for
many-sorted logic, and pseudo-macros defined by multiple clauses were not im-
plemented yet.

We would like to make it clear that Z3’s performance is not a consequence
of the theory or heuristics described on this paper. On the other hand, the tech-
niques proposed here increased Z3’s precision. For example, Z3 was the only

4 http://www.smtcomp.org

theorem prover in the competition that produced the correct answers for sat-
isfiable problems in the divisions for quantified formulas. Z3 detected that 33
benchmarks with quantifiers were satisfiable; 3 of them were Almost Uninter-
preted Formulas (AUF), and 30 were AUF+pseudo-macros.

For some applications, it is desirable not only to know whether a formula is
satisfiable, but also, what a satisfying model is. In general, it is very challenging
to capture the structure of an arbitrary first-order model. We have a more modest
goal: we only want to describe models for the decidable fragments described in
this paper. We also propose a heuristic to minimize the number of instantiations.
The basic idea is to use “candidate” models to guide quantifier instantiation. A
similar idea is used in the theorem prover Equinox [17] for pure first-order logic.

Model representation Assume T is a Σ-theory, Σ′ includes the signature Σ,
and F is a set of Σ′-clauses. In our implementation, a “model” is essentially
a function that maps a Σ-structure T that satisfies T , into an expanded Σ′-
structure M that satisfies T ∪ F . Our “models” also come equipped with a set
of formulas R that restricts the class of Σ-structures that satisfy T . If T is the
empty theory, then R is just a cardinality constraint on the size of the universe.
When needed, we use fresh constant symbols k1, . . . , kn to name the elements in
|M |. We also use R to restrict the interpretation of under-specified interpreted
function symbols such as: division and modulo [14]. In our implementation, the
interpretation of an uninterpreted symbol s in Σ′ \ Σ is an expression Is[x],
which contains only interpreted symbols and the fresh constants k1, . . . , kn. For
uninterpreted constants c, Ic[x] is a ground term Ic, and M [[c]] = T [[Ic]]. When Ic

is ground we say it is a value. For uninterpreted function and predicate symbols,
the term Is[x] should be viewed as a lambda expression, where for all v in |M |n,
M(f)(v) = T {x 7→ v}[[If [x]]]. We assume the construct ite(φ, t1, t2) (the if-then-
else construct for terms) is available in our language.

Example 7 (Model representation). Let F be the following four clauses.

¬(5 ≤ x1) ∨ f(x1) < 0, f(a) ≃ 0, f(b) ≃ 1, a < 2

These clauses are satisfiable, and Z3 generates the following model.

a 7→ 0, b 7→ 2, f 7→ ite(x1 < 2, 0, ite(x1 < 5, 1,−1))

Note that SMT solvers can be used to model check any clause Ck[x] in F . Let
CI

k [x] be the clause obtained from Ck[x] by replacing any term f(s) with If [s],
when f is uninterpreted. Thus, a model satisfies Ck[x] if and only if R∧¬CI

k [w]
is unsatisfiable, where w is a tuple of fresh constant symbols. For example, in
the previous example, the first clause is satisfied by the model above because
the following formula is unsatisfiable.

5 ≤ w1 ∧ ¬(ite(w1 < 2, 0, ite(w1 < 5, 1,−1)) < 0)

It is straightforward to construct the term Ic for uninterpreted constants. For
uninterpreted function symbols, we construct If [x] based on the definition of
Mπ(f) using the ite construct.

We say Mn is a candidate model for F if it is a model for a finite subset Fn

of F ∗. The set of ground terms An
f,j contains all j-th arguments of terms f(s) in

Fn. The candidate interpretation If [x] for f is defined using the set An
f,i instead

of the set Af,i. If An
f,i is empty, then If [x] = tf [x] if f is a pseudo-macro, and

If [x] is an arbitrary constant function otherwise.

Model-based quantifier instantiation (MBQI) Let t1 ≺k,j t2 be a total
order on the terms in Sk,j such that t1 ≺k,j t2 whenever there is an n such that
t1 ∈ Sn

k,j and t2 6∈ Sn
k,j . Let π−1

k,j(vj , M) be a function that maps a value vj to the
least (with respect to ≺k,j) ground term rj in Sk,j such that πk,j(vj) = M [[rj]].
As before, we use π−1

k (v, M) to denote the tuple 〈π−1

k,1(v1, M), . . . , π−1

k,n(vn, M)〉.
Instead of generating the fair enumeration of F ∗, we guide quantifier instanti-
ation using the model checking procedure described above, and the following
procedure.

ϕ := set of ground clauses in F

loop
if ϕ is unsatisfiable return unsat
create the candidate model Mn

ok := true
foreach non-ground clause Ck[x] in F

create CI
k [w] using Mn

if R ∧ ¬CI
k [w] is satisfiable

let Mk be the model for R ∧ ¬CI
k [w], and v be Mk(w).

ϕ := ϕ ∪ Ck[π−1

k (v, Mn)]
ok := false

if ok return sat

Heuristics Heuristic quantifier instantiation based on E-matching generates a
subset of the instances in F ∗. An advantage of E-matching is that it can be
used incrementally. In [5, 3] it was observed that incremental and eager quantifier
instantiation (EQI) is more efficient, in software verification benchmarks, than
lazy quantifier instantiation (LQI). In this way, MBQI does not substitute E-
matching in Z3, but complements it. MBQI increases the number of benchmarks
that Z3 can solve. The prototype of Z3 submitted to SMT-COMP’08 still uses E-
matching, and only applies MBQI after a candidate model is produced. In SMT-
COMP’08, 22 benchmarks were proved to be unsatisfiable by Z3 using MBQI,
and a prover solely based on e-matching would fail on these benchmarks. Another
important heuristic used is relevancy propagation [3]. Relevancy propagation
keeps track of which truth assignments are essential for determining satisfiability
of a formula. Only terms that are marked as relevant are considered for E-
matching and constructing candidate models.

7 Related work

The fragment that contains arithmetical literals and the associated projection
functions resemble much in spirit the array property fragment and its projection
function proposed in [12], which is the original motivation for this paper. It
is obvious that our fragments subsume the array property fragment, since we
support nested array reads, offsets on indices, and pseudo-macros. As proved in
[12], nested array reads and offsets on indices will in general make the formula
undecidable. However, we show that for certain cases containing nested array
reads and offsets, a complete decision procedure is possible as long as the set F ∗ is
finite. In [18] a logic called LIA is proposed, in which modulo equalities, difference
constraints, and non-nested array reads are allowed. The decidability of LIA is
proved by employing a customized counter Büchi automata. Compared with
LIA, our fragments allow propositional combination of any theory constraints
and nested array reads. For certain cases containing offsets on array indices,
our procedure will result in an infinite set of instantiations, while a decision
procedure of LIA will terminate.

In [19, 20, 11] procedures based on stratified vocabularies are presented. These
procedures are in the context of many-sorted logic. A vocabulary is stratified if
there is a function level from sorts to naturals, and for every function f : σ1 ×
. . . × σn → σ, level(σ) < level(σi). Our method can decide a broader class of
problems. For example, these methods fail if there is a single function f : σ → σ,
and cannot handle simple examples such as f(x) = b ∧ f(a) = a. In [21] local
theories and local extensions are studied; they propose a complete instantiation
procedure for certain types of quantified formulas. One major difference is that
our method can provide models for satisfiable cases.

In our approach, if T is the empty theory, then Theorem 1 can be viewed as
a frugal version of the standard Herbrand theorem, and the universe does not
necessarily become infinite in the presence of function symbols.

8 Conclusion

We proposed several new useful fragments of first order logic modulo theories
that have complete instantiation. We showed how to construct models for sat-
isfiable formulas in these fragments. We also described undecidable fragments
and discussed the conditions under which a refutationally complete procedure
exists. We discussed the difference between a theory as a deductively closed set
of sentences, and as a class of intended structures. We used model-based quan-
tifier instantiation to prioritize quantifier instantiation. Some of ideas in this
paper have been implemented in Z3 2.0. In the last SMT competition, Z3 was
the only prover that solved satisfiable quantified formulas. Future work includes
investigation of more heuristics to prioritize instantiations, and more decidable
fragments. For instance, our approach cannot handle a clause containing the
term f(x1 + x2), where x1 and x2 are universally quantified variables.

Acknowledgments We’d like to thank Tom Ball, Clark Barrett, Margus
Veanes, Cesare Tinelli, and the anonymous reviewers for reading early drafts
of this paper, and providing helpful feedback.

References

1. Halpern, J.Y.: Presburger Arithmetic with unary predicates is Π
1

1 Complete. Jour-
nal of Symbolic Logic 56 (1991) 637–642

2. Deharbe, D., Ranise, S.: Satisfiability solving for software verification. Interna-
tional Journal on Software Tools Technology Transfer (2008) to appear.

3. de Moura, L.M., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: CADE.
(2007)

4. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated
Reasoning 1 (1985) 333–355

5. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: CADE. (2007)

6. Flanagan, C., Joshi, R., Saxe, J.B.: Theorem proving using lazy proof explication.
In: CAV. (2003)

7. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
CAV’06. LNCS 4144, Springer-Verlag (2006) 81–94

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52 (2005)

9. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: FMCO. (2005)

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI ’02, ACM (2002)

11. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic.
In: LPAR. (2007)

12. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: VM-
CAI. (2006)

13. Aiken, A.: Set Constraints: Results, Applications, and Future Directions. In: Sec-
ond Workshop on the Principles and Practice of Constraint Programming. (1994)

14. Ge, Y., de Moura, L.: Complete instantiation for quantified SMT formulas .
Technical report, Microsoft Research (2009)

15. Barrett, C., Tinelli, C.: CVC3. In: CAV ’07. (2007)
16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: TACAS 08. (2008)
17. Claessen, K.: Equinox, a new theorem prover for full first-order logic with equality.

Presentation at Dagstuhl Seminar 05431 on Deduction and Applications (2005)
18. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays?

In: FoSSaCS. (2008)
19. Fontaine, P., Gribomont, E.P.: Decidability of invariant validation for paramater-

ized systems. In: TACAS. (2003)
20. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification

with automatically computed inductive assertions. In: CAV. (2001)
21. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifi-

cation. In: TACAS. (2008)

