
Viewstamped Replication Revisited

Barbara Liskov and James Cowling
MIT Computer Science and Artificial Intelligence Laboratory

liskov@csail.mit.edu, cowling@csail.mit.edu

Abstract

This paper presents an updated version of Viewstamped
Replication, a replication technique that handles failures
in which nodes crash. It describes how client requests are
handled, how the group reorganizes when a replica fails,
and how a failed replica is able to rejoin the group. The
paper also describes a number of important optimizations
and presents a protocol for handling reconfigurations that
can change both the group membership and the number
of failures the group is able to handle.

1 Introduction

This paper presents an updated version of Viewstamped
Replication [11, 10, 8] (referred to as VR from now on).
VR works in an asynchronous network like the Internet,
and handles failures in which nodes fail by crashing. It
supports a replicated service that runs on a number of
replica nodes. The service maintains a state, and makes
that state accessible to a set of client machines. VR
provides state machine replication [4, 13]: clients can
run general operations to observe and modify the service
state. Thus the approach is suitable for implementing
replicated services such as a lock manager or a file sys-
tem.

The presentation here differs from the earlier papers
on VR in several ways:

• The protocol described here improves on the orig-
inal: it is simpler and has better performance.
Some improvements were inspired by later work on
Byzantine fault tolerance [2, 1].

• The protocol does not require any use of disk; in-
stead it uses replicated state to provide persistence.

• The paper presents a reconfiguration protocol that
allows the membership of the replica group to

change, e.g., to replace a faulty node with a differ-
ent machine. A reconfiguration can also change the
group size so that the number of failures the group
can handle can increase or decrease.

• The paper presents the protocol independently of
any applications that use VR. The original papers
explained the protocol as part of a database [11, 10]
or file system [8], which made it difficult to separate
the protocol from other details having to do with its
use in an application.

VR was originally developed in the 1980s, at about
the same time as Paxos [5, 6], but without knowledge of
that work. It differs from Paxos in that it is a replication
protocol rather than a consensus protocol: it uses con-
sensus, with a protocol very similar to Paxos, as part of
supporting a replicated state machine. Another point is
that unlike Paxos, VR did not require disk I/O during the
consensus protocol used to execute state machine opera-
tions.

Some information about the history of VR can be
found in [7]. That paper presents a similar but less com-
plete description of VR. It also explains how later work
on Byzantine fault tolerance was based on VR and how
those protocols are related to the VR protocols.

The remainder of the paper is organized as follows.
Section 2 provides some background material and Sec-
tion 3 gives an overview of the approach. The VR pro-
tocol is described in Section 4. Section 5 describes a
number of details of the implementation that ensure good
performance, while Section 6 discusses a number of op-
timizations that can further improve performance. Sec-
tion 7 describes our reconfiguration protocol. Section 8
provides a discussion of the correctness of VR and we
conclude in Section 9.

1



2 Background

This section begins with a discussion of our assumptions
about the environment in which VR runs. Section 2.2
discusses the number of replicas required to provide cor-
rect behavior, and Section 2.3 describes how to configure
a system to use VR.

2.1 Assumptions

VR handles crash failures: we assume that the only way
nodes fail is by crashing, so that a machine is either func-
tioning correctly or completely stopped. VR does not
handle Byzantine failures, in which nodes can fail arbi-
trarily, perhaps due to an attack by a malicious party.

VR is intended to work in an asynchronous network,
like the Internet, in which the non-arrival of a message
indicates nothing about the state of its sender. Messages
might be lost, delivered late or out of order, and delivered
more than once; however, we assume that if sent repeat-
edly a message will eventually be delivered. In this paper
we assume the network is not under attack by a malicious
party who might spoof messages. If such attacks are a
concern, they can be withstood by using cryptography to
obtain secure channels.

2.2 Replica Groups

VR ensures reliability and availability when no more
than a threshold of f replicas are faulty. It does this by
using replica groups of size 2f + 1; this is the minimal
number of replicas in an asynchronous network under the
crash failure model. The rationale for needing this many
replicas is as follows:

We have to be able to carry out a request without wait-
ing for f replicas to participate, since these replicas may
be crashed and unable to reply. However, the f repli-
cas we didn’t hear from might merely be slow to reply,
e.g., because of network congestion. f of the replicas we
did hear from may thus subsequently fail. Therefore we
need to run the protocol with enough replicas to ensure
that even if these f fail, there is a least one replica that
knows about the request. This implies that each step of
the protocol must be processed by f + 1 replicas. These
f + 1 together with the f that may not respond give us
the smallest group size of 2f + 1.

A group of f + 1 replicas is often referred to as a quo-
rum and correctness of the protocol depends on the quo-
rum intersection property: the quorum of replicas that
processes a particular step of the protocol must have a
non-empty intersection with the group of replicas avail-
able to handle the next step, since this way we can ensure
that at each next step at least one participant knows what

Figure 1: VR Architecture; the figure shows the configu-
ration when f = 1.

happened in the previous step. In a group of 2f +1 repli-
cas, f + 1 is the smallest quorum size that will work.

In general a group need not be exactly of size 2f + 1;
if it isn’t, the threshold is the largest f such that 2f + 1
is less than or equal to the group size, K, and a quorum
is of size K − f . However, for a particular threshold f
there is no benefit in having a group of size larger than
2f + 1: a larger group requires larger quorums to ensure
intersection, but does not tolerate more failures. There-
fore in the protocol descriptions in this paper we assume
the group size is exactly 2f + 1.

2.3 Architecture

The architecture for running VR is presented in Figure 1.
The figure shows some client machines that are using
VR, which is running on 3 replicas; thus f = 1 in this
example. Client machines run the user code on top of
the VR proxy. The user code communicates with VR
by making operation calls to the proxy. The proxy then
communicates with the replicas to cause the operation to
be carried out and returns the result to the client when the
operation has completed.

The replicas run code for the service that is being repli-
cated using VR, e.g., a file system. The replicas also run
the VR code. The VR code accepts requests from client
proxies, carries out the protocol, and when the request is
ready to be executed, causes this to happen by making
an up-call to the service code at the replica. The service
code executes the call and returns the result to the VR
code, which sends it in a message to the client proxy that
made the request.

Of the 2f + 1 replicas, only f + 1 need to run the ser-
vice code. This point is discussed further in Section 6.1.

2



3 Overview

State machine replication requires that replicas start in
the same initial state, and that operations be determinis-
tic. Given these assumptions, it is easy to see that repli-
cas will end up in the same state if they execute the same
sequence of operations. The challenge for the replication
protocol is to ensure that operations execute in the same
order at all replicas in spite of concurrent requests from
clients and in spite of failures.

VR uses a primary replica to order client requests; the
other replicas are backups that simply accept the order
selected by the primary. Using a primary provides an
easy solution to the ordering requirement, but it also in-
troduces a problem: what happens if the primary fails?
VR’s solution to this problem is to allow different repli-
cas to assume the role of primary over time. The system
moves through a sequence of views. In each view one of
the replicas is selected to be the primary. The backups
monitor the primary, and if it appears to be faulty, they
carry out a view change protocol to select a new primary.

To work correctly across a view change the state of the
system in the next view must reflect all client operations
that were executed in earlier views, in the previously se-
lected order. We support this requirement by having the
primary wait until at least f + 1 replicas (including it-
self) know about a client request before executing it, and
by initializing the state of a new view by consulting at
least f + 1 replicas. Thus each request is known to a
quorum and the new view starts from a quorum.

VR also provides a way for nodes that have failed to
recover and then continue processing. This is important
since otherwise the number of failed nodes would even-
tually exceed the threshold. Correct recovery requires
that the recovering replica rejoin the protocol only af-
ter it knows a state at least as recent as its state when it
failed, so that it can respond correctly if it is needed for
a quorum. Clearly this requirement could be satisfied by
having each replica record what it knows on disk prior
to each communication. However we do not require the
use of disk for this purpose (and neither did the original
version of VR).

Thus, VR uses three sub-protocols that work together
to ensure correctness:

• Normal case processing of user requests.

• View changes to select a new primary.

• Recovery of a failed replica so that it can rejoin the
group.

These sub-protocols are described in detail in the next
section.

4 The VR Protocol

This section describes how VR works under the assump-
tion that the group of replicas is fixed. We discuss some
ways to improve performance of the protocols in Sec-
tion 5 and optimizations in Section 6. The reconfigu-
ration protocol, which allows the group of replicas to
change, is described in Section 7.

Figure 2 shows the state of the VR layer at a replica.
The identity of the primary isn’t recorded in the state but
rather is computed from the view-number and the con-
figuration. The replicas are numbered based on their
IP addresses: the replica with the smallest IP address is
replica 1. The primary is chosen round-robin, starting
with replica 1, as the system moves to new views. The
status indicates what sub-protocol the replica is engaged
in.

The client-side proxy also has state. It records the
configuration and what it believes is the current view-
number, which allows it to know which replica is cur-
rently the primary. Each message sent to the client in-
forms it of the current view-number; this allows the client
to track the primary.

In addition the client records its own client-id and a
current request-number. A client is allowed to have just
one outstanding request at a time. Each request is given a
number by the client and later requests must have larger
numbers than earlier ones; we discuss how clients ensure
this if they fail and recover in Section 4.5. The request
number is used by the replicas to avoid running requests
more than once; it is also used by the client to discard
duplicate responses to its requests.

4.1 Normal Operation

This section describes how VR works when the primary
isn’t faulty. Replicas participate in processing of client
requests only when their status is normal. This constraint
is critical for correctness as discussed in Section 8.

The protocol description assumes all participating
replicas are in the same view. Every message sent from
one replica to another contains the sender’s current view-
number. Replicas only process normal protocol mes-
sages containing a view-number that matches the view-
number they know. If the sender is behind, the receiver
drops the message. If the sender is ahead, the replica
performs a state transfer: it requests information it is
missing from the other replicas and uses this information
to bring itself up to date before processing the message.
State transfer is discussed further in Section 5.2.

The request processing protocol works as follows. The
description ignores a number of minor details, such as
re-sending protocol messages that haven’t received re-
sponses.

3



• The configuration. This is a sorted array containing
the IP addresses of each of the 2f + 1 replicas.

• The replica number. This is the index into the con-
figuration where this replica’s IP address is stored.

• The current view-number, initially 0.

• The current status, either normal, view-change, or
recovering.

• The op-number assigned to the most recently re-
ceived request, initially 0.

• The log. This is an array containing op-number
entries. The entries contain the requests that have
been received so far in their assigned order.

• The commit-number is the op-number of the most
recently committed operation.

• The client-table. This records for each client the
number of its most recent request, plus, if the re-
quest has been executed, the result sent for that re-
quest.

Figure 2: VR state at a replica.

1. The client sends a 〈REQUEST op, c, s〉 message to
the primary, where op is the operation (with its ar-
guments) the client wants to run, c is the client-id,
and s is the request-number assigned to the request.

2. When the primary receives the request, it compares
the request-number in the request with the informa-
tion in the client table. If the request-number s isn’t
bigger than the information in the table it drops the
request, but it will re-send the response if the re-
quest is the most recent one from this client and it
has already been executed.

3. The primary advances op-number, adds the request
to the end of the log, and updates the information
for this client in the client-table to contain the new
request number, s. Then it sends a 〈PREPARE v, m,
n, k〉 message to the other replicas, where v is the
current view-number, m is the message it received
from the client, n is the op-number it assigned to
the request, and k is the commit-number.

4. Backups process PREPARE messages in order: a
backup won’t accept a prepare with op-number n
until it has entries for all earlier requests in its log.
When a backup i receives a PREPARE message, it
waits until it has entries in its log for all earlier re-
quests (doing state transfer if necessary to get the
missing information). Then it increments its op-

Figure 3: Normal case processing in VR for a configura-
tion with f = 1.

number, adds the request to the end of its log, up-
dates the client’s information in the client-table, and
sends a 〈PREPAREOK v, n, i〉 message to the pri-
mary to indicate that this operation and all earlier
ones have prepared locally.

5. The primary waits for f PREPAREOK messages
from different backups; at this point it considers
the operation (and all earlier ones) to be commit-
ted. Then, after it has executed all earlier operations
(those assigned smaller op-numbers), the primary
executes the operation by making an up-call to the
service code, and increments its commit-number.
Then it sends a 〈REPLY v, s, x〉 message to the
client; here v is the view-number, s is the number
the client provided in the request, and x is the result
of the up-call. The primary also updates the client’s
entry in the client-table to contain the result.

6. Normally the primary informs backups about the
commit when it sends the next PREPARE message;
this is the purpose of the commit-number in the
PREPARE message. However, if the primary does
not receive a new client request in a timely way, it
instead informs the backups of the latest commit by
sending them a 〈COMMIT v, k〉 message, where k
is commit-number (note that in this case commit-
number = op-number).

7. When a backup learns of a commit, it waits un-
til it has the request in its log (which may require
state transfer) and until it has executed all earlier
operations. Then it executes the operation by per-
forming the up-call to the service code, increments
its commit-number, updates the client’s entry in the
client-table, but does not send the reply to the client.

Figure 3 shows the phases of the normal processing
protocol.

If a client doesn’t receive a timely response to a re-
quest, it re-sends the request to all replicas. This way
if the group has moved to a later view, its message will

4



reach the new primary. Backups ignore client requests;
only the primary processes them.

The protocol could be modified to allow backups to
process PREPARE messages out of order in Step 3. How-
ever there is no great benefit in doing things this way, and
it complicates the view change protocol. Therefore back-
ups process PREPARE messages in op-number order.

The protocol does not require any writing to disk. For
example, replicas do not need to write the log to disk
when they add the operation to the log. This point is
discussed further in Section 4.3.

The protocol as described above has backups execut-
ing operations quickly: information about commits prop-
agates rapidly, and backups execute operations as soon as
they can. A somewhat lazier approach could be used, but
it is important that backups not lag very far behind. The
reason is that when there is a view change, the replica
that becomes the new primary will be unable to execute
new client requests until it is up to date. By executing
operations speedily, we ensure that when a replica takes
over as primary it is able to respond to new client re-
quests with low delay.

4.2 View Changes
View changes are used to mask failures of the primary.

Backups monitor the primary: they expect to hear
from it regularly. Normally the primary is sending PRE-
PARE messages, but if it is idle (due to no requests) it
sends COMMIT messages instead. If a timeout expires
without a communication from the primary, the replicas
carry out a view change to switch to a new primary.

The correctness condition for view changes is that ev-
ery operation that has been executed by means of an up-
call to the service code at one of the replicas must survive
into the new view in the same order selected for it at the
time it was executed. This up-call is performed at the old
primary first, and therefore the replicas carrying out the
view change may not know whether the up-call occurred.
However, up-calls occur only for committed operations.
This means that the old primary must have received at
least f PREPAREOK messages from other replicas, and
this in turn implies that the operation is recorded in the
logs of at least f + 1 replicas (the old primary and the f
backups that sent the PREPAREOK messages).

Therefore the view change protocol obtains informa-
tion from the logs of at least f + 1 replicas. This is
sufficient to ensure that all committed operations will be
known, since each must be recorded in at least one of
these logs; here we are relying on the quorum intersec-
tion property. Operations that had not committed might
also survive, but this is not a problem: it is beneficial to
have as many operations survive as possible.

However, it’s impossible to guarantee that every client

request that was preparing when the view change oc-
curred makes it into the new view. For example, opera-
tion 25 might have been preparing when the view change
happened, but none of the replicas that knew about it par-
ticipated in the view change protocol and as a result the
new primary knows nothing about operation 25. In this
case, the new primary might assign this number to a dif-
ferent operation.

If two operations are assigned the same op-number,
how can we ensure that the right one is executed at that
point in the order? The solution to this dilemma is to
use the view-number: two operations can be assigned the
same number only when there has been a view change
and in this case the one assigned a number in the later
view prevails.

The view change protocol works as follows. Again the
presentation ignores minor details having to do with fil-
tering of duplicate messages and with re-sending of mes-
sages that appear to have been lost.

1. A replica i that notices the need for a view change
advances its view-number, sets its status to view-
change, and sends a 〈STARTVIEWCHANGE v, i〉
message to the all other replicas, where v iden-
tifies the new view. A replica notices the need
for a view change either based on its own timer,
or because it receives a STARTVIEWCHANGE or
DOVIEWCHANGE message for a view with a larger
number than its own view-number.

2. When replica i receives STARTVIEWCHANGE mes-
sages for its view-number from f other replicas, it
sends a 〈DOVIEWCHANGE v, l, v’, n, k, i〉 message
to the node that will be the primary in the new view.
Here v is its view-number, l is its log, v′ is the view
number of the latest view in which its status was
normal, n is the op-number, and k is the commit-
number.

3. When the new primary receives f + 1
DOVIEWCHANGE messages from different
replicas (including itself), it sets its view-number
to that in the messages and selects as the new log
the one contained in the message with the largest
v′; if several messages have the same v′ it selects
the one among them with the largest n. It sets its
op-number to that of the topmost entry in the new
log, sets its commit-number to the largest such
number it received in the DOVIEWCHANGE mes-
sages, changes its status to normal, and informs the
other replicas of the completion of the view change
by sending 〈STARTVIEW v, l, n, k〉 messages to
the other replicas, where l is the new log, n is the
op-number, and k is the commit-number.

5



4. The new primary starts accepting client requests. It
also executes (in order) any committed operations
that it hadn’t executed previously, updates its client
table, and sends the replies to the clients.

5. When other replicas receive the STARTVIEW mes-
sage, they replace their log with the one in the mes-
sage, set their op-number to that of the latest entry
in the log, set their view-number to the view num-
ber in the message, change their status to normal,
and update the information in their client-table. If
there are non-committed operations in the log, they
send a 〈PREPAREOK v, n, i〉message to the primary;
here n is the op-number. Then they execute all op-
erations known to be committed that they haven’t
executed previously, advance their commit-number,
and update the information in their client-table.

In this protocol we solve the problem of more than one
request being assigned the same op-number by taking the
log for the next view from latest previous active view and
ignoring logs from earlier view. VR as originally defined
used a slightly different approach: it assigned each oper-
ation a viewstamp. A viewstamp is a pair 〈view-number,
op-number〉, with the natural order: the view-number is
considered first, and then the op-number for two view-
stamps with the same view-number. At any op-number,
VR retained the request with the higher viewstamp. VR
got its name from these viewstamps.

A view change may not succeed, e.g., because the new
primary fails. In this case the replicas will start a further
view change, with yet another primary.

The protocol as described is expensive because the log
is big, and therefore messages can be large. The ap-
proach we use to reduce the expense of view changes
is described in Section 5.

4.3 Recovery
When a replica recovers after a crash it cannot partici-
pate in request processing and view changes until it has
a state at least as recent as when it failed. If it could
participate sooner than this, the system can fail. For ex-
ample, if it forgets that it prepared some operation, this
operation might then be known to fewer than a quorum
of replicas even though it committed, which could cause
the operation to be forgotten in a view change.

If nodes record their state on disk before sending mes-
sages, a node will be able to rejoin the system as soon
as it has reinitialized its state by reading from disk. The
reason is that in this case a recovering node hasn’t forgot-
ten anything it did before the crash (assuming the disk is
intact). Instead it is the same as a node that has been un-
able to communicate for some period of time: its state is
old but it hasn’t forgotten anything it did before.

However, running the protocol this way is unattrac-
tive since it adds a delay to normal case processing: the
primary would need to write to disk before sending the
PREPARE message, and the other replicas would need to
write to disk before sending the PREPAREOK response.
Furthermore, it is unnecessary to do the disk write be-
cause the state is also stored at the other replicas and
can be retrieved from them, using a recovery protocol.
Retrieving state will be successful provided replicas are
failure independent, i.e., highly unlikely to fail at the
same time. If all replicas were to fail simultaneously,
state will be lost if the information on disk isn’t up to
date; with failure independence a simultaneous failure is
unlikely. If nodes are all in the same data center, the use
of UPS’s (uninterruptible power supplies) or non-volatile
memory can provide failure independence if the problem
is a power failure. Placing replicas at different geograph-
ical locations can additionally avoid loss of information
when there is a local problem like a fire.

This section describes a recovery protocol that doesn’t
require disk I/O during either normal processing or dur-
ing a view change. The original VR specification used
a protocol that wrote to disk during the view change but
did not require writing to disk during normal case pro-
cessing.

When a node comes back up after a crash it sets its sta-
tus to recovering and carries out the recovery protocol.
While a replica’s status is recovering it does not partici-
pate in either the request processing protocol or the view
change protocol. To carry out the recovery protocol, the
node needs to know the configuration. It can learn this by
waiting to receive messages from other group members
and then fetching the configuration from one of them;
alternatively this information could be stored on disk.

The recovery protocol is as follows:

1. The recovering replica, i, sends a 〈RECOVERY i, x〉
message to all other replicas, where x is a nonce.

2. A replica j replies to a RECOVERY message only
when its status is normal. In this case the replica
sends a 〈RECOVERYRESPONSE v, x, l, n, k, j〉 mes-
sage to the recovering replica, where v is its view-
number and x is the nonce in the RECOVERY mes-
sage. If j is the primary of its view, l is its log, n is
its op-number, and k is the commit-number; other-
wise these values are nil.

3. The recovering replica waits to receive at least f +
1 RECOVERYRESPONSE messages from different
replicas, all containing the nonce it sent in its RE-
COVERY message, including one from the primary
of the latest view it learns of in these messages.
Then it updates its state using the information from
the primary, changes its status to normal, and the
recovery protocol is complete.

6



The protocol is expensive because logs are big and there-
fore the messages are big. A way to reduce this expense
is discussed in Section 5.

If the group is doing a view change at the time of re-
covery, and the recovering replica, i, would be the pri-
mary of the new view, that view change cannot complete,
since i will not respond to the DOVIEWCHANGE mes-
sages. This will cause the group to do a further view
change, and i will be able to recover once this view
change occurs.

The protocol uses the nonce to ensure that the recov-
ering replica accepts only RECOVERYRESPONSE mes-
sages that are for this recovery and not an earlier one. It
can produce the nonce by reading its clock; this will pro-
duce a unique nonce assuming clocks always advance.
Alternatively, it could maintain a counter on disk and ad-
vance this counter on each recovery.

4.4 Non-deterministic Operations
State machine replication requires that if replicas start in
the same state and execute the same sequence of opera-
tions, they will end up with the same state. However, ap-
plications frequently have non-deterministic operations.
For example, file reads and writes are non-deterministic
if they require setting “time-last-read” and “time-last-
modified”. If these values are obtained by having each
replica read its clock independently, the states at the
replicas will diverge.

We can avoid divergence due to non-determinism by
having the primary predict the value. It can do this by
using local information, e.g., it reads its clock when a
file operation arrives. Or it can carry out a pre-step in the
protocol in which it requests values from the backups,
waits for f responses, and then computes the predicted
value as a deterministic function of their responses and
its own. The predicted value is stored in the log along
with the client request and propagated to the other repli-
cas. When the operation is executed, the predicted value
is used.

Use of predicted values can require changes to the ap-
plication code. There may need to be an up-call to obtain
a predicted value from the application prior to running
the protocol. Also, the application needs to use the pre-
dicted value when it executes the request.

4.5 Client Recovery
If a client crashes and recovers it must start up with a
request-number larger than what it had before it failed.
It fetches its latest number from the replicas and adds 2
to this value to be sure the new request-number is big
enough. Adding 2 ensures that its next request will have
a unique number even in the odd case where the latest

request it sent before it failed is still in transit (since that
request will have as its request number the number the
client learns plus 1).

5 Pragmatics

The description of the protocols presented in the previ-
ous section ignores a number of important issues that
must be resolved in a practical system. In this section
we discuss how to provide good performance for node
recovery, state transfer, and view changes. In all three
cases, the key issue is efficient log management.

5.1 Efficient Recovery

When a replica recovers from a crash it needs to recover
its log. The question is how to do this efficiently. Send-
ing it the entire log, as described in Section 4.3, isn’t a
practical way to proceed, since the log can get very large
in a long-lived system.

A way to reduce expense is to keep a prefix of the log
on disk. The log can be pushed to disk in the background;
there is no need to do this while running the protocol.
When the replica recovers it can read the log from disk
and then fetch the suffix from the other replicas. This re-
duces the cost of recovery protocol substantially. How-
ever the replica will then need to execute all the requests
in the log (or at least those that modify the state), which
can take a very long time if the log is big.

Therefore a better approach is to take advantage of the
application state at the recovering replica: if this state is
on disk, the replica doesn’t need to fetch the prefix of
the log that has already been applied to the application
state and it needn’t execute the requests in that prefix ei-
ther. Note that this does not mean that the application is
writing to disk in the foreground; background writes are
sufficient here too.

For this approach to work, we need to know exactly
what log prefix is captured on disk, both so that we ob-
tain all the requests after that point, and so that we avoid
rerunning operations that ran before the node failed. (Re-
running operations can cause the application state to be
incorrect unless the operations are idempotent.)

Our solution to this problem uses checkpoints and
is based on our later work on Byzantine-fault toler-
ance [2, 1]. Every O operations the replication code
makes an upcall to the application, requesting it to take
a checkpoint; here O is a system parameter, on the or-
der of 100 or 1000. To take a checkpoint the applica-
tion must record a snapshot of its state on disk; addition-
ally it records a checkpoint number, which is simply the
op-number of the latest operation included in the check-
point. When it executes operations after the checkpoint,

7



it must not modify the snapshot, but this can be accom-
plished by using copy-on-write. These copied pages then
become what needs to be saved to make the next snapshot
and thus checkpoints need not be very expensive.

When a node recovers, it first obtains the application
state from another replica. To make this efficient, the
application maintains a Merkle tree [9] over the pages
in the snapshot. The recovering node uses the Merkle
tree to determine which pages to fetch; it only needs to
fetch those that differ from their counterpart at the other
replica. It’s possible that the node it is fetching from may
take another checkpoint while the recovery is in process;
in this case the recovering node re-walks the Merkle tree
to pick up any additional changes.

In rare situations where a node has been out of service
for a very long time, it may be infeasible to transfer the
new state over the network. In this case it is possible
to clone the disk of an active replica, install it at the re-
covering node, and use this as a basis for computing the
Merkle tree.

After the recovering node has all the application state
as of the latest checkpoint at the node it is fetching from,
it can run the recovery protocol. When it runs the pro-
tocol it informs the other nodes of the current value of
its state by including the number of the checkpoint in its
RECOVERY message. The primary then sends it the log
from that point on.

As mentioned checkpoints also speed up recovery
since the recovering replica only needs to execute re-
quests in the portion of the log not covered by the check-
point. Furthermore checkpoints allow the system to
garbage collect the log, since only the operations after
the latest checkpoint are needed. Keeping a larger log
than the minimum is a good idea however. For exam-
ple, when a recovering node runs the recovery protocol,
the primary might have just taken a checkpoint, and if
it immediately discarded the log prefix reflected in that
checkpoint, it would be unable to bring the recovering
replica up to date without transferring application state.
A large enough suffix of the log should be retained to
avoid this problem.

5.2 State Transfer

State transfer is used by a node that has gotten behind
(but hasn’t crashed) to bring itself up-to-date. There
are two cases, depending on whether the slow node has
learned that it is missing requests in its current view, or
has heard about a later view. In the former case it only
needs to learn about requests after its op-number. In the
latter it needs to learn about requests after the latest com-
mitted request in its log, since requests after that might
have been reordered in the view change, so in this case it
sets its op-number to its commit-number and removes all

entries after this from its log.
To get the state the replica sends a 〈GETSTATE v, n’,

i〉 message to one of the other replicas, where v is its
view-number and n′ is its op-number.

A replica responds to a GETSTATE message only if its
status is normal and it is currently in view v. In this case
it sends a 〈NEWSTATE v, l, n, k〉 message, where v is its
view-number, l is its log after n′, n is its op-number, and
k is its commit-number.

When replica i receives the NEWSTATE message, it
appends the log in the message to its log and updates its
state using the other information in the message.

Because of garbage collecting the log, it’s possible for
there to be a gap between the last operation known to the
slow replica and what the responder knows. Should a
gap occur, the slow replica first brings itself almost up to
date using application state (like a recovering node would
do) to get to a recent checkpoint, and then completes the
job by obtaining the log forward from the point. In the
process of getting the checkpoint, it moves to the view in
which that checkpoint was taken.

5.3 View Changes

To complete a view change, the primary of the new view
must obtain an up-to-date log, and we would like the pro-
tocol to be efficient: we want to have small messages,
and we want to avoid adding steps to the protocol.

The protocol described in Section 4.2 has a small num-
ber of steps, but big messages. We can make these mes-
sages smaller, but if we do, there is always a chance that
more messages will be required.

A reasonable way to get good behavior most of the
time is for replicas to include a suffix of their log in their
DOVIEWCHANGE messages. The amount sent can be
small since the most likely case is that the new primary
is up to date. Therefore sending the latest log entry, or
perhaps the latest two entries, should be sufficient. Oc-
casionally, this information won’t be enough; in this case
the primary can ask for more information, and it might
even need to first use application state to bring itself up
to date.

6 Optimizations

This section describes several optimizations that can be
used to improve the performance of the protocol. Some
optimizations were proposed in the paper on Harp [8];
others are based on later work on the PBFT replication
protocol, which handles Byzantine failures [2, 1].

8



6.1 Witnesses
Harp proposed the use of witnesses to avoid having all
replicas actively run the service. The group of 2f + 1
replicas includes f+1 active replicas, which store the ap-
plication state and execute operations, and f witnesses,
which do not. The primary is always an active replica.
Witnesses are needed for view changes and recovery.
They aren’t involved in the normal case protocol as long
as the f + 1 active replicas are processing operations.
They fill in for active replicas when they aren’t respond-
ing; however, even in this case witnesses do not execute
operations. Thus most of the time witnesses can be doing
other work; only the active replicas run the service code
and store the service state.

6.2 Batching
PBFT proposed the use of batching to reduce the over-
head of running the protocol. Rather than running the
protocol each time a request arrives, the primary collects
a bunch of requests and then runs the protocol for all of
them at once.

The use of batching can be limited to when the primary
is heavily loaded. This way it has little impact on latency.
When the primary isn’t busy it processes requests as soon
as they arrive. When it is busy, it batches, but requests
will be arriving frequently and therefore it needn’t wait
very long to collect the next batch. Batching can provide
significant gains in throughput when the system is heav-
ily loaded by amortizing the cost of the protocol over a
large number of client requests.

6.3 Fast Reads
This section discusses two ways to reduce the latency for
handling of read requests; both techniques additionally
improve overall throughput.

6.3.1 Reads at the Primary

Harp proposed a way to improve performance for reads,
by having the primary execute them without consulting
the other replicas. This communication is not needed be-
cause read operations don’t modify state and therefore
need not survive into the next view.

However, having the primary perform read requests
unilaterally could lead to the read returning a result based
on an old state. This can happen if the request goes to
an old primary that is not aware that a view change has
occurred. For example, suppose a network partition has
isolated the old primary from other replicas. Meanwhile
a view change has happened and the new primary has
executed more operations, so that the state at the old pri-
mary is stale.

To prevent a primary returning results based on stale
data, Harp used leases [3]. The primary processes reads
unilaterally only if it holds valid leases from f other
replicas, and a new view will start only after leases at
f + 1 participants in the view change protocol expire.
This ensures that the new view starts after the old primary
has stopped replying to read requests, assuming clocks
rates are loosely synchronized.

In addition to reducing message traffic and delay for
processing reads, this approach has another benefit: read
requests need not run through the protocol. Thus load on
the system can be reduced substantially, especially for
workloads that are primarily read-only, which is often
the case.

6.3.2 Reads at Backups

Leases aren’t needed if it is acceptable for the result of a
read to be based on stale information. In this case it also
works to execute read requests at backups.

To support causality, there must be a way for a client
to inform a backup of its previous operation. One way to
do this is for the client to maintain a last-request-number
in its state. When the client does a write, the primary
returns the op-number that it assigned to that request, and
the client stores this in last-request-number. When the
client sends a read request it includes this number, and
the replica responds only if it has executed operations
at least this far; in its response it includes its commit-
number, which the client stores in last-request-number.

The “reads at backups” provides a form of load balanc-
ing; effectively it allows the backups to be used as caches
that are up to date enough to satisfy the causality require-
ments. However unlike the first approach (“reads at the
primary”) it does not provide external consistency. The
first approach provides causality even in a setting where
there are many storage repositories. In this setting, the
second approach requires a different way of capturing
causality, e.g., with vector timestamps [12] or Lamport
clocks [4].

7 Reconfiguration

This section describes a reconfiguration protocol that al-
lows the members of the group of replicas to change over
time. Reconfiguration is needed to replace failed nodes
that cannot be recovered, as well as for other reasons,
e.g., to use more powerful computers as replicas, or to
position the replicas in different data centers.

The reconfiguration protocol can also be used to
change the threshold, f , the number of failures the group
is intended to handle: the new group can be bigger or
smaller than the old one. Changing the threshold is use-
ful to allow the system to adapt to changing circum-

9



• The epoch-number, initially 0.

• The old-configuration, initially empty.

Figure 4: Additional state needed for reconfiguration.

stances, e.g., if experience indicates that more or fewer
failures are happening than expected.

The approach to handling reconfigurations is as fol-
lows. A reconfiguration is triggered by a special client
request. This request is run through the normal case pro-
tocol by the old group. When the request commits, the
system moves to a new epoch, in which responsibility for
processing client requests shifts to the new group. How-
ever, the new group cannot process client requests until
its replicas are up to date: the new replicas must know all
operations that committed in the previous epoch. To get
up to date they transfer state from the old replicas, which
do not shut down until the state transfer is complete.

7.1 Reconfiguration Details
To handle reconfigurations we add some information to
the replica state, as shown in Figure 4. In addition there
is another status, transitioning. A replica sets its status
to transitioning at the beginning of the next epoch. New
replicas use the old-configuration for state transfer at the
start of an epoch; this way new nodes know where to
get the state. Replicas that are members of the replica
group for the new epoch change their status to normal
when they have received the complete log up to the start
of the epoch; replicas that are being replaced shut down
once they know their state has been transferred to the new
group.

Every message now contains an epoch-number. Repli-
cas only process messages (from either clients or other
replicas) that match the epoch they are in. If they receive
a message with a later epoch number they move to that
epoch as discussed below. If they receive a message with
an earlier epoch number they discard the message but in-
form the sender about the later epoch.

Reconfigurations are requested by a client, c,
e.g., the administrator’s node, which sends a
〈RECONFIGURATION e, c, s, new-config〉 message
to the current primary. Here e is the current epoch-
number known to c, s is c′s request-number, and
new-config provides the IP addresses of all members of
the new group. The primary will accept the request only
if s is large enough (based on the client-table) and e
is the current epoch-number. Additionally the primary
discards the request if new-config contains fewer than
3 IP addresses (since this is the minimum group size
needed for VR). The new threshold is determined by the
size of new-config: it is the largest value f ′ such that

2f ′ + 1 is less than or equal to the size of new-config.
If the primary accepts the request, it processes it in

the usual way, by carrying out the normal case proto-
col, but with two differences: First, the primary immedi-
ately stops accepting other client requests; the reconfigu-
ration request is the last request processed in the current
epoch. Second, executing the request does not cause an
up-call to the service code; instead, a reconfiguration af-
fects only the VR state.

The processing of the request happens as follows:

1. The primary adds the request to its log, sends a
PREPARE message to the backups, and stops accept-
ing client requests.

2. The backups handle the PREPARE in the usual way:
they add the request to their log, but only when they
are up to date. Then they send PREPAREOK re-
sponses to the primary.

3. When the primary receives f of these responses
from different replicas, it increments its epoch-
number, sends COMMIT messages to the other old
replicas, and sends 〈STARTEPOCH e, n, old-config,
new-config〉 messages to replicas that are being
added to the system, i.e., those that are members
of the new group but not of the old group. Here e
is the new epoch-number and n is the op-number.
Then it executes all client requests ordered before
the RECONFIGURATION request that it hadn’t exe-
cuted previously and sets its status to transitioning.

Now we explain how the two groups move to the new
epochs. First we explain the processing at replicas that
are members of the new group; these replicas may be
members of the old group, or they may be added as part
of the reconfiguration. Then we explain processing at
replicas that are being replaced, i.e., they are members
of the old group but not of the new group.

7.1.1 Processing in the New Group

Replicas that are members of the replica group for the
new epoch handle reconfiguration as follows:

1. When a replica learns of the new epoch (e.g., be-
cause it receives a STARTEPOCH or COMMIT mes-
sage), it initializes its state to record the old and new
configurations, the new epoch-number, and the op-
number, sets its view-number to 0, and sets its status
to transitioning.

2. If the replica is missing requests from its log, it
brings its state up to date by sending state transfer
messages to the old replicas and also to other new
replicas. This allows it to get a complete state up to

10



the op-number, and thus learn of all client requests
up to the reconfiguration request.

3. Once a replica in the new group is up to date with
respect to the start of the epoch, it sets its status to
normal and starts to carry out normal processing; it
executes any requests in the log that it hasn’t already
executed and, if it is the primary of the new group, it
starts accepting new requests. Additionally, it sends
〈EPOCHSTARTED e, i〉messages to the replicas that
are being replaced.

Replicas in the new group select the primary in the usual
way, by using a deterministic function of the configura-
tion for the new epoch and the current view number.

Replicas in the new group might receive (duplicate)
STARTEPOCH messages after they have completed state
transfer. In this case they send an EPOCHSTARTED re-
sponse to the sender.

7.1.2 Processing at Replicas being Replaced

1. When a replica being replaced learns of the new
epoch (e.g., by receiving a COMMIT message for
the reconfiguration request), it changes its epoch-
number to that of the new epoch and sets its sta-
tus to transitioning. If the replica doesn’t yet have
the reconfiguration request in its log it obtains it
by performing state transfer from other old repli-
cas. Then it stores the current configuration in old-
configuration and stores the new configuration in
configuration.

2. Replicas being replaced respond to state transfer re-
quests from replicas in the new group until they re-
ceive f ′ + 1 EPOCHSTARTED messages from the
new replicas, where f ′ is the threshold of the new
group. At this point the replica being replaced shuts
down.

3. If a replica being replaced doesn’t receive the
EPOCHSTARTED messages in a timely way, it sends
STARTEPOCH messages to the new replicas (or
to the subset of those replicas it hasn’t already
heard from). New replicas respond to these mes-
sages either by moving to the epoch, or if they
are already active in the next epoch, they send the
EPOCHSTARTED message to the old replica.

7.2 Other Protocol Changes
To support reconfigurations, we need to modify the view
change and recovery protocols so that they work while a
reconfiguration is underway.

The most important change is that a replica will not
accept messages for an epoch earlier than what it knows.

Thus a replica will not accept a normal case or view
change message that contains an old epoch-number; in-
stead it informs the sender about the new epoch.

Additionally, in the view change protocol the new pri-
mary needs to recognize that a reconfiguration is in pro-
cess, so that it stops accepting new client requests. To
handle this case the new primary checks the topmost re-
quest in the log; if it is a RECONFIGURATION request,
it won’t accept any additional client requests. Further-
more, if the request is committed, it sends STARTEPOCH
messages to the new replicas.

The recovery protocol also needs to change. An old
replica that is attempting to recover while a reconfigura-
tion is underway may be informed about the next epoch.
If the replica isn’t a member of the new replica group
it shuts down; otherwise, it continues with recovery by
communicating with replicas in the new group. (Here
we are assuming that new replicas are warm when they
start up as discussed in Section 7.5.)

In both the view change and recovery protocols, RE-
CONFIGURATION requests that are in the log, but not in
the topmost entry, are ignored, because in this case the
reconfiguration has already happened.

7.3 Shutting down Old Replicas

The protocol described above allows replicas to recog-
nize when they are no longer needed so that they can shut
down. However, we also provide a way for the adminis-
trator who requested the reconfiguration to learn when it
has completed. This way machines being replaced can
be shut down quickly, even when, for example, they are
unable to communicate with other replicas because of a
long-lasting network partition.

Receiving a reply to the RECONFIGURATION request
doesn’t contain the necessary information since that only
tells the administrator that the request has committed,
whereas the administrator needs to know that enough
new nodes have completed state transfer. To provide
the needed information, we provide another operation,
〈CHECKEPOCH e, c, s〉; the administrator calls this op-
eration after getting the reply to the RECONFIGURATION
request. Here c is the client machine being used by the
administrator, s is c′s request-number, and e is the new
epoch. The operation runs through the normal case pro-
tocol in the new group, and therefore when the adminis-
trator gets the reply this indicates the reconfiguration is
complete.

It’s important that the administrator wait for the recon-
figuration to complete before shutting down the nodes
being replaced. The reason is that if one of these nodes
were shut down prematurely, this can lead to more than f
failures in the old group before the state has been trans-
ferred to the new group, and the new group would then

11



be unable to process client requests.

7.4 Locating the Group

Since the group can move, a new client needs a way to
find the current configuration. This requires an out-of-
band mechanism, e.g., the current configuration can be
obtained by communicating with a web site run by the
administrator.

Old clients can also use this mechanism to find the new
group. However, to make it easy for current clients to
find the group, old replicas that receive a client request
with an old epoch number inform the client about the
reconfiguration by sending it a 〈NEWEPOCH e, v, new-
config〉 message.

7.5 Discussion

The most important practical issue with this reconfigura-
tion protocol is the following: while the system is mov-
ing from one epoch to the next it does not accept any new
client requests. The old group stops accepting client re-
quests the moment the primary of the old group receives
the RECONFIGURATION request; the new group can start
processing client requests only when at least f ′ + 1 new
replicas have completed state transfer.

Since client requests will be delayed until the move
is complete, we would like the move to happen quickly.
However, the problem is that state transfer can take a
long time, even with our approach of checkpoints and
Merkle trees, if the application state is large.

The way to reduce the delay is for the new nodes to
be warmed up by doing state transfer before the recon-
figuration. While this state transfer is happening the old
group continues to process client requests. The RECON-
FIGURATION request is sent only when the new nodes
are almost up to date. As a result, the delay until the new
nodes can start handling client requests will be short.

8 Correctness

In this section we provide an informal discussion of the
correctness of the protocol. Section 8.1 discusses the cor-
rectness of the view change protocol ignoring node re-
covery; correctness of the recovery protocol is discussed
in Section 8.2. Section 8.3 discusses correctness of the
reconfiguration protocol.

8.1 Correctness of View Changes

Safety. The correctness condition for view changes is
that every committed operation survives into all subse-
quent views in the same position in the serial order. This

condition implies that any request that had been executed
retains its place in the order.

Clearly this condition holds in the first view. Assum-
ing it holds in view v, the protocol will ensure that it also
holds in the next view, v′. The reasoning is as follows:

Normal case processing ensures that any operation o
that committed in view v is known to at least f +1 repli-
cas, each of which also knows all operations ordered be-
fore o, including (by assumption) all operations commit-
ted in views before v. The view change protocol starts
the new view with the most recent log received from
f +1 replicas. Since none of these replicas accepts PRE-
PARE messages from the old primary after sending the
DOVIEWCHANGE message, the most recent log contains
the latest operation committed in view v (and all earlier
operations). Therefore all operations committed in views
before v′ are present in the log that starts view v′, in their
previously assigned order.

It’s worth noting that it is crucial that replicas stop ac-
cepting PREPARE messages from earlier views once they
start the view change protocol (this happens because they
change their status as soon as they learn about the view
change). Without this constraint the system could get
into a state in which there are two active primaries: the
old one, which hasn’t failed but is merely slow or not
well connected to the network, and the new one. If a
replica sent a PREPAREOK message to the old primary
after sending its log to the new one, the old primary
might commit an operation that the new primary doesn’t
learn about in the DOVIEWCHANGE messages.

Liveness. The protocol executes client requests pro-
vided at least f + 1 non-failed replicas, including the
current primary, are able to communicate. If the primary
fails, requests cannot be executed in the current view.
However if replicas are unable to execute the client re-
quest in the current view, they will move to a new one.

Replicas monitor the primary and start a view change
by sending the STARTVIEWCHANGE messages if the
primary is unresponsive. When other replicas receive
the STARTVIEWCHANGE messages they will also ad-
vance their view-number and send STARTVIEWCHANGE
messages. As a result, replicas will receive enough
STARTVIEWCHANGE messages so that they can send
DOVIEWCHANGE messages, and thus the new primary
will receive enough DOVIEWCHANGE messages to en-
able it to start the next view. And once this happens it will
be able to carry out client requests. Additionally, clients
send their requests to all replicas if they don’t hear from
the primary, and thus cause requests to be executed in a
later view if necessary.

More generally liveness depends on properly setting
the timeouts used to determine whether to start a view
change so as to avoid unnecessary view changes and thus
allow useful work to get done.

12



8.2 Correctness of the Recovery Protocol

Safety. The recovery protocol is correct because it guar-
antees that when a recovering replica changes its status
to normal it does so in a state at least as recent as what it
knew when it failed.

When a replica recovers it doesn’t know what view it
was in when it failed. However, when it receives f +
1 responses to its RECOVERY message, it is certain to
learn of a view at least as recent as the one that existed
when it sent its last PREPAREOK, DOVIEWCHANGE, or
RECOVERYRESPONSE message. Furthermore it gets its
state from the primary of the latest view it hears about,
which ensures it learns the latest state of that view. In
effect, the protocol uses the volatile state at f +1 replicas
as stable state.

One important point is that the nonce is needed be-
cause otherwise a recovering replica might combine re-
sponses to an earlier RECOVERY message with those to a
later one; in this case it would not necessarily learn about
the latest state.

Another important point is that the key to correct re-
covery is the combination of the view change and recov-
ery protocols. In particular the view change protocol has
two message exchanges (for the STARTVIEWCHANGE
and DOVIEWCHANGE messages). These ensure that
when a view change happens, at least f + 1 replicas al-
ready know that the view change is in progress. There-
fore if a view change was in progress when the replica
failed, it is certain to recover in that view or a later one.

It’s worth noting that having two message exchanges
is necessary. If there were only one exchange, i.e., just an
exchange of DOVIEWCHANGE messages, the following
scenario is possible (here we consider a group containing
three replicas, currently in view v with primary r1):

1. Before it failed the recovering replica, r3, had
decided to start a view change and had sent a
DOVIEWCHANGE message to r2, which will be the
primary of view v+1, but this message has been de-
layed in the network.

2. Replica r3 recovers in view v after receiving RE-
COVERYRESPONSE messages from both r1 and r2.
Then it starts sending PREPAREOK messages to r1
in response to r1’s PREPARE messages, but these
PREPARE messages do not arrive at r2.

3. Replica r3’s DOVIEWCHANGE message arrives at
r2, which starts view v + 1.

Step 3 is erroneous because the requests that committed
after r3 recovered are not included in the log for view
v+1. The round of STARTVIEWCHANGE messages pre-
vents this scenario.

We could avoid the round of STARTVIEWCHANGE
messages by having replicas write the new view num-
ber to disk before sending the DoViewChange messages;
this is the approach used in the original version of VR.

Liveness. It’s interesting to note that the recovery pro-
tocol requires f + 2 replicas to communicate! Neverthe-
less the protocol is live, assuming no more that f replicas
fail simultaneously. The reason is that a replica is con-
sidered failed until it has recovered its state. Therefore
while a replica is recovering, there must be at least f + 1
other replicas that are not failed, and thus the recovering
replica will receive at least f +1 responses to its RECOV-
ERY message.

8.3 Correctness of Reconfiguration

Safety. Reconfiguration is correct because it preserves
all committed requests in the order selected for them.
The primary of the old group stops accepting client re-
quests as soon as it receives a RECONFIGURATION re-
quest. This means that the RECONFIGURATION request
is the last committed request in that epoch. Furthermore
new replicas do not become active until they have com-
pleted state transfer. Thus they learn about all requests
that committed in the previous epoch, in the order se-
lected for them, and these requests are ordered before
any client request processed in the new epoch.

An interesting point is that it’s possible for the pri-
maries in both the old and new groups to be active si-
multaneously. This can happen if the primary of the old
group fails after the reconfiguration request commits. In
this case it’s possible for a view change to occur in the
old group, and the primary selected by this view change
might re-run the normal-case protocol for the reconfigu-
ration request. Meanwhile the new group might be ac-
tively processing new client requests. However the old
group will not accept any new client requests (because
the primary of the new view checks whether the topmost
request in the log is a reconfiguration request and if so
it won’t accept client requests). Therefore processing in
the old group cannot interfere with the ordering of re-
quests that are handled in the new epoch.

It’s worth noting that it is important that the new epoch
start in view 0 rather than using the view in which the old
epoch ended up. The reason is that STARTEPOCH mes-
sages could be sent from old epoch replicas with different
view numbers; this can happen if there is a view change
in the old group and the new primary re-runs the recon-
figuration request. If the new group accepted the view
number from the old group, we could end up with two
primaries in the new group, which would be incorrect.

Liveness. The system is live because (1) the base pro-
tocol is live, which ensures that the RECONFIGURATION
request will eventually be executed in the old group; (2)

13



new replicas will eventually move to the next epoch; and
(3) old replicas do not shut down until new replicas are
ready to process client requests.

New replicas are certain to learn of the new epoch
once a RECONFIGURATION request has committed be-
cause after this point old group members actively com-
municate with both old and new ones to ensure that other
replicas know about the reconfiguration. Most important
here are the STARTEPOCH messages that old nodes send
to new ones if they don’t receive EPOCHSTARTED mes-
sages in a timely way. These messages ensure that even
if the old primary fails to send STARTEPOCH messages
to the new replicas, or if it sends these messages but they
fail to arrive, nevertheless the new replicas will learn of
the new epoch.

Old replicas do not shut down too early because they
wait for f ′ + 1 EPOCHSTARTED messages before shut-
ting down. This way we know that enough new replicas
have their state to ensure that the group as a whole can
process client requests assuming no more than a thresh-
old of failures in the new group.

Old replicas might shut down before some new repli-
cas have finished state transfer. However, this can happen
only after at least f ′+1 new replicas have their state, and
the other new replicas will then be able to get up to date
by doing state transfer from the new replicas.

A final point is that old replicas shut down by the ad-
ministrator do not cause a problem, assuming the admin-
istrator doesn’t do this until after executing a CHECK-
EPOCH request in the new epoch. Waiting until this point
ensures that at least f ′ +1 replicas in the new group have
their state; therefore after this point the old replicas are
no longer needed.

9 Conclusions

This paper has presented an improved version of View-
stamped Replication, a protocol used to build replicated
systems that are able to tolerate crash failures. The pro-
tocol does not require any disk writes as client requests
are processed or even during view changes, yet it allows
nodes to recover from failures and rejoin the group.

The paper also presents a protocol to allow for recon-
figurations that change the members of the replica group,
and even the failure threshold. A reconfiguration tech-
nique is necessary for the protocol to be deployed in
practice since the systems of interest are typically long
lived.

In addition, the paper describes a number of optimiza-
tions that make the protocol efficient. The state transfer
technique uses application state to speed up recovery and
allows us to keep the log small, by discarding prefixes.
The use of witnesses allows service state to be stored at

only f + 1 of the 2f + 1 replicas. The paper also de-
scribes ways to reduce latency of reads and writes, and to
improve throughput when the system is heavily loaded.

Today there is increasing use of replication proto-
cols that handle crash failures in modern large-scale dis-
tributed systems. Our hope is that this paper will be a
help to those who are developing the next generation of
reliable distributed systems.

References
[1] CASTRO, M. Practical Byzantine Fault Tolerance. Technical Re-

port MIT-LCS-TR-817, Laboratory for Computer Science, MIT,
Cambridge, Jan. 2000. Ph.D. thesis.

[2] CASTRO, M., AND LISKOV, B. Practical Byzantine Fault Tol-
erance and Proactive Recovery. ACM Transactions on Computer
Systems 20, 4 (Nov. 2002), 398–461.

[3] GRAY, C., AND CHERITON, D. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In Pro-
ceedings of the Twelfth ACM Symposium on Operating Systems
Principles (1989), ACM, pp. 202–210.

[4] LAMPORT, L. Time, Clocks, and the Ordering of Events in a
Distributed System. Comm. of the ACM 21, 7 (July 1978), 558–
565.

[5] LAMPORT, L. The Part-Time Parliament. Research Report 49,
Digital Equipment Corporation Systems Research Center, Palo
Alto, CA, Sept. 1989.

[6] LAMPORT, L. The Part-Time Parliament. ACM Transactions on
Computer Systems 10, 2 (May 1998).

[7] LISKOV, B. From viewstamped replication to byzantine fault
tolerance. In Replication: Theory and Practice (2010), no. 5959
in Lecture Notes in Computer Science.

[8] LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P.,
SHRIRA, L., AND WILLIAMS, M. Replication in the Harp File
System. In Proceedings of the Thirteenth ACM Symposium on
Operating System Principles (Pacific Grove, California, 1991),
pp. 226–238.

[9] MERKLE, R. C. A Digital Signature Based on a Conventional
Encryption Function. In Advances in Cryptology - Crypto’87,
C. Pomerance, Ed., no. 293 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1987, pp. 369–378.

[10] OKI, B., AND LISKOV, B. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed
Systems. In Proc. of ACM Symposium on Principles of Dis-
tributed Computing (1988), pp. 8–17.

[11] OKI, B. M. Viewstamped Replication for Highly Available Dis-
tributed Systems. Technical Report MIT-LCS-TR-423, Labora-
tory for Computer Science, MIT, Cambridge, MA, May 1988.
Ph.D. thesis.

[12] PARKER, D. S., POPEK, G. J., RUDISIN, G., STOUGHTON, A.,
WALKER, B., WALTON, E., CHOW, J., EDWARDS, D., KISER,
S., AND KLINE, C. Detection of mutual inconsistency in dis-
tributed systems. IEEE Transactions on Software Engineering
SE-9, 3 (May 1983), 240–247.

[13] SCHNEIDER, F. Implementing Fault-Tolerant Services using the
State Machine Approach: a Tutorial. ACM Computing Surveys
22, 4 (Dec. 1990), 299–319.

14


