
Selectively De-Animating Video

Jiamin Bai 1 Aseem Agarwala 2

University of California, Berkeley 1
Maneesh Agrawala 1

Adobe2
Ravi Ramamoorthi1

Average Input Average De-Animated Result
Figure 1: Large-scale motions of the guitar body can make it difficult to follow the finer-scale motions of the strings and fingers. We visualize
the amount of movement by averaging the frames of the input video (left) and find that the body and fretboard of the guitar, as well as the
strings and fingers are blurred because they move a lot. With our selective de-animation technique, we remove the large-scale motions of
the guitar to make it easier to see the finer scale motions. Averaging the frames of our de-animated result (right) shows that the body and
fretboard are sharp and therefore immobilized. Note that while the strings and fingers are sharper than in the visualization of the input video,
they remain blurry because their fine-scale motions are retained in our de-animated result. We encourage the reader to view the paper video,
to see this comparison in video form.

Abstract

We present a semi-automated technique for selectively de-
animating video to remove the large-scale motions of one or more
objects so that other motions are easier to see. The user draws
strokes to indicate the regions of the video that should be immobi-
lized, and our algorithm warps the video to remove the large-scale
motion of these regions while leaving finer-scale, relative motions
intact. However, such warps may introduce unnatural motions in
previously motionless areas, such as background regions. We there-
fore use a graph-cut-based optimization to composite the warped
video regions with still frames from the input video; we also option-
ally loop the output in a seamless manner. Our technique enables a
number of applications such as clearer motion visualization, sim-
pler creation of artistic cinemagraphs (photos that include looping
motions in some regions), and new ways to edit appearance and
complicated motion paths in video by manipulating a de-animated
representation. We demonstrate the success of our technique with a
number of motion visualizations, cinemagraphs and video editing
examples created from a variety of short input videos, as well as
visual and numerical comparison to previous techniques.

Links: DL PDF WEB VIDEO

1 Introduction

The large-scale motion of an object can sometimes make it difficult
to see its finer-scale, internal motions, or those of nearby objects.
Consider a video of a guitar teacher demonstrating the finger mo-
tions required to play a song. The fine motions of the fingers on the
strings and frets are obscured or visually masked by the larger-scale,
gross motions of the guitar body. The finger positions required to
play notes and chords would be much easier to follow if the guitar
were immobilized (Figure 1 and accompanying video).

In this paper, we present a semi-automated technique for selectively
de-animating or removing the large-scale motions of one or more
objects. The user draws a small set of strokes indicating the regions
of the objects that should be immobilized and our algorithm warps
the video to remove the gross motion of these regions while leaving
finer-scale, relative motions intact. The warp may, however, prop-
agate unwanted motions to other regions that should remain still,
such as the background. To eliminate such undesirable motion, we
develop a method for compositing the warped video with still re-
gions taken from frames of the input. The resulting videos highlight
fine-scale, internal motions of one or more objects, as well as rel-
ative motions of nearby objects. In the guitar example (Figure 1)
we have immobilized the guitar and composited still frames of the
head and body to make it easier for viewers to focus on the finger
positions.

Our algorithm facilitates the creation of cinemagraphs
(cinemagraphs.com) which have recently become a popular
form of motion visualization. They are designed to draw the
viewer’s attention to specific objects and motions in a scene.
Cinemagraphs lie between the traditional media of video and

http://doi.acm.org/10.1145/2185520.2185562
http://portal.acm.org/ft_gateway.cfm?id=2185562&type=pdf
http://graphics.berkeley.edu/papers/Bai-SDV-2012-08/index.html
http://graphics.berkeley.edu/papers/Bai-SDV-2012-08/Bai-SDV-2012-08-final.mp4

photographs; the most important objects remain animated while
the surrounding objects are held still. While some cinemagraphs
simply composite a moving object onto a still frame background,
the most effective also eliminate distracting, large-scale motions
of the primary objects so that viewers can focus on the subtle,
fine-scale motions. Cinemagraphs are also designed to loop
endlessly like a video texture [Schödl et al. 2000]. Therefore, users
can optionally use our compositing algorithm to also compute a
seamless video loop. Well-designed cinemagraphs can be surreal
and are often unexpectedly engaging. They are now widely seen
in major online newspapers, magazines, advertising and retail
websites. Our cinemagraph examples can be seen in Figure 6.

Beyond motion visualization and cinemagraphs, we also demon-
strate applications of our de-animation technique to video editing.
First, we show how de-animation facilitates appearance editing of
moving objects in video. The user edits an object after it is immo-
bilized in a single frame of the de-animated video, and our sys-
tem propagates these edits back to the original video (Figure 7).
Second, we show that it is easier to animate a virtual object that
moves within the frame-of-reference of a larger object. After the
animator plans the motion of the virtual object in the de-animated
video, our system adds in the original motions of the larger, frame-
of-reference object (Figure 8).

Our main technical contribution is the first semi-automated method
for selectively de-animating video to eliminate the gross motions
of a specific object or objects. The two main steps of our al-
gorithm follow the general approach of previous work, namely
content-preserving warps for video stabilization [Liu et al. 2009],
and graph-cut video compositing [Kwatra et al. 2003]. Novel to our
problem domain is the challenge of only stabilizing locally-defined
regions which have been identified by the user in a single frame.
Therefore, our energy function for warping is more complicated,
and requires a multi-stage solution method. We also modify the en-
ergy functions used for compositing from those found in previous
work to achieve good results for our problem domain.

2 Related Work

Visualizing motion is a common focus of many previous systems.
One approach is to depict the motion using a static image [Goldman
et al. 2006; Caspi et al. 2006; Barnes et al. 2010; Correa and Ma
2010; Assa et al. 2005; Agarwala et al. 2004; Kim and Essa 2005].
These methods use repetition, blur, spatial offsetting, montage and
diagrammatic elements to represent motion, but because the result
is a still, viewers must mentally reconstruct timing information. An-
other approach is to create a short video abstract that retains only
the most salient motions. Truong and Venkatesh [2007] survey a
number of recent techniques for identifying such salient video seg-
ments. Pritch et al. [2008] summarize surveillance video by non-
chronologically rearranging spatio-temporal video segments repre-
senting salient activity. While these methods compress the length of
a video, they do not emphasize important motions within the frame.

Motion magnification [Liu et al. 2005] highlights small spatial mo-
tions (e.g. breathing, deformations) by exaggerating them. Thus,
its goal is the opposite of ours, as we focus on emphasizing the
fine-scale motions of an object by removing larger-scale motions.
In fact, motion magnification could be used in conjunction with our
approach to further emphasize the most important motions. Bennett
and McMillan [2007] provide tools for creating time-lapse videos
with stroboscopic motion trails to emphasize translational motions.
Rubinstein et al. [2011] remove transient, distracting motions from
time-lapse sequences to increase the comprehensibility of longer-
term movements. Our work is directly inspired by the vision of the
Moment Camera [Cohen and Szeliski 2006] as we provide tools for

isolating short motions that represent key moments in a scene.

Web-based instructions for creating simple cinemagraphs ask users
to manually create a single alpha matte around the moving object
and composite it with a still background frame.1 Recently, Tomp-
kin et al. [2011] presented a more automated technique for creat-
ing such simple cinemagraphs. They focus on stabilizing camera
motion in handheld video, masking moving objects and generating
seamless loops. These approaches cannot de-animate large-scale
motions of specific objects while leaving the finer-scale motions
intact. Video textures [Schödl et al. 2000; Kwatra et al. 2003; Agar-
wala et al. 2005] are a well-known approach for seamlessly loop-
ing stochastic motions. Like cinemagraphs, a video texture lies be-
tween photography and video, but a video texture does not suppress
distracting motions within the frame. Another approach to creat-
ing cinemagraphs is to start with a still image, manually segment
it into objects, and then add motion using procedural motion tem-
plates [Chuang et al. 2005]. In contrast, we focus on creating cin-
emagraphs from video by removing the motion of objects, instead
of adding motion to an image.

There are now several publicly available tools for creating cinema-
graphs that were developed concurrently with our work, such as
Cliplets from Microsoft Research2, and several iphone apps3. How-
ever, these tools do not attempt to remove the large-scale motion of
specific objects, and thus are not successful on most of our exam-
ples (we provide a comparison on the project web page).

Our technical approach is based on two methods introduced in pre-
vious work. First, we remove motion of an object using a content-
preserving warp, similar to Liu et al. [2009]. However, since we are
immobilizing user-specified objects, rather than smoothing camera
motion, the overall energy function we minimize is different. We
must incorporate the influence of user-drawn strokes on a single
frame across the entire video, and therefore require a multi-stage,
global solution over all video frames rather than a frame-by-frame
approach. Second, we composite video regions spatially and tem-
porally using graph-cuts [Boykov et al. 2001; Kwatra et al. 2003].
Like Agarwala et al. [2005], we composite both static (single-
frame) and video regions; however, our energy function is signif-
icantly different, since we incorporate constraints from user-drawn
strokes, and we can utilize additional information about the location
of occluding boundaries.

An alternative to graph-cut-based seamless compositing would be
to extract a temporally-varying alpha matte for the user-selected
foreground with video matting techniques [Chuang et al. 2002; Bai
et al. 2009]. We could then immobilize the foreground, construct a
background “clean plate,” and re-composite. We chose the seamless
compositing approach because current video matting techniques are
still effort-intensive, and in our case the colors and textures of the
warped and un-warped videos are already similar.

While it is currently possible to de-animate video manually in video
effects tools, like Adobe After Effects, the typical pipeline would
involve tracking several manually identified points, attaching affine
transforms to those points, and then performing a frame-by-frame
mesh-based warp to manually remove any motion not modeled well
by an affine transform. Overall this process would be extremely la-
borious and prone to human error. As we show in Section 7, auto-
matic stabilization methods like After Effects’ Warp Stabilizer [Liu
et al. 2011] are primarily designed to smooth overall camera motion
and often fail when used to immobilize specific objects.

1http://fernandojbaez.com/cinemagraph-tutorial
2http://research.microsoft.com/en-us/um/redmond/projects/cliplets/
3http://kinotopic.com, http://cinemagr.am, http://www.icinegraph.com

User Input Initial WarpTracking

Composited CinemagraphUser Input

Re�ned Warp

Graphcut Labeling

Warping

Compositing

Dynamic Strokes

Static Strokes

De-Animate Strokes

Anchor Tracks

Floating Tracks

Figure 2: A diagram of our overall system. The algorithm proceeds in two stages, Warping (Section 5) and Compositing (Section 6), and
utilizes three types of user-drawn strokes on a single reference frame (left).

3 User Input

We designed our de-animation method to give users creative con-
trol over the output while minimizing repetitive effort. Users must
specify three types of information using a coarse set of strokes on
a single frame of the input video; (1) which regions of the video
should be de-animated so that their large-scale motions are elim-
inated (Figure 2, green strokes), (2) which regions of the video
should be held static (red strokes) and (3) which should remain dy-
namic (blue strokes). Note that we use the terms de-animated and
static to refer to two different type of output regions in the out-
put video. De-animated regions have been warped to remove large-
scale motions, and may be either static (e.g., completely still) or
dynamic (e.g., moving) in the final output. For example, in Fig-
ure 1, the large-scale motions of the guitar are de-animated, but
its fine-scale internal motions, such as the motions of its strings,
remain dynamic. The teacher’s arms should also remain fully dy-
namic and the large-scale motions are not removed. Other regions,
like the head, are completely static in the final video.

To make the task easier for our algorithm, we ask the user to draw
green de-animate strokes on only the most static regions of the ob-
ject, avoiding any internal motions that should be preserved (Fig-
ures 2, 5 and 6). Blue strokes indicate output regions that should re-
main dynamic, while red strokes indicate those that should be com-
pletely static. Finally, the user can specify whether the final output
should loop seamlessly, and a minimum duration for the loop. Such
looping is commonly used to create cinemagraphs.

4 Overview

As shown in Figure 2, our algorithm has two main stages; warping
(Section 5) and compositing (Section 6). The warping stage first
tracks feature points through the input video. It uses a subset of the
tracks to compute an initial warp and then refines the warp with ad-
ditional tracks. The compositing stage combines the warped video
with static frames of the unwarped video to eliminate undesirable

motions in regions that the user specifies should remain still (red
strokes) while preserving motions in regions that should remain dy-
namic (blue strokes). The result is a de-animated video, in which the
large-scale motion of one or more objects have been removed, and
parts of the video are completely static.

Our approach relies on a few assumptions about the input video.
First, we avoid the issue of camera stabilization by assuming the in-
put was captured with a tripod, or previously stabilized. Second,we
assume the large-scale motions can be de-animated with 2D warps
of the video frames and that complex 3D analysis to reverse self-
occlusions is not necessary. Third, we assume the objects to be de-
animated are shot in front of a defocused, uniform, or uniformly-
textured background. As we will show, this assumption allows our
algorithms to de-animate objects without building accurate alpha
mattes for them. Despite these assumptions we have found that we
can apply our technique to a large class of videos.

5 Warping

Our algorithm begins by tracking a set of points throughout the se-
quence. We use Kanade-Lucas-Tomasi (KLT) tracking [Lucas and
Kanade 1981; Shi and Tomasi 1994] to follow distinctive points in
the input video I(x, y, t). Tracks may begin or end at any frame,
and most tracks do not last throughout the entire video. We define
the set of tracks as a table of 2D coordinates K(s, t), where s is a
unique index for each track, and t indicates time (frame number);
K(s, t) = ∅ if track s is not present on frame t. Since very short
tracks are often unreliable, we remove tracks whose duration is less
than 15% of the input video duration.

The user draws green strokes on reference frame ta of the input
video. The goal of our warping algorithm is to warp the video so
that the content indicated by the green de-animate strokes remains
spatially fixed to that location for all frames of the output video.
We define K′(s, t) as the location of the tracks after warping, and
KG(s, t) as the subset of the tracks that lie on the indicated content.

Similarly, K′
G(s, t) are the locations of these tracks after warping.

The goal of our warp can be expressed mathematically as,

K′
G(s, t) = KG(s, ta). (1)

Anchor Tracks

De-animate Strokes

Floating TracksHow do we identify the tracks KG?
For tracks that exist on the refer-
ence frame ta, (K(s, ta) 6= ∅), we
simply check if they lie within the
green strokes. We call these anchor
tracks, and collect them into the sub-
setKA(s, t) (see inset). The task is more complicated for tracks that
do not exist on frame ta, but still lie on the content marked in green.
We call these floating tracks, orKF (s, t), so thatKG = KA∪KF .
If we knew how to warp the video to immobilize this content then
we could simply check for tracks that fall in the same green strokes
across the entire video to identify floating tracks.

Since we don’t know the warp a priori, our approach is to compute
two consecutive warps. The initial, approximate warp uses only the
anchor tracks, i.e., the constraint K′

A(s, t) = KA(s, ta). If enough
anchor tracks exist throughout the entire input video, this initial
warp can successfully immobilize the content indicated by green
strokes. It is more common, however, for the anchor tracks to last
a shorter duration. We therefore use the initial warp to identify ad-
ditional floating tracks (e.g. the set of tracks that lie in the green
strokes after the initial warp) and then compute a more accurate,
refined warp using both sets of tracks.

5.1 Initial Warp

Given just the anchor tracks KA(s, t), our goal is to warp the video
so that K′

A(s, t) = KA(s, ta). One approach is to simply fit a full-
frame warp like a homography to each frame that minimizes the
squared sum of errors of this constraint. This approach can work
well for some scenes, but others, which are less rigid and planar, re-
quire a more flexible representation (Figure 11). We therefore use a
spatially-varying warp defined on a rectilinear mesh placed on each
video frame, similar to the approach of Liu et al. [2009]. However,
in their case the main warping constraint is given by the output of a
3D reconstruction, while in our case, the goal is to warp each output
frame so that the anchors align with the reference frame.

More specifically, we create a 64×32 rectilinear grid mesh on each
input frame, with vertices V (i, j, t) and use it to compute an output
mesh V ′(i, j, t). We can express each track K(s, t) as a bilinear
combination of the four vertices of the quad enclosing the track
on frame t. We define V(s, t) as the vector of these four vertices;
V′(s, t) represents the same four vertices on the output grid. The
vector w(s, t) contains the four bilinear interpolation weights that
sum to 1, so thatK(s, t) = w(s, t) ·V(s, t) on the input mesh, and
K′(s, t) = w(s, t) ·V′(s, t) on the output mesh we are solving for.
The main constraint (Eqn. 1) of the initial warp then becomes

Ea =
∑

s∈KA,t

l(s, t)|KA(s, ta)−w(s, t) ·V′(s, t)|2, (2)

where the unknowns are the output mesh vertices contained in V′.
We use the weighting function l(s, t) of Liu et al. [2009], to tempo-
rally fade-in and fade-out the strength of the constraints from each
track to preserve temporal coherence. (The weights vary from 0 to
1 with a linear ramp window of 15 frames for fading-in and fading-
out when the track points appear and disappear).

We include an additional termEs on the warp to reduce visible dis-
tortion by encouraging each quad to undergo a similarity transform.
We use the formulation given by Liu et al. [2009], but describe it in

Compositing Strokes

Wj

Wi

Ib

Figure 3: The computed labeling for three frames of a cinema-
graph. In this example, graph cut chooses a single still frame label
(gray) for the background and static regions of the model, and two
dynamic candidates (purple and orange) for the hair and eyes.

the Appendix for completeness. The final energy function is

E = Ea + ωEs. (3)

We set the weight ω = 4 through trial-and-error. Since the energy
function is a sum of quadratic terms, we minimize it with respect
to V ′ using least squares to solve for the output grid mesh. Finally,
we render the output sequence by texture mapping the input frames
onto the output grid mesh.

5.2 Refined Warp

To further improve the result we use floating tracks. We first elim-
inate floating tracks that fall outside the green strokes. We use the
output of the initial warp, which approximately aligns each video
frame with the reference frame ta, and include a warped floating
track K′

F (s, t) only if it falls within the green strokes (since the
track may vary with time, we require it to lie within the strokes for
at least 75% of its duration).

We cannot use the constraint in Eqn. 2 for floating tracks, since
we do not know their locations KF (s, ta) in the reference frame.
Instead, we constrain the floating tracks to remain fixed in space
over time

Ef =
∑

s∈KF ,t

l(s, t)|w(s, t) ·V′(s, t)−w(s, t+1) ·V′(s, t+1)|2.

(4)
Since this constraint includes unknown mesh vertices at different
moments of time, we cannot solve for each frame’s output mesh
separately, as in Eqn. 3 and in Liu et al. [2009]. We therefore solve
for the entire output video mesh simultaneously using least squares.
The final energy function we minimize to compute the refined warp
is

E = Ea + Ef + ωEs. (5)

6 Compositing

The final step is to composite the warped video with static regions
taken from a few frames of the input video, in order to remove any
extraneous motions outside the immobilized video regions.

We use graph cuts to perform Markov Random Field (MRF) op-
timization, to seamlessly composite dynamic regions from the
warped video with static regions from input frames into a single
output video. This stage of the algorithm takes as input the original
video I(x, y, t) and the warped video W (x, y, t), and produces a
final output video O(x, y, t).

Each pixel p of the output video volume O(x, y, t) is assigned a
discrete label λ(p) that respects a set of labeling constraints and
minimizes an energy function. Each candidate label λ corresponds
to a pixel source, which we refer to as a candidate video volume.

a)

label = Wi label = Wj

ti tj

W

W

Transitional bu�er

b)

Figure 4: We select two candidate video volumes, Wi and Wj (a),
and overlap them in the output to form a seamless loop (b). Tran-
sition regions (purple and orange) surround frames ti and tj (red),
and Wj is time-shifted to overlap with Wi in the output, so the first
and last frames of the loop come from consecutive input frames.

An example of a candidate video volume is the warped video. The
labeling constraints apply to pixels that are indicated by user-drawn
red and blue strokes. The energy function measures the degree to
which a transition between candidate videos is visually noticeable.
The resulting labeling therefore produces an output video that re-
spects the user-drawn strokes, and consists of regions of the can-
didate videos with seamless, spatio-temporal transitions between
them (Figure 3).

If the user specifies that the output should loop seamlessly, we first
follow the approach of Schodl et al. [2000] and find a pair of starting
and ending frames that are visually similar in the warped video.
Specifically, we search for a pair of frames (ti, tj) in W (x, y, t)
that are at least as far apart as a minimum duration specified by the
user, and that minimize the sum of RGB distances between their
pixels. We only compare pixels within the blue strokes, since these
regions will remain dynamic in the final composite. We then reduce
the input video volume to this duration, and set the output duration
to the same number of frames.

6.1 Candidate Video Volumes

We define a set of labels L, that represents two types of candidate
video volumes: dynamic candidates that are copies of the warped
video W (x, y, t), and static candidates that are still-frames from
the input video repeated to fill the duration of the output. The first
type allows us to place dynamic, warped video into the parts of the
output constrained by blue strokes, while the second type allows
us to select static regions for parts of the output constrained by red
strokes. We denote the set of dynamic candidates as W and the set
of static candidates as S, so that L = W ∪ S.

We first add the warped video to the dynamic label set as Wi. If the
output should loop seamlessly, we add another copy of the warped
video, Wj , to the labels W as shown in Figure 4. We create a tran-
sition region of time (21 frames) surrounding frames ti and tj , and
the two labels indicate videos beginning at the start of those transi-
tion regions. We time-shift Wj to overlap it with Wi in the output,
so that the first and last frames of the output loop come from con-
secutive input frames. The spatio-temporal transition between Wi

andWj within the transitional buffer will be the best seam for loop-
ing from frame tj to frame ti.

We define the static candidate label and video volume Ik(x, y, t)
as a video where the k’th frame of the input video is repeated for
the duration of the output. Using all the frames of the input video
as candidates is cost-prohibitive, so we evenly sample to select five
frames. If b is the time interval that evenly samples the input five
times, we define the set of static candidates S = {Ib, I2b, . . . , I5b}.

Guitar Roulette Grasshopper

Figure 5: User provided strokes for our motion visualization ex-
amples. Green strokes are for de-animation, while red and blue
strokes are for compositing. Note that minimal user input and
coarse strokes suffice for our method.

Finally, the user can optionally choose to include a “clean plate”
still frame candidate containing just the background of the scene.

6.2 Labeling Constraints

We create a final composited result by choosing a label λ(x, y, t)
from the set L for each pixel. We place four constraints on this
labeling. The first two are based on the user-drawn compositing
strokes. We represent the strokes as υ(x, y) ∈ {red, blue, ∅}.
Blue-stroked pixels must come from dynamic candidates, while
red-stroked pixels must come from static candidates.

1. If υ(x, y) = blue, λ(x, y, t) ∈W
2. If υ(x, y) = red, λ(x, y, t) ∈ S

The second pair of constraints limit the durations of the videos
Wi,Wj , and are only used if the output must seamlessly loop. In
order to achieve the temporal transition shown in Figure 4b, the
first and last frames of the overlapped transition regions must come
from Wj and Wi, respectively, except for pixels that are static.

3. λ(x, y, 0) 6= Wi.
4. λ(x, y, 20) 6= Wj .

6.3 Energy Function

In order to generate a visually seamless composite video we min-
imize an energy function that measures the visual noticeability
of transitions between candidate video volumes. Like Kwatra et
al. [2003], we prefer two kinds of seams; those for which the RGB
values are similar across the seam and those that lie along strong
edges. However, unique to our application is the knowledge that the
dynamic candidates typically contain foreground objects, while the
static candidates typically contain background. Transitions between
foreground and background along foreground boundary edges are
desirable, since they correspond to occlusion boundaries. There-
fore, we only use the edge-strength in the dynamic video for seams
between dynamic and static candidates.

We define (p1, p2) as two neighboring pixels in the output (we use
a 6-neighbor system across space and time), and C(p, λ(p)) as the
color of the pixel p in candidate video volume λ(p). We use λ1 and
λ2 as shorthand for λ(p1) and λ(p2), respectively. If the labels of
the neighboring pixels are equal (λ1 = λ2), the seam cost is zero
since no seam exists. Otherwise, the seam cost Φ is

Φ(p1, p2, λ1, λ2) =
γ(p1, p2, λ1, λ2)

Z(p1, p2, λ1, λ2)
(6)

γ(p1, p2, λ1, λ2) = |C(p1, λ1)− C(p1, λ2)|2 (7)

+ |C(p2, λ1)− C(p2, λ2)|2

Model K Model S Beer Glass

Figure 6: User provided strokes for our cinemagraph examples. Green strokes are for de-animation, while red and blue strokes are for
compositing. Note that minimal user input and coarse strokes suffice for our method.

As in Kwatra et al., the seam cost measures RGB differences across
the seam (γ(·)) divided by edge strength (Z(·)) across a seam. For
our application, we choose to average the edge strength between
two static candidates and between two dynamic candidates, and
only use edge strength in dynamic candidates for seams between
dynamic and static candidates

Z(p1, p2, λ1, λ2) = (8) σ(p1, p2, λ1) λ1 ∈W ∧ λ2 ∈ S
σ(p1, p2, λ2) λ1 ∈ S ∧ λ2 ∈W
1
2
[σ(p1, p2, λ1) + σ(p1, p2, λ2)] Otherwise

where edge strength within a specific video candidate λ is repre-
sented by σ(p1, p2, λ), and computed with a 3 × 3 Sobel filter av-
eraged across RGB.

In total, we seek a labeling that minimizes∑
p1,p2

Φ(p1, p2, λ1, λ2) (9)

for each pair of neighboring pixels (p1, p2), subject to our stated
constraints. We minimize this energy function using the alpha ex-
pansion algorithm [Boykov et al. 2001]. Once a labeling is com-
puted, we create a final video simply by copying pixels from the
candidate videos. An example labeling is shown in Figure 3.

When the length and resolution of the output is too large to com-
pute within reasonable time and memory, we downsample the input
so that there are less than 5 million variables in the MRF optimiza-
tion. If the downsampling factor is less than 8, the full-resolution
labeling is created by bicubic interpolation of the low-resolution la-
beling, which creates feathered transitions between the regions. If
the factor is larger, we use hierarchical graph-cuts [Agarwala et al.
2005] at a 4x downsampled resolution before performing a final
upsampling with interpolation.

7 Results

We captured a variety of scenes to evaluate and demonstrate our
algorithm. Input sequences range from 3 seconds to 12 seconds.
We down-sample the frames if necessary such that the height of the
video is 720 pixels. We show the input strokes used to create some
of our examples in Figures 5 and 6; these strokes are the only user
effort required by our system. All examples are shown in the accom-
panying video. For each, we also provide a video that compares our
approach to alternative de-animation methods on our project web-
page.

Motion Visualization
Our first four results reveal motion that is otherwise difficult to see
(Figure 5).

Figure 7: The image on the left shows the location of the logo the
user places in a single frame. The image on the right shows the logo
edit successfully affixed onto the glass 50 frames later. Note that the
water has significantly changed.

Path on Warped Video Path on Unwarped Video

Figure 8: The image on the left shows the animated path the user
drew to generate a winning number for roulette. The image on the
right shows the same path of the ball in the unwarped video. Notice
the complex path the user would have to plan if the inner wheel was
not the frame of reference.

Guitar: We de-animate both the guitar and the shoulder of the mu-
sician to clarify the finer-scale motions of his fingers. Our spatially
varying warp is able to handle multiple opposing constraints for im-
mobilizing and preserving the shape of both the guitar and shoulder
(Figure 1). For this example, we include a clean plate image of the
scene as a static candidate during compositing.

Roulette: In roulette, a ball is rolled clockwise along the outer rim
while an inner wheel is rotating counter-clockwise. The compli-
cated motions of the ball as it hits the inner wheel makes it difficult
to see its path. We de-animate the rotating inner wheel to better re-
veal the path and physics of the ball and possibly allow the viewer
to predict the outcome of the games.

Comparison Methods Steps of our Algorithm Timings for SVWF
of frames Input H AE AEM HA SVWA SVWF Warping Compositing

Beer 75 0.025 0.011 0.022 0.026 0.009 0.009 0.009 22 s 404 s
Glass 83 0.020 0.012 0.015 0.017 0.010 0.010 0.010 73 s 576 s
Grasshopper 44 0.031 0.013 0.042 0.033 0.016 0.007 0.006 14 s -
Guitar 200 0.040 0.019 0.037 0.055 0.019 0.016 0.017 144 s 1287 s
Model K 270 0.026 0.008 0.024 0.031 0.008 0.009 0.009 42 s 300 s
Model S 117 0.010 0.002 0.004 0.006 0.002 0.001 0.001 260 s 650 s
Roulette 250 0.036 0.061 0.066 0.088 0.028 0.028 0.028 204 s 354 s
Snorri 380 0.127 0.063 0.273 0.275 0.063 0.026 0.028 959 s -

Figure 9: Variances of de-animated results, with respect to the target frame. Values are computed in RGB space, varying from 0 to 1. Leftmost
columns present the time required for the warping and compositing steps of the SVWF variant of our algorithm.

H Homographies with all tracks
AE After Effects Warp stabilizer
AEM After Effects Warp stabilizer with object mask
HA Homographies with Anchor tracks
SVWA Spatially Varying Warps with Anchor tracks
SVWF Spatially Varying Warps with Floating tracks

Figure 10: Legend of method acronyms used in comparisons.

Grasshopper: The finer-scale leg motions of a jumping grasshop-
per can be difficult to see because of the larger-scale motions of
its body [Sutton and Burrows 2011]. While entomologists some-
times glue insects to sticks in order to eliminate the large-scale mo-
tions and observe fine-scale motions of legs and wings, the glue
and sticks can also impact the range of motions an insect can per-
form. For example, a full jumping motion is impossible while glued
to a stick. Instead, we de-animate a video of an unencumbered
grasshopper so that the motions of its legs are easier to see at lift-off.
It is also easier to compare the length of the legs at full extension
to the length of the body when the grasshopper is de-animated. We
do not use our compositing technique for this example, and instead
just crop the warped video.

Snorricam: A Snorricam4 is a specially constructed camera device
rigged to an actor’s body who then moves through a scene. The re-
sult is that the actor is mostly static while the scene moves relative
to her. We can simulate this effect without special hardware by cap-
turing hand-held video, and then de-animating the actor’s body. We
show video of such a result on the project web site, as well as av-
erage image visualizations of the input and de-animated output; the
actor’s body is much sharper in our output.

Cinemagraphs
Our next four examples are seamlessly looping cinemagraphs (Fig-
ure 6).

Beer and Glass: We have generated two cinemagraphs that immo-
bilize glassware while retaining the dynamic motions of the liquid
within. The first example shows beer pouring into a glass while
the second shows water swirling in a glass. Because the glassware,
hands and all surrounding objects are still, the motions of the liquid
are unexpected and surreal. De-animating glassware is challenging
because the glass is thin and transparent, and the dynamic liquid
within can confuse trackers. Nevertheless our approach is able to
properly immobilize the rims of the glassware. We also show a sec-
ond result for the beer example where we animate the beer flowing
from the spout. Since the flow is already immobilized in the input,
we use a special, yellow stroke to constrain those pixels to come
from the input video during compositing.

4http://en.wikipedia.org/wiki/SnorriCam

Model K and Model S: It is particularly challenging to de-animate
human faces and bodies because their natural motions involve non-
rigid deformations. Our Model K and Model S cinemagraphs elim-
inate the motion of the faces and bodies while the motions of the
eyes and hair remain intact. As in the glassware examples, the jux-
taposition of static and dynamic regions is surreal because the re-
sulting cinemagraphs are neither photographs nor videos.

Video Editing
Editing the appearance or motions of objects in video is a challeng-
ing problem. With our de-animation techniques users can modify a
single reference frame in which the object is immobilized and our
system propagates the edits back into the original video. While our
approach is inspired by earlier work on editing video by modify-
ing a reference frame [Rav-Acha et al. 2008], we offer a simpler
method, but one that cannot handle as significant deformations.

Appearance Editing: In Figure 7, we add a logo onto the moving
glass. For the edit to look realistic, the logo must appear to be at-
tached to a fixed location on the surface of the glass. We de-animate
the glass, then superimpose the logo at the desired location. When
the edited video is un-warped, the logo appears properly attached
to the glass. Even the liquid seen through the logo appears natural.

Motion Editing: In Figure 8, we edit the motion of a roulette ball.
In the original video the motion of the ball becomes very compli-
cated as it hits the inner rotating wheel. Designing a new path for
the ball is extremely challenging because we must account for the
rotational motion of the inner wheel. Instead, we first de-animate
the inner wheel to provide a still frame of reference and then cre-
ate a new motion path for the ball with respect to the immobilized
wheel. With de-animation we no longer have to account for the rel-
ative motion of the inner wheel. Once we are satisfied with the new
path of the ball we un-warp the video to obtain the final result. The
accompanying video shows the full edit and animation.

8 Evaluation

Warping: Figure 9 quantitatively evaluates the success of the
warp in immobilizing user-specified regions. (A table of method
acronyms is in Figure 10.) The numbers in Figure 9 are mean RGB
pixel variances, computed within the green strokes across all frames
of the output video. While lower variance usually implies better
de-animation, correlation with our perceptual assessment of the de-
animated video is not exact; in particular, brief temporal artifacts
can be very noticeable without significantly changing variance. We
therefore strongly encourage the reader to view the video on our
project page which show a detailed comparison for each sequence.

No existing method is designed specifically for de-animating ob-
jects. The closest related problem is video stabilization, which is
designed to remove camera motion rather than object motion. We

HAAE
G

ui
ta

r
AEM SVWA SVWFInput

Be
er

Ro
ul

et
te

M
od

el
 K

Our Methods

Figure 11: Average image of de-animated video. Notice the blurring of the guitar, rim artifacts on the beer, blurring of the roulette wheel,
and ghosting in model K for the input and several comparison methods. Our result SVWF shown rightmost performs significantly better.

compare our approach to the Warp Stabilizer [Liu et al. 2011] in
Adobe After Effects to show that existing stabilization techniques
are not sufficient for our task, with the caveat that we are using the
existing Warp Stabilizer for a purpose it was not designed for. We
include two types of comparisons; we use Warp Stabilizer directly
on either (1) the input video directly (AE) of (2) a version of the
input video in which we manually masked out the background so
that the stabilizer would eliminate the motion of the desired ob-
ject (AEM). We compute AE and AEM with the stabilization set
to ‘no-motion’ using ‘Subspace warp’ with ‘detailed analysis’. We
also compare with simply computing the best homography, using
all tracks (H). In all cases, our algorithm achieves lower numeri-
cal variance. From the videos, it is clear that our approach is also
qualitatively better at immobilizing user-selected regions. Finally,
to visualize our results, we compare the average image after de-
animation for some examples in Figure 11. In the ideal case, the av-
erage image would be perfectly sharp, and our final method on the
right should be compared to the input on the left. However, ghosting
and blurring is clearly visible in results for H, AE and AEM.

Figure 9 also evaluates the steps of our warping algorithm. First,
we can use just the anchor tracks and apply a simple homography
to warp each frame to the reference frame (HA). Our initial warp in
Section 5.1 goes beyond a homography to use a spatially-varying
warp (SVWA). Our final refined warp in Section 5.2 also uses the
floating tracks (SVWF). In some cases, HA is adequate, but for
more complex examples like Roulette or Grasshopper (see video),
a spatially-varying warp is essential. Even for the Beer example,
Figure 11 shows some jerking in the rim. A similar issue arises for
Model K, where HA achieves the lowest numerical variance, but
contains temporal jerks due to non-rigid deformations, resulting in

the ghosting effects for HA in the bottom row of Figure 11. Using
only the anchor tracks and SVWA is adequate in many cases, and
close to the final numerical variance. However, there are difficult
examples like Roulette and Guitar, where we obtain a more accurate
result by also using floating tracks.

Compositing: Figure 12 shows the average image for the input,
after warping the beer glass (Section 5), and compositing with the
still background (Section 6). In the input, large-scale motions of
the glass (blurred in the visualization) can mask the internal motion
of the liquid. After de-animation, the glass is sharp, but distracting
motions (again, blurred in this visualization) are transferred to the
background. The final composite appears sharp for both the glass
and background. The final video preserves internal motions of the
liquid, while removing gross motions of the glass.

User Interaction and Timings: Tracking takes approximately 30
seconds for the longest video. The time for warping and composit-
ing is listed in Figure 9, and currently takes a few minutes. User
interaction to draw the coarse strokes can often be done in 1-2 min-
utes per video. Hence, the complete pipeline to generate a cinema-
graph typically takes less than 15 minutes, with only a fraction of
that time due to user input. Note that our algorithm is currently un-
optimized, and we expect to be able to speed it up considerably in
the future. Nevertheless, this workflow is significantly faster than
the largely manual process artists must use today. Indeed, it is re-
ported that skilled artists can take several hours, if not a day or two
to create complex cinemagraphs5.

5http://www.filmindustrynetwork.biz/nyc-photographer-jamie-beck-
cinemagraph/12173

Average Input Average Warped Average Composited

Figure 12: The average image of the input sequence, warped se-
quence and the composited sequence shows the effectiveness of
combining the still background with the de-animated beer glass
while retaining the internal motions of the liquid.

9 Limitations

There are limits on the operating range of our method. It cannot
handle or remove large 3D motions, such as a face rotating from
a frontal to a profile view, or the full body of a walking person.
An example is shown in Figure 13, where we try to de-animate the
subject’s face, which undergoes large 3D rotations. The artifacts are
easier to understand by watching the video on our project webpage.
A good de-animation result should have the large-scale motions of
the eyes, nose and mouth removed. However, due to the extreme
motions of the face, our system fails to find a spatially varying warp
that immobilizes the face. The nose and mouth still exhibit large
scale motions as they do not remain in the same spatial location
throughout the sequence.

Finally, since our method does not include video matting, we limit
the types of background we use for our examples. For example,
if our algorithm moves foreground objects relative to their back-
ground during warping, and the background is non-uniform, suc-
cessful compositing might require alpha mattes to composite the
de-animated foreground onto still images. Failing to composite only
the foreground object from the warped video might result in ani-
mated background regions in the output sequence, which is distract-
ing as shown in the Ketchup example in the bottom of Figure 14.
In the video on our webpage, the out of focus grid ‘swims’ as the
background region from the warped video is included in the output.

An obvious solution is to include matting in our algorithm, and we
made a first attempt to model the foreground and background ap-
pearances with Gaussian Mixture Models (GMMs), using an energy
term during compositing that prefers cuts along object boundaries.
This simple approach is adequate in some cases; in Figure 14, the
compositing seam does not cut through the background for Ketchup
when we use GMMs. However, GMMs fail for some cases when
the foreground and background appearances are very similar. For
example, the compositing seam cuts through the hand of the musi-
cian in the guitar example instead of its boundary as shown in the
top row of Figure 14. This artifact appears because the color of the
hand is similar to the color of the wall on the right and the ceil-
ing. In this case, the energy minimization finds a composition that
is seamless and obeys the color distribution of the foreground and
background but fails to achieve the goal of matting. In summary, in-
cluding matting in our algorithm remains a difficult challenge and
topic of future work; while an approach based on GMMs or an alter-
native technique might succeed, we do not currently have a robust
solution.

W58 W83W1 with strokes

Figure 13: Our method fails to de-animate a face undergoing a
large 3D rotation; the nose and mouth are not aligned throughout
the output sequence. The image sequence shows the 1st,with de-
animate strokes overlaid on it, 58th and 83rd warped frame.

With GMMsWithout GMMs

G
ui

ta
r

Ke
tc

hu
p

Figure 14: Our method might include background regions from the
warped video in the final composite, causing distracting motions in
the output for Ketchup. GMMs can be used to model the foreground
and background appearance to achieve a better composition in this
case. However, GMMs does not work for all cases as shown in Gui-
tar, where it fails to find the boundary for compositing.

10 Conclusion and Future Work

There are a number of avenues for future work. Our algorithm min-
imizes several energy functions in succession; it computes an initial
and then a refined warp, and then a composite. We could model the
problem as a single energy function, and/or iterate over the various
steps. For example, we could reduce the strength of warping con-
straints for background video regions that are not used in the final
composite. However, this approach would increase running time.
We could also automatically create specific types of cinemagraphs
captured from hand-held devices; for example face portraits could
use face-specific techniques to eliminate user effort.

We have presented a simple and largely automated method for se-
lectively de-animating objects in a video, removing gross motions
to focus on finer-scale movements. The user need only specify
coarse strokes on a single frame of the input. With the increasing
use of video as a medium to enhance still imagery, we believe our
technique will lead to much future work on analyzing motions to
create more compelling and illustrative videos.

Acknowledgements: We thank the reviewers for their detailed
comments, and Sean Arietta for playing the guitar for Figure 1. We
would also like to thank the models, Kathy Ngo, Sheryl Marie and
Christina Russo. This work was supported in part by ONR PECASE
grant N00014-09-1-0741, NSF grants CCF-0643552, IIS-1016920,
an A*STAR NSS PhD fellowship, gifts and software from Adobe,
and the Intel Science and Technology Center for Visual Computing.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. ACM Transactions
on Graphics 23, 3 (Aug.), 294–302.

AGARWALA, A., ZHENG, K. C., PAL, C., AGRAWALA, M., CO-
HEN, M., CURLESS, B., SALESIN, D. H., AND SZELISKI, R.
2005. Panoramic video textures. ACM Transactions on Graphics
24, 3 (Aug.), 821–827.

ASSA, J., CASPI, Y., AND COHEN-OR, D. 2005. Action synopsis:
pose selection and illustration. ACM Transactions on Graphics
24, 3 (Aug.), 667–676.

BAI, X., WANG, J., SIMONS, D., AND SAPIRO, G. 2009. Video
snapcut: Robust video object cutout using localized classifiers.
ACM Transactions on Graphics 28, 3 (July), 70:1–70:11.

BARNES, C., GOLDMAN, D. B., SHECHTMAN, E., AND FINKEL-
STEIN, A. 2010. Video tapestries with continuous temporal
zoom. ACM Transactions on Graphics 29, 4 (July), 89:1–89:9.

BENNETT, E. P., AND MCMILLAN, L. 2007. Computational time-
lapse video. ACM Transactions on Graphics 26, 3 (July), 102:1–
102:6.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approxi-
mate energy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23, 11 (Nov.), 1222–
1239.

CASPI, Y., AXELROD, A., MATSUSHITA, Y., AND GAMLIEL, A.
2006. Dynamic stills and clip trailers. The Visual Computer 22,
9-10, 642–652.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN,
D. H., AND SZELISKI, R. 2002. Video matting of complex
scenes. ACM Transactions on Graphics 21, 3 (July), 243–248.

CHUANG, Y.-Y., GOLDMAN, D. B., ZHENG, K. C., CURLESS,
B., SALESIN, D. H., AND SZELISKI, R. 2005. Animating
pictures with stochastic motion textures. ACM Transactions on
Graphics 24, 3 (Aug.), 853–860.

COHEN, M. F., AND SZELISKI, R. 2006. The moment camera.
Computer 39, 8, 40–45.

CORREA, C. D., AND MA, K.-L. 2010. Dynamic video narratives.
ACM Transactions on Graphics 29, 4 (July), 88:1–88:9.

GOLDMAN, D. B., CURLESS, B., SALESIN, D., AND SEITZ,
S. M. 2006. Schematic storyboarding for video visualization
and editing. ACM Transactions on Graphics 25, 3 (July), 862–
871.

KIM, B., AND ESSA, I. 2005. Video-based nonphotorealistic and
expressive illustration of motion. In Computer Graphics Inter-
national 2005.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Transactions on Graphics 22, 3 (July), 277–
286.

LIU, C., TORRALBA, A., FREEMAN, W. T., DURAND, F., AND
ADELSON, E. H. 2005. Motion magnification. ACM Transac-
tions on Graphics 24, 3 (Aug.), 519–526.

LIU, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.
Content-preserving warps for 3d video stabilization. ACM
Transactions on Graphics 28, 3 (July), 44:1–44:9.

LIU, F., GLEICHER, M., WANG, J., JIN, H., AND AGARWALA,
A. 2011. Subspace video stabilization. ACM Transactions on
Graphics 30, 1 (Jan.), 4:1–4:10.

LUCAS, B. D., AND KANADE, T. 1981. An iterative image reg-
istration technique with an application to stereo vision. Interna-
tional Joint Conference on Artificial Intelligence.

PRITCH, Y., RAV-ACHA, A., AND PELEG, S. 2008. Nonchrono-
logical video synopsis and indexing. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 30, 11 (Nov.), 1971–
1984.

RAV-ACHA, A., KOHLI, P., ROTHER, C., AND FITZGIBBON, A.
2008. Unwrap mosaics: A new representation for video editing.
ACM Transactions on Graphics 27, 3 (Aug.), 17:1–17:11.

RUBINSTEIN, M., LIU, C., SAND, P., DURAND, F., AND FREE-
MAN, W. T. 2011. Motion denoising with application to time-
lapse photography. IEEE Computer Vision and Pattern Recogni-
tion (CVPR) (June), 313–320.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000.
Video textures. In Proceedings of ACM SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, 489–
498.

SHI, J., AND TOMASI, C. 1994. Good features to track. In Com-
puter Vision and Pattern Recognition, 593 –600.

SUTTON, G. P., AND BURROWS, M. 2011. Biomechanics of jump-
ing in the flea. J Exp Biol 214, 5 (Mar.), 836–847.

TOMPKIN, J., PECE, F., SUBR, K., AND KAUTZ, J. 2011. To-
wards moment imagery: Automatic cinemagraphs. Visual Media
Production, Conference for 0, 87–93.

TRUONG, B. T., AND VENKATESH, S. 2007. Video abstraction:
A systematic review and classification. ACM Trans. Multimedia
Comput. Commun. Appl. 3, 1 (Feb.).

Appendix

We compute the shape term used in Eqn. 3 by first splitting the input
quad mesh into a set of triangles. Since each quad in the input mesh
is a square, each triangle is an isosceles right triangle. Considering
a single triangle with vertices (V1, V2, V3), if V2 is opposite the
hypotenuse, we can construct vertex V1 from the other two vertices,

V1 = V2 +R90(V3 − V2), R90 =

[
0 1
−1 0

]
. (10)

If this triangle undergoes a similarity transform, its vertices after
the transform will still follow this equation, and we can measure
the deviation of a transformed triangle from a similarity transform
by the error in this equation. We can therefore write

Es =
1

8

∑
triangles

||V ′
1 − (V ′

2 +R90(V ′
3 − V ′

2)||2, (11)

where the sum ranges over each of the eight triangles containing
each vertex. Using all eight triangles is redundant, but avoids spe-
cial handling at the mesh boundaries.

