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ABSTRACT

Stochastic Traffic Flow Modeling and Optimal Congestion Pricing

by

Li Yang

Chair: Romesh Saigal

Congestion in surface transportation networks causes serious economical and envi-

ronmental problems in urban areas of the United States and around the world. Due

to the continuous deterioration of urban traffic conditions in recent years, increasing

numbers of intelligent transportation system applications have been developed and

implemented to help administrators manage the highway and make the usage of the

whole traffic network more efficient. The success of most intelligent transportation

system applications is dependent on an accurate prediction of the future traffic state,

because such accurate prediction can help the decision maker choose the right strategy

and/or provide reliable travel information to the drivers. This dissertation explores

an innovative stochastic traffic flow model to better predict the future traffic state

on the highway, and provides a framework to investigate some potential applications,

including dynamic congestion pricing.

Part I presents an innovative macroscopic stochastic traffic flow model and the

off-line calibration algorithm for this model. It also develops the numerical algorithm

for future traffic state prediction based on this model. The model is validated by

using real highway data. The empirical results show that this model outperforms, in

x



terms of prediction accuracy, the traditional macroscopic traffic flow model.

Part II is devoted to the development of on-line parameter calibration and traffic

state estimation algorithms for the proposed innovative stochastic traffic flow model.

The algorithms are tested on synthetic data, and the numerical results show that

the algorithms are able to capture the change of model parameters and improve the

prediction accuracy of the traffic flow model.

Part III formulates a mathematical model for the problem of optimal distance-

based dynamic congestion pricing. This mathematical model utilizes the proposed

stochastic traffic flow model as the underlying dynamics of the traffic flow. It develops

the optimal dynamic pricing strategy under a specified objective and a numerical case

study is presented to illustrate the solution.
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CHAPTER I

Introduction

1.1 Motivation

Congestion in surface transportation networks causes serious economical and en-

vironmental problems in urban areas of the United States and around the world.

For instance, it has been estimated that 32% of the daily travel in major US urban

areas occurred under congested traffic conditions (FHWA, 2008). Also Schrank and

Lomax (2009) showed that congestion caused urban Americans to travel extra 4.2

billion hours and to purchase additional 2.8 billion gallons of fuel thus incurring the

congestion cost of 87.2 billion dollars annually, 50% more than the cost incurred a

decade ago.

Due to the continuous deterioration of urban traffic conditions, increasing numbers

of Intelligent Transportation System (ITS) applications have been developed and

implemented to help administrators manage the highway and make the usage of the

whole traffic network more efficient. However these applications do not currently take

full advantage of available traffic flow data. For instance, while vehicle navigation

models can factor in current conditions when making routing recommendations, they

do not typically consider conditions that may actually be experienced by a driver

once he reaches a particular roadway link. This results in navigation systems that

cannot truly be used to mitigate congestion, as the route recommendation may often
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only move the congestion from one location to another if too many drivers opt for

the same route. This may result in not only potential increase in delays experienced

by the travelers but also more frequent stop and go and reduced fuel efficiency.

The success of most ITS applications is dependent on an accurate prediction of the

future traffic state. Such accurate prediction can help the decision maker choose the

right strategy and/or provide reliable travel information to the drivers. For example,

in traffic flow control applications, such as ramp metering and congestion pricing,

if future traffic state can be precisely predicted, the utilization of available highway

capacity will be improved by letting an appropriate number of vehicles enter the

highway. Travel time estimation is another example of the value of traffic state

prediction. Based on the prediction of future traffic evolution, the travel time can be

calculated in real time. This information can assist the drivers make right decisions on

route choice and departure time. Therefore traffic state prediction has connections to

ITS applications and we expect the prediction accuracy to have a significant impact

on the performance of these applications.

While there has been extensive research on the development of traffic prediction

algorithms, those developed so far primarily seek to find network equilibrium by

factoring link flow capacities and resulting travel times. Most of these algorithms

cannot be applied in real-time without drastically increasing the underlying size of

the problem, thus making the formulation computationally intractable.

Nowadays, with the extensive usage of the detection and surveillance devices on

the roads, a massive amount of traffic data has been collected and become available

for research purposes. In many cities in the United States, the administrators of the

transportation department have built such databases and the databases can provide

historical and real time traffic data to the public. These databases provide researchers

an opportunity to build and validate models for the purpose of traffic state prediction.

In this dissertation, we propose to develop and study a stochastic macroscopic
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traffic flow model that can be used to predict the near future traffic conditions in

real-time setting. This represents a paradigm change in the state of the art, where

most macroscopic traffic models considered are deterministic and do not have the

ability to dynamically calibrate its parameters in real-time. The stochasticity of the

model allows the consideration of the inherent stochastic nature of driver behavior,

different vehicle mixes, the effects of weather conditions, and various other effects at

random locations and time. In addition, the ability of real-time parameter calibration

will make the model more robust to varying underlying conditions. The understanding

of the congestion phenomenon and its impact on the individual vehicle performance

and system operations can be further analyzed.

One potential application of the stochastic traffic flow model is the dynamic pricing

of tolls for a managed toll lane which incorporates the future traffic state prediction.

Managed lanes are defined as the highway lanes that are operated under fixed or real-

time dynamic strategies to achieve a variety of objectives. The objectives include but

not limited to improving facility utilization efficiency, controlling congestion levels

and increasing the return on investment. Strategies for managing the lanes can be

roughly classified into three categories: eligibility control, access control and pricing.

A managed lane implementing pricing strategy is also called a managed toll lane.

In the United States, increasing investments are being made in managed toll lanes

because of their obvious effectiveness in maintaining the level of service on the road

and their revenue generating ability, which helps pay off the investors. For example, a

High Occupancy Toll (HOT) lane is in operation in Alameda County, California along

a 14 mile stretch of southbound I680. The toll is dynamic, and it is $1.00 between 5

am and 6:45 am; at approximately 6:45 am, it is increased to $1.75 until 11 am when it

drops down to $0.30 for the rest of the day. Vehicles with two or more occupants can

enter the lane without paying toll. In this dissertation, we will formulate a general

mathematical model for dynamic toll pricing problem and investigate the optimal
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pricing strategy based on distance traveled and the time saved.

In conclusion, there are many ITS applications, whose performance can be im-

proved if the stochastic model can successfully predict the future traffic condition.

This dissertation will investigate such a traffic flow model and its application on

optimal dynamic congestion pricing.

1.2 Research Background and Literature Review

This section conducts a comprehensive review of related literature on traffic flow

modeling, on-line traffic state estimation and optimal congestion pricing for managed

toll lanes.

1.2.1 Traffic Flow Modeling and Prediction

Some purely data-driven models have already been developed to improve the traffic

state prediction accuracy. For example, a hybrid method combining Kohonen maps

with ARIMA time series models is developed to forecast short-term traffic flow by Van

Der Voort et al. (1996). A multivariate time series state-space model using highway

loop detector data has also been investigated and it suggests that different model

specifications should be set for different time periods of the day (Stathopoulos and

Karlaftis , 2003). Other than time series models, neural network is also used for traffic

prediction. It offers an attractive alternative because neural network could model

undefined and complex nonlinear surface (Smith and Demetsky , 1994). A framework

of traffic prediction model combining wavelet transform, neural network and fuzzy

logic has been developed and the wavelet transform is found useful to eliminate noise

caused by random travel conditions (Xiao et al., 2003).

These purely data-driven models do not rely on any knowledge of transportation.

Sometimes these data-driven models can work very well by capturing the patterns

from the historical data. However due to the lack of the understanding on how the
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traffic flow evolves, these models are not reliable. There is another category of models,

which are built exclusively for traffic state prediction. These models investigate and

simulate the real traffic evolution, so that the prediction can be made by projecting

the traffic evolution according to the traffic flow model. The key of such prediction

models is the underlying traffic flow model. The prediction is obtained by projecting

the traffic evolution as determined by the traffic flow model. According to the level

of detail with which they simulate the traffic evolution, these traffic flow models

can be classified into three categories: microscopic models, mesoscopic models and

macroscopic models.

Microscopic models study the driver’s behavior and the interaction between indi-

vidual vehicles at a very high level of detail. This approach models the movement

of individual vehicles based on assumptions about the drivers’ driving behavior. Re-

searchers have developed some popular simulator modules. For example, Yang and

Koutsopoulos (1996) developed a microscopic traffic simulator (MITSIM) for mod-

eling traffic networks with advanced traffic control, route guidance and surveillance

system. It simulates individual vehicles by using models capturing car following, lane

changing behavior and drivers’ route choice decision. Another simulator called Corri-

dor traffic simulator (CORSIM) is developed and maintained by FHWA (Halati et al.,

1997), it is one of the most frequently used software packages for the analysis of traffic.

Parallel microscopic simulation (PARAMICS) is a super parallel computing simulator

developed by Quadstone Limited, a Scottish company (Cameron and Duncan, 1996).

It is a stochastic simulation model, which is very comprehensive and powerful for a

wide variety of traffic modeling applications. VISSIM, developed by a German com-

pany Planung Transport Verkehr (PTV), is one of the most sophisticated simulators;

It provides significant improvements in driver behavior and incorporates multi-modal

transit operation models (Choa et al., 2004). The simulators introduced above are

the most commonly used software packages for microscopic traffic flow simulation.
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Mesoscopic models describe the traffic evolution at a medium level of detail. In

mesoscopic models, the vehicle behavior is modeled in terms of a probability distri-

bution, which is more aggregate than that of microscopic simulation models. Three

well-know mesoscopic models are the so called headway distribution models, cluster

models and gas-kinetic continuum models (Hoogendoorn and Bovy , 2001).

Macroscopic models describe the traffic evolution from a high level of aggregation

as it focuses on aggregated system variables, such as density and volume, rather than

individual vehicle behavior. LWR model is a classical macroscopic model, which was

proposed by Lighthill and Whitham (1955) and Richards (1956). It is a first-order

deterministic model. In 1971, Payne (1971) developed a second-order model, which

overcomes some deficiencies of first-order models and improves the model accuracy.

In 1994, Daganzo (1994)proposed a discretized model, which is also called cell trans-

mission model. The traffic flow evolution is explained from a different perspective

in terms of sending and receiving function in every cell. These three models are the

most commonly used macroscopic models. To the best of the author’s knowledge,

much work has been done on deterministic macroscopic traffic models, however only

few works have considered stochastic macroscopic traffic models.

1.2.2 On-line Traffic State Estimation

Research on traffic state estimation has been studied extensively in recent years.

Kalman filter is found to be an effective method for on-line traffic state estimation

and various forms of Kalman filter have been widely used in literature. Wang and

Papageorgiou (2005) proposed a general approach for real-time traffic state estima-

tion by using extended Kalman filter (EKF). In their approach, the unknown model

parameters in the traffic flow model are also considered as state variables so that they

can be estimated on-line simultaneously. In this way, the off-line calibration of model

parameters can be avoided and it is more adaptive to capture the change of parame-
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ters. The biggest advantage of EKF is that its computation cost is lower than many

other kinds of Kalman filter algorithms. However EKF requires a linearization of the

system, which is sometimes impossible for highly complicated nonlinear traffic flow

models like the stochastic model developed in Chapter II. Sun et al. (2003) devel-

oped a sequential Monte Carlo based Kalman filter, which is called mixture Kalman

filter, to estimate the traffic density at unmeasured locations. The underlying traffic

flow model is a cell transmission model based on switching state-space model. The

algorithm is efficient in a way that it reaches a comparable performance to EKF with

a small number of sample sequences. Hegyi et al. (2006) applies unscented Kalman

filter (UKF) for traffic state estimation. UKF was proposed by Julier and Uhlmann

(2004). Instead of calculating the Jacobians and Hessians to approximate the mean

and covariance in EKF. UKF applied the so-called sigma points to obtain the mean

and covariance. UKF is easier to implement and more accurate than EKF. Mihaylova

et al. (2007) compared the performance of UKF with the so-called particle filter (PF),

and compared the accuracy and complexity based on a cell transmission model. The

results showed that the PF provides better performance than UKF. Both of them are

suitable for real-time traffic estimation, because both are easy to implement and do

not require linearization.

1.2.3 Optimal Congestion Pricing

Distance-based dynamic pricing is a reasonable and effective pricing strategy, while

it is also the most complicated. Although some researchers and practitioners have

investigated this pricing strategy in recent years, there is no unified scheme for this

problem. Yang et al. (2010) investigated the pricing scheme for road network from

the perspective of congestion control. They propose an iterative algorithm, which can

adjust the toll price based on the observation of link flows over the network without

knowing the travel time and demand functions and users’ value of time. Lou et al.
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(2011) also propose a self-learning approach to determine the pricing strategy for

single toll station on toll lanes, and applies simulation as the underlying traffic flow

model for determining the prices that optimize an objective. Zhang et al. (2008)

propose a feedback-based simulation algorithm to dynamically adjust the toll lane

prices in order to realize the optimal traffic allocation for the overall infrastructure

efficiency. The above works use microscopic simulation models in their investigations,

however there are disadvantages in applying microscopic simulation model for optimal

dynamic pricing; An important one is that the simulation models are more difficult

to calibrate than macroscopic traffic flow models.

This dissertation will formulate the dynamic pricing problem based on a stochastic

macroscopic traffic flow model. An advantage of using a macroscopic model (over a

microscopic simulation model) is that it can be calibrated on-line by applying the

traffic state estimation algorithm developed in chapter III. Following the formulation,

we develop a methodology to obtain an optimal pricing strategy to maximize the total

expected revenue. Although the objective discussed in this study is to maximize the

revenue, the general model formulation and solution can be easily adapted to any

other objective, like the maximizing of the total throughput, etc.

1.3 Research Objectives

The objective of this research is to develop a stochastic macroscopic traffic flow

model, which makes a more accurate prediction of the future traffic state than other

traditional deterministic macroscopic models. The on-line traffic state and model

parameter estimation algorithms for this macroscopic traffic flow model will be studied

as well. This research will also investigate the application of this traffic flow model in

an ITS application: the optimal dynamic congestion pricing problem which considers

the travel time as well as distance traveled in the pricing.

Figure 1.1 illustrates the scheme of the research plan in this dissertation. Based
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Figure 1.1: Scheme of the research objective

on Figure 1.1, the whole research objective can be decomposed into several main

research tasks as described below:

1. To propose a stochastic macroscopic traffic flow model which captures the real-

life traffic phenomenons.

2. To develop an off-line model calibration algorithm, which is able to estimate

the model parameters using historical highway data.

3. To develop a numerical procedure for future traffic state prediction based on

proposed traffic flow model and calibrated parameters.

4. To develop an on-line model calibration algorithm, which is able to update the

model parameters and current traffic state in real time.

5. To formulate a mathematical model for the problem of optimal congestion pric-

ing and to explore the optimal pricing strategy under specified objective.

9



1.4 Organization of the Dissertation

This dissertation is presented in a multiple manuscript format. It consists of three

main chapters. Each of Chapters II, III and IV is written as an individual research

paper focusing on a specific research topic, however these three research topics are

closely connected. The organization of the dissertation follows below.

Chapter II presents a new macroscopic stochastic traffic flow model and the off-line

calibration algorithm for this model. The numerical algorithm of traffic state predic-

tion based on this model is also developed in this chapter. The model is validated by

using real highway data. The empirical results show that this model outperforms, in

terms of prediction accuracy, the traditional macroscopic traffic flow model.

Chapter III is devoted to the development of on-line parameter calibration and

traffic state estimation algorithms for the traffic flow model proposed in Chapter II.

The algorithms are tested on synthetic highway data, and the numerical results show

that the algorithms are able to capture the change of model parameters and improve

the prediction accuracy of the traffic flow model.

Chapter IV formulates a mathematical model for the problem of optimal distance-

based dynamic congestion pricing. This mathematical model utilizes the proposed

stochastic traffic flow model as the underlying dynamics of the traffic flow. It develops

the optimal dynamic pricing strategy under a specified objective and a numerical case

study is presented to illustrate the solution.

Finally Chapter V summarizes the conclusions and the contributions of this dis-

sertation. Several further research topics are also proposed and discussed in this

chapter.
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CHAPTER II

Stochastic Traffic Flow Modeling

2.1 Introduction

Just as the normal blood circulation necessitates a healthy body, the smooth traffic

flow is necessary for healthy business and community development in a city and a

region. Traffic congestion haunts cities and communities from various perspectives: It

inflicts uncertainties, drains resources, reduces productivity, stresses commuters, and

harms environment. Due to the continuous deterioration of urban traffic conditions,

increasing numbers of Intelligent Transportation System (ITS) applications have been

developed and implemented to help administrators manage the highway and make the

usage of the whole traffic network more efficient. For example, ramp metering system,

a device usually consisting of a traffic light together with a signal controller installed

on the ramp, has been implemented on many U.S. highways to control the rate of

traffic entering the highway from the ramp. It was first implemented on Interstate

290 in Chicago in 1963 and has been deployed in urban highways of almost all major

US cities since then. Ramp metering has proved to be effective in reducing travel

time and delays, increasing highway throughput and improving safety. In 2000, a

$650,000 experiment was conducted in Minneapolis-St. Paul area highways to test

the effectiveness of ramp meters. In the experiment, 433 ramp meters were shut down

for eight weeks. By comparing the performance statistics during these eight weeks
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with earlier ones, it concluded that when the ramp meters were shut down highway

capacity decreased by 9%, travel times increased by 22%, highway speeds dropped

by 7% and crashes increased by 26%. This conclusion is also supported by a survey

made by Federal Highway Administration (FHWA) on seven ramp metering system

in the U.S. and Canada (Arnold , 1998). Many other ITS applications have also been

implemented on highways, including congestion pricing, travel time estimation and

variable speed limits. These ITS applications are intended to make the highway run

smoothly and efficiently.

The success of most of the ITS applications are dependent on an accurate predic-

tion of the future traffic state. Such accurate prediction can help the decision maker

choose the right strategy and/or provide reliable travel information to the drivers. For

example, in traffic flow control applications, such as ramp metering and congestion

pricing, if future traffic state can be precisely predicted, the utilization of available

highway capacity will be improved by letting an appropriate number of vehicles en-

ter the highway. Travel time estimation is another example of the value of traffic

state prediction. Based on the prediction of future traffic evolution, the travel time

could be calculated in real time. This information can assist the drivers make right

decisions on route choice and departure time. Basically, traffic state prediction has

connections to ITS applications and the prediction accuracy usually has significant

impact on the performance of these ITS applications. Nowadays, with the extensive

use of the detection and surveillance devices on the road, a massive amount of traffic

data has been collected and has become available for research purposes. In many

cities in the United States, the administrators of the transportation department have

built such databases and these can provide historical and real time traffic data to

the public. These databases provide researchers an opportunity to build and validate

models for the purpose of traffic state prediction.

In this chapter, we build a new macroscopic traffic flow model and validate its
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prediction power by comparing its performance with other prediction models. There

are two innovations in this traffic flow model: First, the model introduces Brownian

Sheet (Walsh, 1986) to capture the stochastic characteristic of traffic evolution, so

that the model becomes more realistic. Second, the model considers the impact of

on-ramp inflow and off-ram outflow to the traffic evolution. It incorporates them

into the model and can dynamically calibrate the inflow and outflow, so that the

prediction can be adaptively adjusted.

The outline of this chapter is described as follows. In Section 2.2, we will first

introduce the general macroscopic traffic flow models and enumerate some examples of

macroscopic models such as LWR model and Payne-Whitham(PW) model. In Section

2.3, our new traffic flow model will be presented in detail, including the methodology

of model calibration and the algorithms used for traffic state prediction. In Section

2.4, we present a case study using real highway traffic data to evaluate the prediction

accuracy of this new traffic flow model. The performance is compared with other

common prediction models. And Section 2.5 concludes this chapter.

2.2 General Macroscopic Traffic Flow Models

Since Lighthill and Whitham (1955) and Richards (1956) proposed the LWR model

in 1950s, it has become the building block of many macroscopic traffic flow models,

such as PW model (Payne, 1971; Whitham, 1974) and Zhang’s model (Zhang , 1998,

2000). Generally in every macroscopic traffic flow model, three primary aggregated

variables are used to describe the traffic: flux, density and average speed. The defi-

nitions of these variables are given in the notation description below:

• (x, t) is the space and time pair for location x and time t.

• q(x, t) is the flux at location x and time t, which is defined as the number of

vehicles passing through the location in a unit of time.
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• ρ(x, t) is the density at location x and time t, which is defined as the number

of vehicles in a unit distance.

• v(x, t) is the average speed of the vehicles at location x and time t.

For simplicity, we may use q, ρ and v in subsequent discussion of this dissertation

with the understanding that these quantities are dependent on x and t.

2.2.1 The Fundamental Flow Relationship

The three aggregated variables are not independent. There exists a fundamental

relationship, shown in equation (2.1), which connects them.

q = ρ · v (2.1)

The justification of the fundamental relationship is as the follows. Let φ(x, t, u)

denote the density of vehicles with speed u at location x and time t, so
∫ u2

u1
φ(x, t, u)du

represents the number of vehicles with speed between u1 and u2 per unit distance.

According to the definition of ρ and v, obviously

ρ(x, t) =

∞∫
0

φ(x, t, u)du (2.2)

and

v(x, t) =

∫∞
0
φ(x, t, u)udu∫∞

0
φ(x, t, u)du

(2.3)

The number of vehicles passing through location x with speed between u and

u+ du during the next short time interval dt is equal to the number of vehicles with

speed between u and u+ du in the short segment u · dt right before x. Since φ(x, t, u)
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is the density of vehicles with speed u, the total volume passing through x would be:

q(x, t) =

∫∞
0
φ(x, t, u)udtdu

dt
=

∞∫
0

φ(x, t, u)udu (2.4)

Therefore the fundamental relationship is obtained by combining equations (2.2),

(2.3) and (2.4). Given the measurement of any two among the three variables, the

value of the third one can be derived according to the fundamental relationship.

Since the average speed and volume are relatively easier to measure than the density,

today’s traffic surveillance systems measure these two. Therefore in almost all the

traffic databases including the database we used for the model validation in this

chapter, volume and average speed are available at the locations where the sensors

are installed, and the density data is not explicitly available. However, using the

fundamental relationship, density data could be inferred from the volume and average

speed data.

2.2.2 The Conservation Law in Traffic Flow Models

In macroscopic traffic flow models, another important component is the conserva-

tion law as described in equation (2.5).

ρt + qx = 0 (2.5)

The justification of the conservation law in equation (2.5) is as the follows: Con-

sider the segment between x1 and x2. If there is no on-ramp or off-ramp in this

segment, the increment of the number of vehicles in this segment from t1 to t2 is

simply due to the difference between the upstream inflow and downstream outflow.
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Therefore:

x2∫
x1

ρ(x, t2)dx−
x2∫
x1

ρ(x, t1)dx =

t2∫
t1

q(x1, t)dt−
t2∫
t1

q(x2, t)dt (2.6)

The above equation could be rewritten (using to the fundamental theorem of

Calculus) as:

x2∫
x1

t2∫
t1

ρtdtdx = −
t2∫
t1

x2∫
x1

qxdxdt (2.7)

By moving the right hand side to the left, we can get the following equation:

x2∫
x1

t2∫
t1

(ρt + qx)dtdx = 0 (2.8)

The above equation must be satisfied for any choice of x1, x2, t1 and t2, which

gives the conservation equation (2.5).

2.2.3 The Speed-Density Relationship

The speed-density relationship, together with the fundamental relationship and

conservation law, form the integrated macroscopic traffic model. There are two types

of speed-density relationship: One is an equilibrium model and the other one is non-

equilibrium.

In equilibrium models, it is assumed that the equilibrium speed is a function of the

density and the average speed can reach the equilibrium speed instantly no matter

how fast the density changes. LWR model is an equilibrium model which is described

in equation (2.9), where V∗(ρ) is the equilibrium speed function.

ρt + qx = 0
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q = ρ · v (2.9)

v = V∗(ρ)

Traffic researchers have long been interested in functionally estimating the speed-

density relationship. Several functional forms of the equilibrium speed function have

been proposed in the literature. Table 2.1 summarizes the functions that have been

frequently used in the literature. Greenshield suggested a linear speed-density rela-

tion for free flow and forced-flow conditions: v = vf (1−ρ/ρj), where ρj is a parameter

meaning the upper limit of the density. This linear model is the simplest model how-

ever not a very good fit with the field data. Greenberg proposed a logarithmic form

for speed versus density: v = v0 ln(ρj/ρ). Underwood used an exponential form:

v = vf exp(−ρ/ρj). The fourth function, v = min{vf , αρm} (m < 0), called the

Piecewise model, is a new form proposed in this dissertation. In this function, the

speed is constantly equal to the free flow speed for when density is low and expo-

nentially decreasing for high density. The function will be justified by real data later

in this chapter. Figure 2.1 plots the speed function and flux function for Piecewise

speed-density function. It gives an idea how the speed and flux changes over the

density.

Table 2.1: Speed-density functions
Functions V∗(ρ) Q(ρ) = ρ · V∗(ρ)

Greenshields vf (1− ρ/ρj) ρvf (1− ρ/ρj)
Greenberg v0 ln(ρj/ρ) ρv0 ln(ρj/ρ)
Underwood vf exp(−ρ/ρj) ρvf exp(−ρ/ρj)
Piecewise min{vf , αρm} ρmin{vf , αρm}

The Payne-Whitham (PW) model developed by Payne (1971) and Whitham (1974)

is a non-equilibrium model described in equation (2.10). In non-equilibrium models,

there is time decay for the average speed to reach the equilibrium speed. A partial

differential equation in (2.10) describes how the average speed evolves towards to the
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Figure 2.1: Speed and flux functions for Piecewise speed-density function

equilibrium speed over time, where V∗(ρ) is the equilibrium speed function, c0 > 0

and τ > 0 are constant parameters. τ represents the time decay. When τ = 0, PW

model becomes LWR model.

ρt + qx = 0

q = ρ · v (2.10)

vt + vvx +
c2

0

ρ
ρx =

V∗(ρ)− v
τ

In conclusion, fundamental flow relationship, conservation law and speed evolution

are three major components of all macroscopic traffic models.

2.3 The Stochastic Traffic Flow Modeling

In this section, we present and justify the stochastic macroscopic traffic model,

and then discuss the methodology for traffic prediction using this model.

2.3.1 The Model

The stochastic model is based on the LWR model. As described in equation (2.9),

the LWR model is a first-order partial differential equation, which assumes that the
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traffic flow reaches the equilibrium state immediately. It predicts traffic flow well in

relatively heavy traffic when the effects of individual driver behavior are minimal.

From table 2.1, the average velocity at a location depends only on the density so

that the nearby vehicles are traveling at the same speed. As a result, the model fails

to capture the phenomenon of disconnected platoons of vehicles traveling at various

velocities along the highways. See Wong and Wong (2002) and Daganzo (1995)

for the critics of the LWR model. There are second-order adjustments based on

fluid dynamics, proposed to enhance the LWR model, however, as shown in Daganzo

(1995), any model that smoothers the discontinuity of density may predict backward

flow and negative velocity.

Traffic data collected on highways reflects the cumulative effects of random mi-

croscopic phenomenon occurring along the highway and it suggests that an effective

traffic flow model must also account for the stochastic and time-varying nature of

traffic flow. The traffic flow evolution depends on the time of the day, the day of the

week and the locations of segments of freeway. At any time, the traffic at a location

might deviate from its nominal value because of the unpredictable and uncontrol-

lable microscopic phenomena like sudden acceleration/deceleration, lane shifts, lane

surface conditions, accidents, etc. However, after some time, the effects of the mi-

croscopic phenomena die down and the traffic reverts back to its nominal value. The

deterministic model is not able to capture such mean-reverting property of the traffic

evolution. In addition, traditional macroscopic models, such as LWR model, do not

consider the on-ramp and off-ramp traffic flow along the highway. They normally

assume that there are no cars entering or leaving the highway by putting zero on the

right side of the conservation law in equation (2.5). That is obviously not the case in

reality, the on-ramp and off-ramp traffic flow has to be incorporated into the traffic
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flow model.

ρt + qx = g(ρ, x, t)

q = ρ · v

v = V∗(ρ) (2.11)

g(ρ, x, t) · dx · dt = (a(x, t) + b(x, t) · ρ) · dx · dt+ σ(x, t) · dW (x, t)

In order to capture these real-life traffic phenomenons, we propose a stochastic

model by adding a forcing function composed of mean-reverting drift and a Brownian

Sheet (Walsh, 1986) on the right hand side of the conservation law to make it non-

homogeneous. Equation (2.11) describes our stochastic model. The mean-reverting

drift term a(x, t) + b(x, t) · ρ, where b(x, t) < 0, is designed to capture the effects of

the means of inflow/outflow and other factors that may affect flow conservation. We

expect it to be positive at locations near entrances and time when traffic is entering

the highway, and negative at locations near exits and time when traffic is leaving the

highway. An intuitive explanation to assume a mean-reverting drift term is as the

following. When the traffic is congested, i.e. the density is very high, some drives

already on the highway will choose to leave the highway instead of wasting time in

the traffic jam. In addition, the vehicles planning to enter the highway would reroute

their trip. Therefore the traffic density would be pulled down with more people leav-

ing the highway and less people entering the highway. In the other hand, when the

traffic density is low, the traffic demand will tend to pull up the density with more

vehicles entering the highway and fewer vehicles leaving the highway.

E[W (x, t)] = 0

Cov[W (x, t),W (y, s)] = min(x, y) ·min(t, s) (2.12)
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The volatility term σ(x, t) · Ẇ (x, t) is designed to capture the magnitude of the

resulting disturbance volatility to the flow conservation caused by the microscopic

effects along the highway. The Brownian sheet W (x, t) is a Gaussian process indexed

by two parameters x and t with mean and covariance functions following equation

(2.12). And we interpret dW (x, t) as defined in equation (2.13), as both dx and dt go

to zero (or are infinitesimal). Thus a Brownian Sheet assigns a random ‘white’ noise

to each small rectangular region of the plane.

dW (x, t) = W (x+ dx, t+ dt)−W (x, t+ dt)−W (x+ dx, t) +W (x, t) (2.13)

According to the property of Brownian sheet in equation (2.12) and the definition

in equation (2.13), dW (x, t) is independent and identically distributed normal random

variable with mean and variance functions as shown in equation (2.14)

E[dW (x, t)] = 0

V ar[dW (x, t)] = dx · dt (2.14)

Application of Brownian sheet allows the modeling of stochastic disturbances to

flow conservation that result from microscopic effects, and makes them a function

of space and time. As an example, erratic driver behavior and other microscopic

phenomenon occur at random points in time and space, and have a varying degree of

intensity. The intensity is captured by the parameter σ(x, t).

In conclusion, the stochastic model changes the deterministic partial differential

equation in the LWR model to a stochastic partial differential equation by incorporat-

ing the forcing function. The solution to the stochastic model and the methodology

using this model for traffic prediction are described in detail in the following sections.
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2.3.2 Godunov’s Scheme

The core of a traffic flow model is a stochastic partial differential equation. One

specialty of this stochastic partial differential equation is that, due to the nonlinearity

of the flux function, none of the partial derivatives exists. However one can rewrite it

as an integral equation and show that there is a unique weak solution (Gunnarsson,

2006). Such solution exhibits the phenomenon of shock waves under the appropriate

conditions. This means that the solution is a discontinuous function. At the backup,

the density suddenly increases, forcing vehicles to slow down while approaching it. As

more vehicles join the backup, this jump point moves backwards along the highway.

This is the shock-wave predicted by the model.

It is difficult to obtain an analytic solution for the stochastic partial differential

equation. Therefore finite difference schemes will be used to solve it numerically for

approximate solutions. Since the solution is discontinuous, a straight forward finite

difference scheme will fail to solve the resulting discretization of the stochastic partial

differential equation. Godunov’s scheme is one of the numerical schemes which can

handle this difficulty and give a high-resolution solution to the stochastic partial

differential equation. The following paragraphs explain Godunov’s scheme in some

details.

ρt +Q(ρ)x = g(ρ, x, t) (2.15)

A partial differential equation like equation (2.15) is called conservation law with

source term, where g(ρ, x, t) is the source term and Q(ρ) is the flux function. Typically

the flux function is nonlinear and it will cause the solution of the partial differential

equation to be discontinuous. In this case, naive finite difference schemes cannot be

used to solve this system, because they may work well for smooth parts of the solution,

however they can give disastrous results when discontinuities are present (LeVeque,
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1992). For the case of homogeneous conservation law when g(ρ, x, t) ≡ 0, many

high-resolution numerical algorithms have been developed to overcome this difficulty.

These numerical algorithms are able to give second or higher order spatial accuracy

in smooth parts of the solution and sharp resolution near the discontinuities as well

(LeVeque, 1998). Godunov’s scheme is one of the most efficient of such schemes.

ρt +Q(ρ)x = 0 (2.16)

In Godunov’s scheme for solving homogeneous conservation law in equation (2.16),

the variable ρ is considered as piecewise constant over a mesh of cells at each time step

and the evolution of ρ is determined by the exact solution of the Riemann problem

at the boundaries between adjacent cells. The solution to Riemann problem is the

key component of Godunov’s scheme. So before introducing Godunov’s scheme, we

first discuss the Riemann problem and its solution.

2.3.2.1 Riemann Problem

Riemann problem consists of the homogeneous conservation law and piecewise

constant initial condition with jumps at the origin. When Q is a concave function

(this assumption is satisfied in most traffic flow models), equation (2.17) describes

the Riemann problem.

ρt +Q(ρ)x = 0

ρ(x, 0) =


ρl if x < 0

ρr if x > 0

(2.17)

Due to the nonlinearity of the flux function, the characteristic lines will intersect

at some point if the initial condition is not constant. When two characteristic lines

intersect, there is a jump in the value of ρ, and it is discontinuous at this point.
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Generally, when the flux function is nonlinear, there only exists a weak solution to

the conservation law. Lax proved that there exists a unique weak solution to the

Riemann problem under the so-called “Lax’s entropy condition” (Lax , 1972). There

are two types of solutions to the Riemann problem depending on the values of ρl and

ρr. When ρl and ρr satisfy the following Lax’s entropy condition in equation (2.18),

the solution to the Riemann problem is in the form of a shock wave; Otherwise, the

solution is in the form of a rarefaction wave.

Q′(ρl) >
Q(ρl)−Q(ρr)

ρl − ρr
> Q′(ρr) (2.18)

Since the flux function is assumed to be concave, equation (2.18) is equivalent to

the condition in equation (2.19). This means that when the upstream density is less

than the downstream density, a shock wave occurs.

ρl < ρr (2.19)

(a) Forward shock wave (b) Backward shock wave

Figure 2.2: The shock wave

When ρl < ρr, the solution to the Riemann problem is given in equation (2.20).

From the solution, we can see that the boundary of ρl and ρr, where the shock wave

occurs, is traveling at the speed of s = Q(ρl)−Q(ρr)
ρl−ρr

. Therefore s is also called the speed
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of the shock wave. The shock wave has a realistic meaning: When Q(ρl) < Q(ρr), the

shock wave speed is positive. Under this situation, it is like the light traffic upstream

will push the more congested traffic ahead downstream, and the shock wave travels

forward. Figure 2.2(a) shows the forward shock wave. When Q(ρl) > Q(ρr), the

shock wave speed is negative. In this situation, ρr must be quite large, which means

the downstream traffic is very congested, the congestion will stop the light traffic

upstream, and the shock wave travels backward. Figure 2.2(b) shows the backward

shockwave.

When ρl < ρr :

ρ(x, t) =


ρl if x/t < Q(ρl)−Q(ρr)

ρl−ρr

ρr if x/t > Q(ρl)−Q(ρr)
ρl−ρr

(2.20)

When the entropy condition in equation (2.19) is not satisfied, in other words,

when ρl > ρr, the solution to the Riemann problem is in the form of rarefaction

wave given in equation (2.21). When 0 < Q′(ρl) < Q′(ρr), the solution is a forward

rarefaction wave as shown in Figure 2.3(a). When Q′(ρl) < 0 < Q′(ρr), the solution

is a centered rarefaction wave as shown in Figure 2.3(b). When Q′(ρl) < Q′(ρr) < 0,

the solution is a backward rarefaction wave as shown in Figure 2.3(c).

When ρl > ρr :

ρ(x, t) =


ρl if x/t < Q′(ρl)

Q′−1(x/t) if Q′(ρl) < x/t < Q′(ρr)

ρr if x/t > Q′(ρr)

(2.21)

The value of ρ at the origin is important for Godunov’s scheme. By combining the

shock wave solution (2.20) and rarefaction solution (2.21), the density at the origin
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(a) Forward rarefaction wave (b) Centered rarefaction wave

(c) Backward rarefaction wave

Figure 2.3: The rarefaction wave

is given in equation (2.22)

ρ(0, t) = Ψ(ρl, ρr) =


ρl if ρl < ρr, s > 0 or ρr < ρl < ρc

ρr if ρl < ρr, s < 0 or ρc < ρr < ρl

ρc if ρr < ρc < ρl

(2.22)

where

s =
Q(ρl)−Q(ρr)

ρl − ρr
ρc = Q′−1(0)
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Ψ(ρl, ρr) is the solver of the Riemann problem, it will be used later in Godunov’s

scheme to calculate the flow between two adjacent discretized cells. ρc is the critical

density, which maximizes the flux function. The details will be discussed in the next

section.

2.3.2.2 Godunov’s Scheme for Homogeneous Conservation Law

In the numerical scheme for homogeneous conservation law of equation (2.16), the

space region [0, L], where L is the total length of the highway, is divided into N small

cells with x0 = 0, x1, ..., xN−1, xN = L, where xi (i = 0, ..., N) are the boundaries of

the cells. Let 4xi(i = 1, ..., N) represent the length of cell i with 4xi = xi − xi−1.

The time dimension is equally discretized into M time intervals with t0, t1, ..., tM ,

and the time interval is 4t. Godunov’s scheme is a conservative numerical technique,

suggested by S. K. Godunov (Godunov , 1959) for solving partial differential equations.

In this method, the conservative variables are considered as piecewise constant over

each cell at each time step, and the time evolution is determined by the exact solution

of the Riemann problem at the inter-cell boundaries (Hirsch, 1990). The steps of

Godunov’s scheme for homogeneous conservation law are described in Algorithm 1.

Figure 2.4: Godunov’s scheme for homogeneous conservation law

In order to guarantee that the waves do not interact with each other, 4t should

satisfy Courant-Friedrichs-Lewy(CFL) condition given in equation (2.26), where |amax|

27



Algorithm 1 Godunov’s scheme for homogeneous conservation law.

Step 1: Initialization Let ρji denote the average density over cell i at time tj. When
j = 0, obtain the initial condition for ρ0

i according to equation (2.23):

ρ0
i =

xi∫
xi−1

ρ(x, 0)dx ∀i = 1, 2, ..., N (2.23)

Step 2: Riemann Solver Let ρji−0.5 and ρji+0.5 denote the average value of ρ over
time interval [tj, tj+1] at the left boundary and the right boundary of cell i
respectively. The value of ρji−0.5 and ρji+0.5 is obtained according to the solution
of the Riemann problem in equation (2.22):

ρji−0.5 = Ψ(ρji−1, ρ
j
i )

ρji+0.5 = Ψ(ρji , ρ
j
i+1) (2.24)

Step 3: Update Given the boundary density in equation (2.24), the boundary traf-
fic flow is derived based on speed-density function. According to conservation
law, the density in the next time interval is updated following equation (2.25).
The state variables in the next time interval are also averaged over each cell
and become a piecewise constant approximation. After the update, j = j + 1,
and go to step 2. The scheme is illustrated in Figure 2.4.

ρj+1
i = ρji +

4t
4xi

[Q(ρji−0.5)−Q(ρji+0.5)] (2.25)

is the maximum wave speed.

|amax|4t < 4xi ∀i = 1, 2, · · · , N (2.26)

In conclusion, by following Godunov’s scheme, the evolution of the traffic den-

sity for the LWR model can be obtained. For the nonhomogeneous conservation law

stochastic partial differential equation, Godunov’s scheme must be modified to ac-

commodate the forcing function. The details are introduced in the following section.
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2.3.2.3 Modified Godunov’s Scheme for Nonhomogeneous Conservation

Law

For conservation equation with source such as equation (2.15), the simplest ap-

proach is to use fractional step splitting method, which solves the nonhomogeneous

conservation equation in two steps for every time interval. In the first step, the homo-

geneous conservation law (2.16) is solved by using the Godonuv’s scheme introduced

above. Then in the second step, an ordinary differential equation is solved based on

the solution obtained from the first step:

ρt = g(ρ, x, t)

The simple fractional step splitting method is successful for many problems, how-

ever will fail in some types of problems, particularly when ρt is relative small to qx and

g(ρ, x, t), as there may exist a steady state solution in which the flux and source term

are exactly balanced. However in the two steps of the simple fractional step splitting

method, the solution of homogeneous conservation law obtained in the first step will

deviate far away from the true solution because g(ρ, x, t) is relatively larger than ρt.

The second step then pulls it back around the true solution. It is unlikely that the

second step will exactly cancel the change caused by the first step because different

numerical methods are used in the two steps. Even if the change and counter-change

are canceled exactly, a small perturbation in the source term may result in a big noise

in the state variable ρ.

LeVeque (1998) developed an algorithm in which the source term could be in-

corporated into the Godunov’s method without fractional steps. The idea of the

algorithm is to introduce a Riemann problem in the center of each grid cell whose

flux difference can exactly cancel the source term. In this way, the source term will

not cause any wave within the cell. The steps of the modified Godunov’s method for
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(a) Godunov’s scheme (b) Modified Godunov’s scheme

Figure 2.5: Godunov decomposition

nonhomogeneous conservation law are described in Algorithm 2.

Compared with Algorithm 1, Algorithm 2 adds a Godunov decomposition step

as illustrated in Figure 2.5. Equation (2.28) in the step of Godunov decomposition

means: 1. the average density in this cell is unchanged after the decomposition. 2.

The discontinuity of the traffic flow between the two decomposed sub segments can

exactly cancel the source term, so there is no shock wave caused by the source term.

Modified Godunov’s scheme gives stable and accurate solution to the nonhomogeneous

conservation law.

2.3.3 Simulation-Based Traffic Prediction

Since equation (2.11) usually does not have an analytic solution, simulation is a

commonly used approach to solve complicated stochastic systems. Section 2.3.2.3

gives the numerical scheme to solve the nonhoogeneous conservation law. In order to

predict the traffic state in the future, given the initial condition ρ(x, 0) at t = 0, we

project the density evolution according to the numerical scheme in Algorithm 2. Since

the model we proposed is stochastic, Monte Carlo simulation is applied to generate

a number of paths for the density projection. The average density over all simulated

paths is considered as the prediction of the future density. The simulation scheme for

the traffic prediction is described in Algorithm 3:

In conclusion, given the initial density condition on the road, the simulation is
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Algorithm 2 Godunov’s scheme for nonhomogeneous conservation law.

Step 1: Initialization Let ρji denote the average density over cell i at time tj. When
j = 0, obtain the initial condition for ρ0

i according to equation (2.27):

ρ0
i =

xi∫
xi−1

ρ(x, 0)dx ∀i = 1, 2, ..., N (2.27)

Step 2: Godunov Decomposition In order to exactly cancel the source term
within each cell, each cell is decomposed into two parts. The difference of the
traffic flow between these two parts is compensated by the source term so that
there are no shock waves within the cell. Let ρj,−i and ρj,+i denote the average
value of ρ in the upstream part and the downstream part of cell i respectively.
ρj,−i and ρj,+i should satisfy the following conditions:

ρj,−i + ρj,+i = 2ρji
Q(ρj,+i )−Q(ρj,−i ) = g(ρji , xi, tj)4xi (2.28)

Step3: Riemann Solver Let ρji−0.5 and ρji+0.5 denote the average value of ρ over
time interval [tj, tj+1] at the left boundary and the right boundary of cell i
respectively. The value of ρji−0.5 and ρji+0.5 is obtained according to the solution
of the Riemann problem in equation (2.22):

ρji−0.5 = Ψ(ρj,+i−1, ρ
j,−
i )

ρji+0.5 = Ψ(ρj,+i , ρj,−i+1) (2.29)

Step 4: Update Given the boundary density in equation (2.29), the boundary traf-
fic flow is derived based on speed-density function. According to conservation
law, the density in the next time interval is updated following equation (2.30).
The state variables in the next time interval are also averaged over each cell
and become a piecewise constant approximation. After the update, j = j + 1,
and go to step 2.

ρj+1
i = ρji +

4t
4xi

[Q(ρji−0.5)−Q(ρji+0.5) + g(ρji , xi, tj)4xi] (2.30)

applied to generate a number of projections for traffic state evolution. Based on

these projections, the distribution of the traffic state at any location in the future

is obtained. Different from the deterministic traffic model, which gives a specific

value as a future prediction for the traffic state, this stochastic model gives a dis-
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Algorithm 3 Simulation-based traffic prediction.

Step 1: Scenario Generation Generate K different paths of Brownian sheets
W k(x, t), k = 1, 2, ..., K where W k(x, t) represent the simulated Brownian sheet
in scenario k.

Step 2: Numerical Simulation In scenario k, given the Brownian sheet W k(x, t)
and initial condition ρ(x, 0), solve the stochastic partial differential equation us-
ing modified Godunov’s scheme for nonhomogeneous conservation law described
in Algorithm 2. Obtain the evolution of the density under this scenario: ρk(x, t).

Step 3 Report Prediction Take the average of the ρk(x, t) over K scenarios as the
prediction made by the stochastic traffic flow model.

tribution of the future traffic state as the output. This distribution can be used to

estimate the average as the prediction and the standard deviation as the reliability

of the prediction. This information is very important and useful for many intelligent

transportation applications.

2.4 Case Study

In this section, an empirical case study using real highway data is investigated

and it will provide insights on the prediction performance of the stochastic traffic flow

model. The data used in this case study is obtained from the Virginia Department of

Transportation and it records the traffic flow information on one segment of highway

I95 Northbound heading to Washington DC. The raw data consists of one-minute

aggregated traffic flow and average speed information at 23 sensor stations along one

segment of the highway on everyday from April 1st 2009 to June 1st 2009. The

total length of the highway segment is 15.67 miles and the average distance between

adjacent sensor stations is 0.78 miles. The highway segment is marked as red in the

left map of Figure 2.6.

Although there are 23 sensor stations in the raw data, after preprocessing, we

found 8 of them do not have valid data because of malfunction or other unknown
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Figure 2.6: The map of the highway

reasons. Therefore we exclude these 8 sensor stations from this case study and only

use the data from the rest 15 sensor stations.

2.4.1 Speed-Density Function Calibration

As explained in Section 2.2.3, the speed-density function is a significant component

in macroscopic traffic flow modeling. The function also serves as a bridge between the

model and other applications: Sometimes the traffic density is the target of model

prediction. However many ITS applications, such as real-time travel time estimation,

need the prediction of future speed. In this case, the speed-density function can

be used to transform the predicted density into speed for the ITS application. The

speed-density function is important for the performance of the traffic flow model and

the calibration of this function is usually the first step in macroscopic traffic modeling.

RMSE(x̂) =

√∑n
i=1(x̂i − xi)2

n
(2.31)

As described in Table 2.1, there are four potential speed-density functions. We

will test these on the field data and the one that fits the data best will be selected

as the prediction model. Since the parameters of sensor stations are different, the
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speed-density function is calibrated at each sensor station. The general steps of this

calibration are as follow: The data of a sensor station is divided into training and

testing sets. The data between April 1st and May 15th is training data set and the

data between May 16th and June 1st is the testing data set. Then, for each of the four

functions, the parameters are calibrated using the training data set, and the Root

Mean Square Error (RMSE) of speed for each calibrated function on the training

data set is evaluated as the training error. The RMSE is defined in equation (2.31),

where x̂ is estimated value of the variable from the model and x is observed value; In

the last, the RMSE for each calibrated function is evaluated on the testing data set

as the testing error. By comparing the four speed-density functions in terms of both

training error and testing error, the function which fits the data best will be selected.

ln(v) = min{ln(vf ), ln(α) +m ln(ρ)} (2.32)

For the speed-density function calibration, Greenshields, Greenberg and Under-

wood functions can be calibrated by using regular linear regression after variable

transformation. For the last function, Piecewise function, the natural logarithm trans-

formation is taken on both sides of the equation, and then ln(v) is a piecewise linear

function of ln(ρ) as shown in equation 2.32. The piecewise linear regression is applied

to calibrate the parameters using ordinary least square.

Table 2.2 summarizes the training and testing errors of all four functions on every

sensor station. It shows that the Piecewise function has the smallest training and

testing errors. Therefore Piecewise function is chosen as the speed-density function

in this case study and will be used in the following sections. Figure 2.7 shows the

regression results of Piecewise function at all 15 stations. The dots are observed data

points and the solid line is fitted Piecewise function. From the figures, we can see

that Piecewise function fits the data very well.
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Table 2.2: Fitting errors of speed-density functions

RMSE Greenshields Greenberg Underwood Piecewise
Stations Training Testing Training Testing Training Testing Training Testing

1 8.9 9.06 13.88 14.09 8.8 9.04 4.48 4.24
2 7.46 6.99 10.6 10.94 6.52 6.03 4.35 3.04
3 12.66 12.95 12.03 12.31 11 11.25 5.85 5.94
4 10.98 10.39 11.68 11.44 9.47 9.07 3.52 2.74
5 14.84 14.29 12.69 12.43 12.9 12.56 5.07 5.45
6 19.37 17.46 14.31 12.92 17.11 15.53 8.22 8.42
7 14.67 12.9 12.51 11.05 13.24 11.81 7.19 8.77
8 11.51 9.9 11 9.85 11.33 10.1 6.75 6.9
9 10.84 9.44 11.1 9.79 8.91 7.67 6.64 7.31
10 10.8 9.68 10.52 9.5 10.05 9.01 5.06 5.15
11 11.08 9.94 9.79 9.31 9.33 8.72 6.84 5.5
12 5.78 5.03 9.17 8.68 6.94 6.36 4.11 2.86
13 5.82 5.16 10.64 10.28 6.86 6.38 3.66 2.75
14 5.16 4.29 11.88 11.39 7.41 6.67 4.6 4.93
15 4.49 3.88 10.57 10.33 6.04 5.6 4.47 4.47

Average 10.29 9.42 11.49 10.95 9.73 9.05 5.39 5.23

Figure 2.8 presents the calibrated parameters of the Piecewise function in all 15

stations. ρc is the critical density starting from which the speed is decreasing from

the free flow speed vf . Based on the Piecewise function, ρc = (
vf
α

)1/m. A reason why

the critical densities differ for stations is that the number of lanes change along the

highway, and the density is aggregated over all the lanes.

2.4.2 Forcing Function Calibration

This section will describe the procedure to calibrate the parameters of the forcing

function g in the stochastic traffic flow model equation (2.11). The objective of

forcing function calibration is to determine the value of a(x, t), b(x, t) and σ(x, t) at

any location x and any time t. Because the parameters are different for the sensor

stations, the forcing function will be calibrated for each sensor station separately (as

was done for the speed-density function). We aggregate the parameters in 5-minute
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Figure 2.7: Regression results of the Piecewise speed-density function

time interval and assume that the parameters of every sensor station are constant in

the same time period for different days. For example, the parameters at sensor station

3 are the same for the time period between 7:15am and 7:19am on any day. Therefore
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Figure 2.8: Calibrated parameters of the Piecewise speed-density function

in order to calibrate the parameters during this time period, we can aggregate all the
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data between 7:15am and 7:19am.

g(xi, tj) =
ρ(xi, tj+1)− ρ(xi, tj)

tj+1 − tj
+
q(xi+1, tj)− q(xi−1, tj)

xi+1 − xi−1

(2.33)

In order to calibrate the parameters for station i at time tj, we first apply finite

difference method to calculate the value of the source term at xi and tj, g(xi, tj), ac-

cording to equation (2.33). In equation (2.33), ρt is calculated using forward difference

and qx is calculated using central difference.

g(xi, tj) = a(xi, tj) + b(xi, tj)ρ(xi, tj) + σ(xi, tj)
∆W (xi+1 − xi−1, tj+1 − tj)

(xi+1 − xi−1)(tj+1 − tj)
V ar[∆W (xi+1 − xi−1, tj+1 − tj)] = (xi+1 − xi−1)(tj+1 − tj) (2.34)

Since the source term g(xi, tj) is a linear function of the density ρ(xi, tj), as shown

in equation (2.34), linear regression between g(xi, tj) and ρ(xi, tj) can be applied

to estimate the parameters a(xi, tj) and b(xi, tj). σ(xi, tj) is calculated by equation

(2.35), where ε is the residual of the linear regression. The justification for equation

(2.35) is that the residual ε is independent and identically normally distributed with

distribution N(0,
σ(xi,tj)

(xi+1−xi−1)(tj+1−tj)
) according to equation (2.34).

σ(xi, tj) =
√
E[ε2] · (xi+1 − xi−1)(tj+1 − tj) (2.35)

Figure 2.9 shows an example of the linear regression between g and ρ at sensor

station 3 using aggregated data between 7:15am and 7:19am on different days. The

R2 of linear regression is 0.85, which means the linear fit is nice. The estimated

parameters are: â = 1621.3, b̂ = −21.9, σ̂ = 10.9 at sensor location 3 from 7:15am

to 7:19am. The p-value of the linear model is also checked and the 95% confidence

interval is [1513.1, 1729.5] for â and [−23.5,−20.4] for b̂. 0 is not included in the

confidence interval for neither â or b̂, which means ρ is significant for g in the linear
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Figure 2.9: Regression results of the forcing function at station 3 between 7:15am and
7:19am

regression. In addition, nether the Q-Q plot nor the histogram of the residual can

reject the hypothesis that the residual follows a normal distribution. Therefore Fig-

ure 2.9 provides support to the underlying assumption of the linear regression. By

following the above procedure, the parameters can be estimated at any location and

any time.

Figure 2.10 plots the evolution of estimated parameters over time on sensor station

2 as an example. These estimated parameters on all 15 stations will be plugged into

the model for evaluating the prediction performance in the next section.
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Figure 2.10: Evolution of the forcing function parameters over the day at station 2

2.4.3 Comparison of the Stochastic Model with the Deterministic Model

After the calibration of speed-density function and forcing function, the model is

validated by evaluating its prediction performance. This step is necessary to assure
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that the model has a robust predictive capability. In this section, we will investi-

gate the improvement of the prediction accuracy of the stochastic model over the

deterministic LWR model.

Section 2.3.3 gives a detailed description of the procedure for prediction using

the stochastic traffic flow model. We use the calibrated parameters and initial traffic

state to obtain the prediction. In the deterministic LWR model, the source term is

equal to 0. We apply the same procedure in Section 2.3.3 by setting g ≡ 0. Figure

2.11 illustrates and compares the RMSE of stochastic and deterministic models over

all 15 sensor stations. It clearly shows the advantage of the stochastic model over

the deterministic model. From the figure, we can see that, on average, the stochastic

model decreases the RMSE about 44% compared with the deterministic model.
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Figure 2.11: Comparison of RMSE between the deterministic model and the stochas-
tic model at all stations

In conclusion, here we present the result of speed-density function and forcing

function calibration using real traffic data. Then, the comparison of the stochastic

model with deterministic model shows that the stochastic model can provide a more
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accurate prediction. This is is the reason we prefer a stochastic model for the traffic

flow prediction.

2.5 Conclusion

In this chapter, we propose a stochastic traffic flow model, which is an extension

of the classical LWR model. The stochastic model fixes some deficiencies of the de-

terministic LWR model and introduces the effects of real stochastic factors impacting

the traffic flow evolution. The solution of the stochastic partial differential equation

in the model is non trivial, and simple numerical algorithms will fail to solve it. A

numerical scheme is introduced to solve this stochastic model which is based on the

classical Godunov’s scheme. This numerical scheme enables the prediction of the

density. We conclude with a case study using practical traffic data and show how this

model could be applied. The case study also shows that the stochastic traffic model

increases the prediction accuracy of the future traffic density by an average of 44%

when compared with the deterministic LWR model. The stochastic model provides

a foundation for many other ITS applications.
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CHAPTER III

Stochastic Filtering For Real Time Traffic

Prediction

3.1 Introduction

Real time traffic state estimation is the problem of estimating the current value of

the traffic state variables (such as traffic density, traffic model parameters etc.) over

the highway, in real time and as precisely as possible given limited measurements

of traffic conditions at specified locations along the highway. These measurements

are made by detection and surveillance devices installed on the highway collecting

data needed to perform traffic management functions. There are mainly two kinds of

such measurements. One measurement is called Eulerian measurement. This refers

to sensors installed at fixed locations along the highway to collect the measurements.

These sensors include inductive loop detectors, RFID transponders, magnetometers,

video image processors, microwave radars and acoustic sensors, and they usually

provide measurements of volume, speed and occupancy at their locations. The other

type of measurement is called Lagrangian measurement. This measurement refers to

data gathered from sensors which move along a trajectory in the field being sensed

(Work et al., 2009). Lagrangian sensing utilizes mobile communication devices, such

as GPS, smart phones etc. to collect data. Such mobile devices can provide very
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accurate information of speed, acceleration, position etc. about individual vehicles

along the highway.

Like traffic state prediction discussed in Chapter II, traffic state estimation is

also a very important component in many applications of intelligent transportation

system. For example, in the ITS application of trip advisory, the more accurate the

estimation of current traffic state, the more reliable the travel information provided

to the drivers. On-line traffic state estimation can also be used for quick anomaly

detection. If one lane is forced to close because of an accident, the change in the

parameter ‘number of lanes’ can be quickly detected by the traffic state estimation

algorithm and reported to the highway administer. From the point of view of impact,

estimation is more fundamental than prediction since the accuracy of estimation not

only directly affects the performance of ITS applications but also significantly affects

the prediction accuracy (in most prediction models). In most traffic flow models,

prediction is based on the projection of traffic state evolution starting from an initial

state condition, which is usually obtained from a traffic state estimator. Therefore

the estimation accuracy will significantly affect the prediction performance.

Although surveillance devices are measuring traffic along the highway, there are

still many challenges in estimating the ‘state’ of the traffic. First due to the cost of

surveillance equipment and the resulting data collection, it is not possible to have

all the locations on the highway covered by sensors. There are segments where the

sensors are sparsely installed. At these segments, the traffic state cannot be accurately

estimated by the measurement information alone. In addition, the inductive loop

detectors are not very reliable and the probability of malfunction is high. When the

sensors are not working, even at the location covered by the sensors, traffic state

cannot be estimated without algorithms. Moreover there is unavoidable noise in the

measurement obtained by the sensors. Also, some state variables, like traffic density,

are difficult to measure and have to be estimated from the measurement of traffic flow
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and speed. If we simply use the fundamental relationship to estimate traffic density

from volume and speed, the measurement error in both volume and speed will amplify

the error in estimated density. Thus algorithms must be developed and applied to

filter the measurement noise and thus to better estimate the traffic state. Lastly, for

some traffic flow models, the parameters in the model change over time and cannot

be measured by any kind of sensors, and must be estimated by specific methods and

algorithms.

In this chapter, we focus on developing a traffic state estimation algorithm for

the specific stochastic traffic flow model developed in Chapter II. We show that the

discretized version of the stochastic traffic flow model can be reformulated as a state

space model and various nonlinear Kalman filter algorithms can be applied. Since

this traffic flow model is different from all the other models in the literature, we will

evaluate the performance of various nonlinear Kalman filter algorithms. In addition,

by comparing the prediction performance of the traffic flow model with and without

the on-line estimation algorithm, we demonstrate that on-line estimation is able to

improve the prediction accuracy of the future traffic state.

The outline of this chapter is described as follows: In Section 3.2, we present and

formulate the research problem explicitly. In Section 3.3, various nonlinear Kalman

filter algorithms are presented and discussed for general state space models. In Section

3.4, the specific state space model for the traffic state and parameters are defined to

fit the Godunov scheme described in chapter II. The state space model is the basis for

various Kalman filter algorithms. In Section 3.5, two schemes for estimating the traffic

state and parameters, including joint estimation and dual estimation, are explained

in detail. Section 3.6 validates the performance of the on-line estimation algorithms

by using synthetic data. Section 3.7 concludes this chapter.
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3.2 Problem Formulation

The objective of this chapter is to find an algorithm to recursively update the

current traffic state and model parameters under the specific traffic flow model de-

veloped in Chapter II by using low frequency Eulerian measurements. Suppose the

highway starts at 0 and ends at L. It is divided into N small cells with x0 = 0, x1,

..., xN−1, xN = L, where xi (i = 0, ..., N) is the boundary of the cell i. There are S

fixed inductive loop detectors spread on the highway, where sensor s is located within

cell ns (ns ∈ [1, N ]) to measure the speed and volume at this cell. These detectors

can measure aggregated traffic volume and average speed at discrete time intervals,

for example the measurement is available for every one minute. The speed and vol-

ume measured at these predefined locations consist of the Eulerian measurements for

traffic state estimation. However the time interval of receiving measurement data is

normally larger than the maximum possible time discretization interval required by

equation (2.26) in Godunov’s scheme. In other words, the measurement information

comes in with relatively low frequency compared with what the state update equation

requires in the numerical scheme.

The estimation targets include the traffic density in N cells and the parameters in

the traffic flow model including ai and bi (i = 1, 2, ..., N). As discussed in chapter II,

for the stochastic traffic flow model developed in that chapter, these parameters reflect

the traffic volume entering and leaving the highway. The travel pattern is dynamic.

In other words, at the locations close to residential area, in the morning there is more

traffic volume entering than leaving the highway, while in the evening there is more

traffic volume leaving than entering the highway. Therefore the parameters ai and

bi are changing dynamically in time and must be estimated on-line. There are other

parameters in the speed-density function. These parameters do not change much

unless the structure of that highway section is modified, such as changing the speed

limit or closing some lanes. However these events do not happen very frequently, so
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we can assume that the parameters in the speed-density function are constant and

they need not be estimated on-line. The parameters in the speed-density function

can be estimated off-line by using the method described in Section 2.4.1.

In chapter II, we discussed an off-line calibration procedure to estimate the value

of the parameters ai and bi (i = 1, 2, ..., N) in each time period of the day. However

there are several disadvantages of this procedure which makes it unsuitable for on-line

calibration: 1. The off-line procedure incurs a huge computation cost which would

take long time to tune the parameters. That is not suitable for on-line calibration due

to the speed requirement of the on-line calibration. 2. The off-line procedure is not

adaptive. It assumes that the parameters during one time period are constant over

different days. This assumption is reasonable when there are no dramatic changes

in the travel pattern. However it may fail if the situation today differs a lot from

that in previous days. For example, if there is a big snow today, we cannot use the

parameters estimated from previous days, when there is no snow, for the prediction of

today’s traffic state evolution. We need an on-line algorithm to capture the change of

parameters quickly and adaptively. 3. The off-line procedure requires the storage of

all the historical data for calibration purpose. However normally on-line calibration

only requires the storage of current estimator, and keeps updating it while receiving

new measurement information. This could avoid a lot of issues, such as reading/saving

data into the database and so on.

In conclusion, the research objective of this chapter is to estimate the traffic

density and the model parameters all over the highway on-line based on low frequency

noisy measurement data from the fixed loop detectors. The on-line estimation is able

to capture the changes of the model parameters more quickly and adaptively. The

following sections will present the methods in detail.
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3.3 State Space Models and Filtering

3.3.1 State Space Representation

The general representation of a state space model is described in equation (3.1) and

(3.2). Equation (3.1) is called the state transition equation of the state space model,

where xk is the state variable of the system at kth time instant and ωk is the transition

disturbance making the state evolution stochastic. From the state transition equation,

we can see that the state variable in the current period is purely dependent on the

previous state and the disturbance. Equation (3.2) is called observation equation,

where zk is observation variable and εk is the measurement noise. In state estimation,

the transition equation and observation are both given. The observation variable zk

is measured at every time instant, the objective is to obtain the best estimation on

xk based on historical observations of zk.

xk = fk(xk−1, ωk) (3.1)

zk = hk(xk, εk) (3.2)

3.3.2 Kalman Filter

When fk, hk are both linear functions, for example as shown in equation (3.3) and

(3.4), and ωk, εk are independent and identically distributed with normal distribution:

ωk ∼ N(0, Qk) and εk ∼ N(0, Rk), the state space model is called linear and it is

known that Kalman filter (Kalman et al., 1960) will give the best estimation on xk

under this situation.

xk = Fkxk−1 + ωk (3.3)

zk = Hkxk + εk (3.4)
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Let x̂k|k denote the posteriori estimation of state xk at time k given observations

up to and including at time k, and Pk|k denote the posteriori error covariance matrix

of the state estimation at time k; Let x̂k|k−1 denote the priori estimation of state xk

at time k− 1 given observations up to and including at time k− 1, and Pk|k−1 denote

the priori error covariance matrix of the state estimation at time k−1. Kalman filter

is described in Algorithm 4. For detailed derivation, please refer to Kalman et al.

(1960).

Algorithm 4 Kalman filter

Step 1: Initialization Initialize with equation (3.5) and then set k = 1.

x̂0|0 = E[x0]

P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)T ] (3.5)

Step 2: Predict Obtain the priori distribution of the state in the next period before
receiving the observation information according to equation (3.6).

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (3.6)

Step 3: Update Update the posteriori distribution of the state after receiving the
observation information according to equation (3.7)

yk = zk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k (3.7)

x̂k|k = x̂k|k−1 +Kkyk

Pk|k = (I −KkHk)Pk|k−1

Step 4: Recursion k = k + 1, go to Step 2.

Kalman filter gives the optimal estimation for linear state space model, however for

the stochastic traffic flow model presented in Chapter II, the complexity of the model

makes both Fk and Hk nonlinear and even implicit because of modified Godunov’s

scheme. Therefore nonlinear Kalman filter has to be applied. In the following sections,

49



we want to discuss several nonlinear filtering algorithms which will be subsequently

used for on-line estimation.

3.3.3 Extended Kalman Filter

Extended Kalman filter (EKF) is a popular nonlinear filtering algorithm for non-

linear models like in equation (3.1) and (3.2) when both fk and hk are nonlinear

functions. It has been widely used in practice because of its simplicity. The basic

idea of EKF is linearizing the transition equation and measurement equation around

the current estimated state, and then apply Kalman filter to estimate the approxi-

mated linear model. Compared with the procedure of Kalman filter in Algorithm 4,

EKF is very similar except that there are slight differences in the steps: predict and

update.

In EKF, suppose ωk ∼ N(0, Qk) and εk ∼ N(0, Rk), the predict equation is given

in equation (3.8), where Fk is the partial derivative of the transition equation with

respect to state variable around x = x̂k−1|k−1 and ω = 0, and Ak is the partial

derivative of the transition equation with respect to transition disturbance around

the current state estimation.

Fk =
∂fk
∂x

(x̂k−1|k−1, 0)

Ak =
∂fk
∂ω

(x̂k−1|k−1, 0)

x̂k|k−1 = fk(x̂k−1|k−1, 0) (3.8)

Pk|k−1 = FkPk−1|k−1F
T
k + AkQkA

T
k

For the update step, the measurement equation is linearized around x = x̂k|k−1

and ε = 0. The update equation is given in equation (3.9), where Hk is the partial

derivative of the measurement equation with respect to state variable around x =

x̂k|k−1 and ε = 0, and Bk is the partial derivative of the transition equation with
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respect to measurement noise around the current state estimation.

Hk =
∂hk
∂x

(x̂k|k−1, 0)

Bk =
∂hk
∂ε

(x̂k|k−1, 0)

yk = zk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +BkRkB

T
k

Kk = Pk|k−1H
T
k S
−1
k (3.9)

x̂k|k = x̂k|k−1 +Kkyk

Pk|k = (I −KkHk)Pk|k−1

Extended Kalman filter is obtained by replacing the predict equation (3.6) in

Algorithm 4 with equation (3.8), and the update equation (3.7) with equation (3.9).

For detailed derivation of extended Kalman filter, please refer to Ribeiro (2004).

3.3.4 Unscented Kalman Filter

Unscented Kalman filter (UKF) is a nonlinear Kalman filter which has better

performance than EKF when the transition equation is highly nonlinear. In EKF, the

priori distribution of the state variable is approximated by a Gaussian distribution.

This results in a poor approximation when the transition equation is highly non-

linear. Moreover UKF does not calculate the derivative, making it more efficient

than EKF in the case where the state variable is high dimensional. With those two

advantages, UKF might be a better choice for the on-line traffic state estimation. We

will discuss the selection of filters later.

The fundamental idea of UKF is unscented transform. Unscented transform is a

mathematical sampling technique used to estimate the mean and covariance matrix

of the output variable from a non-linear transformation of the input variable, given

the mean and covariance matrix of the input variable. UKF first generates a set
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of sample points (called sigma points), where each sample point is associated with

a corresponding weight, from the mean and covariance matrix of the input random

variable by using unscented transform. Each sigma point is considered as a real-

ized input of the non-linear function. Then the set of sigma points is propagated

through the non-linear function to generate a set of sample outputs, so that the mean

and covariance matrix of the output variable could be estimated from these sample

outputs.

The procedure to generate a set of sigma points from mean µ and covariance

matrix P is described as below: A Gaussian distribution with mean µ and covariance

matrix P is represented by a set of 2L+ 1 sigma points χi (i = 0, 1, ..., 2L), where L

is equal to the dimension of the state variable.
√

(L+ λ)P represents the Cholesky

factor of (L + λ)P . In other words, the Cholesky factor B of matrix (L + λ)P

should satisfy: (L + λ)P = BBT . And (
√

(L+ λ)P )i represents the ith column of

its Cholesky factor B. Then the set of 2L + 1 sigma points are generated according

to equation (3.10), where χi represents the ith sigma point.

χ0 = µ

χi = µ+ (
√

(L+ λ)P )i i = 1, 2, ..., L (3.10)

χi = µ− (
√

(L+ λ)P )i−L i = L+ 1, L+ 2, ..., 2L

λ is a parameter determined by α and κ as shown in equation (3.11), where α and

κ control the spread of sigma points. Normally α = 10−3 and κ = 1.

λ = α2(L+ κ)− L (3.11)

The weights associated with each sigma point are shown in equation (3.12), where

W i
s is the weight associated with sigma point i for mean estimation and W i

c is the
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weight associated with sigma point i for covariance estimation.

W 0
s =

λ

L+ λ

W 0
c =

λ

L+ λ
+ (1− α2 + β) (3.12)

W i
s = W i

c =
1

2(L+ λ)
i = 1, 2, ..., 2L

The procedure of UKF is described in Algorithm 5. For detailed derivation of

UKF, please refer to Julier and Uhlmann (2004).

3.3.5 Particle Filter

Particle filter (PF), which is also known as sequential Monte Carlo method, is

another filter suitable for highly non-linear and complicated transition and measure-

ment equations (Doucet et al., 2001). Similar to UKF, PF approximates the posterior

probability distribution of the state variable by a set of particles (sample points): Ini-

tially in the first step, a set of particles with equal weights are drawn from the prior

probability distribution of the state. Then the particles evolve via Monte Carlo simu-

lation according to the transition equation. Each particle represents one trajectory of

the state variable and the weight represents the probability of the occurrence of this

trajectory. At each time step when new information arrives, PF updates the weights

of all the particles. When the number of particles is large enough, the updated dis-

crete distribution of the particles approximates the posterior probability distribution

of the state. A resampling procedure is used at some points of time in order to keep

variety among the particles. The procedure of PF is described in Algorithm 6. For

detailed derivation of particle filter, please refer to Arulampalam et al. (2002).
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Algorithm 5 Unscented Kalman filter

Step 1: Initialization Initialize with equation (3.13) and set k = 1.

x̂0|0 = E[x0]; P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)T ] (3.13)

Step 2: Predict Define augmented variable xp = [xT wT ]T as the input of transition
equation F . The mean and covariance are given in equation (3.14).

x̂p = [x̂Tk−1|k−1 E[wk]
T ]T ; P p =

[
Pk−1|k−1 0

0 Qk

]
(3.14)

Generate a set of 2L + 1 sigma points χip from x̂p and P p by using unscented
transform. Derive the priori mean and covariance from sample output X i

k|k−1.

X i
k|k−1 = fk(χ

i,x
p , χ

i,w
p ) i = 0, 1, ..., 2L (3.15)

x̂k|k−1 =
2L∑
i=0

W i
sX i

k|k−1; Pk|k−1 =
2L∑
i=0

W i
c [X i

k|k−1 − x̂k|k−1][X i
k|k−1 − x̂k|k−1]T

Step 3: Update Define augmented variable xu = [xT vT ]T as the input of measure-
ment equation hk. The mean and covariance are given in equation (3.16).

x̂u = [x̂Tk|k−1 E[vk]
T ]T ; P u =

[
Pk|k−1 0

0 Rk

]
(3.16)

Generate 2L̃+1 sigma points χiu from x̂u and P u by using unscented transform.
Derive the posteriori mean and covariance from sample output Y ik|k−1. And
update the posteriori mean and covariance matrix.

Y ik|k−1 = hk(χ
i,x
u , χ

i,v
u ) i = 0, 1, ..., 2L̃ (3.17)

ŷk|k−1 =
2L̃∑
i=0

W i
sY ik|k−1; Pykyk =

2L̃∑
i=0

W i
c [Y ik|k−1 − ŷk|k−1][Y ik|k−1 − ŷk|k−1]T

Pxkyk =
2L̃∑
i=0

W i
c [χ

i,x
u − x̂k|k−1][Y ik|k−1 − ŷk|k−1]T ; Kk = PxkykP

−1
ykyk

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (3.18)

Pk|k = Pk|k−1 −KkPykykK
T
k

Step 4: Recursion k = k + 1, go to Step 2.
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Algorithm 6 Particle filter

Step 1: Initialization Draw a set of N particles xi0 (i = 1, · · · , N) from the prior

initial distribution p(x0). The weights of all particle are equal as shown in

equation (3.19). Then set k = 1.

wi0 =
1

N
(3.19)

Step 2: Predict Simulate the evolution of every particle and obtain the set of par-

ticles in the next time period according to equation (3.20).

xik ∼ p(xk|xik−1) i = 1, 2, · · · , N (3.20)

Step 3: Update Update the weights of all the particles according to equation (3.21),

and then normalize the weights according to equation (3.22). The optimal

estimator is given as: x̂k =
∑N

i=1w
i
kx

i
k.

w̃ik = wik−1p(zk|xik) (3.21)

wik =
w̃ik∑N
i=1 w̃

i
k

(3.22)

Step 4: Resampling Resampling is used when Neff < Nthr to avoid the problem

of degeneracy: Resample N particles xik (i = 1, 2, ..., N) from current particle

set with probabilities proportional to their weights. Replace the particle set

with the new one with equal weights: w1
k = w2

k = ... = wNk = 1/N .

Neff =
1∑N

i=1[(wik)]
2

(3.23)

Step 5: Recursion k = k + 1, go to Step 2.
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3.4 State Space Formalization of the Traffic Flow Model

3.4.1 State Transition Equation

As discussed in Chapter II, for the continuous-time stochastic traffic flow model

given in equation (3.24), Algorithm 2 shown in Section 2.3.2.3 describes the numer-

ical procedure of simulating the evolution of the traffic density. In this numerical

procedure, the highway is divided into N cells and the time is also discretized by 4t.

At any time, the traffic density on the highway could be represented by the density

vector of the N cells. The numerical procedure of Algorithm 2 updates the traffic

density at every time instant of 4t. As required by CFL condition shown in equation

(2.26), 4t must be small enough to avoid shock wave within the cell. Suppose the

measurement information is received at every time instant of T . Normally T is greater

than or equal to one minute, which is normally larger than 4t. However if we want

to formulate a state space model of the traffic flow model for filtering purpose, the

time interval of the state space model should be equal to T not4t, and the numerical

procedure in Algorithm 2 cannot be directly used as the state transition equation of

the state space model.

ρt + qx = g(ρ, x, t) (3.24)

g(ρ, x, t) · dx · dt = (a(x, t) + b(x, t) · ρ) · dx · dt+ σ(x, t) · dW (x, t)

Algorithm 2 can be used to derive the state transition equation. Since each appli-

cation of Algorithm 2 gives the traffic density 4t units of time later, running it T/4t

times will give the traffic density T units of time later, which is the state transition

equation.

Since the time interval of the state space model is T , let ρik denote the traffic

density of cell i at time kT , and ρk denote the density vector at time kT as shown in
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equation (3.25).

ρk = [ρ1
k, ρ

2
k, · · · , ρNk ]T (3.25)

Like the traffic density vector, the parameter vector can also be discretized. Let

πk denote the parameter vector of the system between time (k − 1)T and kT . As

discussed in Section 3.2, the parameter vector πk includes aik and bik (i = 1, 2, · · · , N)

as shown in equation (3.26), where aik and bk represent the inflow/outflow parameters

of cell i between (k − 1)T and kT .

πk = [ a1
k, b

1
k, · · · , aNk , bNk ]T (3.26)

Given ρk−1 and πk, by running the numerical procedure in Algorithm 2, T/4t

times, we can obtain ρk as presented in equation (3.27), where ωk is the disturbance

noise. ωk consists of N T
4t i.i.d standard normal random variables because each step

has N i.i.d disturbance random variables and there are T
4t steps in total. F is the

state transition equation of ρk. It has no closed form because of the complexity of the

numerical procedure. But this transition equation exists and Algorithm 2 explains

how it works.

ρk = F (ρk−1, πk, ωk) (3.27)

As discussed in Section 3.2, the parameters also appear to be unknown and

stochastic. The estimation of the parameters will be as important as estimating the

state density, because the evolution of the traffic density depends on the parameters.

If the estimated parameters deviate from their true values, the priori distributions

of both the traffic density and observed variable will have large errors. Then the

Bayesian based filtering algorithms will not work correctly, since an accurate priori
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distribution is required to make accurate estimations.

In order to estimate the parameters as well, an assumption about the dynamic

evolution of the parameters has to be made. Normally, the parameters πk are as-

sumed to follow a random walk as shown in equation (3.28), where ξk follows normal

distribution.

πk = πk−1 + ξk (3.28)

In conclusion, equation (3.27) and (3.28) describe the transition equation of traffic

density and parameters respectively. They constitute the state transition equation of

the state space model.

3.4.2 Measurement Equation

Measurements can be obtained from many different sources. For example, the loop

detectors can measure the volume and speed of the cells. Let vik and qik denote the

observed speed and volume in cell i at time kT respectively. Since the measurement

is noisy, the measured speed and volume will deviate from their true values. Let

εv,ik denote the noise for the measurement of vki and εq,ik denote the noise for the

measurement of qki . So the measurement equation for fixed loop detectors is given in

equation (3.29), where V is the speed-density function and Q is the volume-density

function.

vik = V (ρik) + εv,ik

qik = Q(ρik) + εq,ik (3.29)

The loop detectors are not placed in all cells. Let Ω denote the set of cells which
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have detectors. Define zk as the observation variable shown in equation (3.30).

zk = [vi1k , q
i1
k , v

i2
k , q

i2
k , · · · , v

i|Ω|
k , q

i|Ω|
k ] i1, i2, · · · , i|Ω| ∈ Ω (3.30)

Then we get the observation equation (3.31), where εk represents the measurement

noise defined as εk = [εv,i1k , εq,i1k , εv,i2k , εq,i2k , · · · , εv,i|Ω|k , ε
q,i|Ω|
k , ].

zk = H(ρk, εk) (3.31)

3.5 Online Calibration of the Traffic Flow Model

By combining the transition equation (3.27), (3.28) and measurement equation

(3.31), a complete state space model for the stochastic traffic flow model can be

formulated as equation (3.32)

ρk = F (ρk−1, πk, ωk)

πk = πk−1 + ξk (3.32)

zk = H(ρk, εk)

Given the model in equation (3.32), there are two approaches to combine the esti-

mation of traffic density and the model parameters. The first approach is called joint

estimation. In this approach, the model parameters and traffic density are combined

together as the augmented state variable. Then the traffic density and the model

parameters can be estimated jointly by estimating the augmented state variable at

every time step. The other approach is called dual estimation. In this approach,

the traffic density and the parameters are estimated sequentially at each time step.

In other words, each step has two phases; In phase one, only the model parameters

are updated. In phase two, the traffic density is updated by using the newly up-
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dated model parameters. The details of the algorithms for these two approaches are

introduced in the following sections.

3.5.1 Joint Estimation

The joint estimation of the traffic density and model parameters is as the same

as normal nonlinear Kalman filter except that the augmented state variable is a

combination of the traffic density and the model parameters. The detail is given in

Algorithm 7.

Algorithm 7 Joint estimation for traffic density and model parameters

Step 1: Initialization Define an augmented state variable x to be the combination
of the traffic density and the parameters:

xk = [ρTk π
T
k ]T

Initialize with equation (3.33) and set k = 1.

ρ̂0|0 = E[ρ0]; P ρ
0|0 = E[(ρ0 − ρ̂0|0)(ρ0 − ρ̂0|0)T ]

π̂0|0 = E[π0]; P π
0|0 = E[(π0 − π̂0|0)(π0 − π̂0|0)T ] (3.33)

x̂0|0 = [ρ̂T0|0 π̂
T
0|0]T ; P0|0 =

[
P ρ

0|0 0

0 P π
0|0

]

Step 2: Update the augmented state Choose a filter applying to the state space
model below to update x̂k|k and Pk|k:

xk =

[
ρk
πk

]
=

[
F (ρk−1, πk−1 + ξk, ωk)

πk−1 + ξk

]
zk = H(xk, εk)

Step 3: k = k + 1, go to Step 2.
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3.5.2 Dual Estimation

Algorithm 8 Dual estimation for traffic density and model parameters

Step 1: Initialization Initialize with equation (3.34) and set k = 1.

ρ̂0|0 = E[ρ0]; P ρ
0|0 = E[(ρ0 − ρ̂0|0)(ρ0 − ρ̂0|0)T ] (3.34)

π̂0|0 = E[π0]; P π
0|0 = E[(π0 − π̂0|0)(π0 − π̂0|0)T ]

Step 2: Update the parameters Plug ρ̂k−1|k−1 as a constant into the state space

model below, and choose a filter to update π̂k|k and P π
k|k by considering πk as

the state variable.

πk = πk−1 + ξk

zk = H(F (ρ̂k−1|k−1, πk, ωk), εk)

Step 3: Update the state Plug π̂k|k as a constant into the state space model be-

low, and choose a filter to update ρ̂k|k and P ρ
k|k by considering ρk as the state

variable.

ρk = F (ρk−1, π̂k|k, ωk)

zk = H(ρk, εk)

Step 4: k = k + 1, go to Step 2.

The dual estimation is different from the joint estimation. It separates the esti-

mation of the traffic density and model parameters. Therefore two state space models

are formulated, one for traffic density and the other for the model parameters. And

each is used independently to estimate the traffic density or model parameters. A
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property of the state space model in (3.32) is that the state transition of ρk depends

on πk, whose estimation is unknown at k−1 time instant. Therefore we first estimate

πk by using the previous estimation of traffic density: ρ̂k−1|k−1. After that, ρk can be

estimated by using the updated estimation of the model parameters: π̂k|k. The detail

is given in Algorithm 8.

3.6 Numerical Results

In this section, the numerical experiments are mainly focused on answering three

questions: First, can the filtering algorithms improve the accuracy of the traffic state

estimation in real-time if the model parameters are known? Second, can the filtering

algorithms improve the estimation accuracy of both the traffic state and model pa-

rameters in real-time if the model parameters are unknown and stochastic? Third,

can the filtering algorithms help the stochastic traffic flow model improve the accu-

racy of the future traffic state prediction if the model parameters are unknown and

stochastic? The following three subsections will answer these questions respectively.

3.6.1 Traffic State Estimation

This subsection will answer the first question. We use synthetic traffic flow data

generated by simulation to evaluate the performance of UKF and PF in terms of their

abilities to estimate the true traffic state in all the cells over the highway from noisy

measurement data in a subset of the cells. It is assumed that the model parameters

are known in this numerical experiment.

The synthetic traffic flow data is generated according to the steps in Algorithm 2

in Section 2.3.2.3. The model parameters used in the simulation are shown in table

3.1: The piecewise function in Section 2.2.3 is chosen as the speed-density function for

this simulation. vf , ρc and m are the three parameters in the speed-density function,

where ρc = (vf/α)1/m. The length of the highway is 6 miles and it is equally divided
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Parameters Values
Free flow speed vf = 65 miles/hour
Critical density ρc = 60.87 vehicles/mile

Speed-density function parameter m = −1.2
Number of cells N = 10

Measurement cell set [1 4 7 10]
Cell length 4x = 0.6 miles

Time interval for simulation 4t = 30 s
Time interval for measurement T = 60 s

Speed measurement noise V ar[εv,ik ] = 42 (miles/hour)2

Volume measurement noise V ar[εq,ik ] = 2002 (vehicles/mile)2

Table 3.1: Parameters in the experiment for traffic state estimation.

into 10 cells with the length of each cell equal to 0.6 miles. In the simulation of

the stochastic traffic flow model, the time is discretized by the time interval of 30

seconds, while the measurement is taken for every 60 seconds. The measurement

data consists of the speed and volume measurement only in those cells included in

the measurement cell set. εv,ik is the noise of every speed measurement and εq,ik is the

noise of every volume measurement.

The total length of the simulation will be 3 hours. The forcing function parameters

a and b in the stochastic traffic flow model in the following cells: 1, 3, 6 and 9, are

assumed to follow the evolution as shown in Figure 3.1. For the other cells, a and b

are constantly equal to 0. σ is assumed to follow the evolution shown in Figure 3.1

in all the cells.

In the simulation, for every 60 seconds, the volume and speed of the cells included

in measurement cell set will be measured with noise, and the noisy measurement will

be plugged into UKF and PF to update the estimation of current traffic state over all

the cells. Figure 3.2 compares the true state with the estimation obtained by UKF

and PF as well as the simple estimation without any filtering in those cells included

in the measurement cell set. The simple estimation of the traffic density without any

filtering is directly calculated by dividing the measured volume with measured speed

63



0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

time (hours)

a 
(v

eh
ic

le
s/

m
ile

/h
ou

r)

0 0.5 1 1.5 2 2.5 3
-20

-15

-10

-5

0

time (hours)

b 
(h

ou
r-1

)

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

time (hours)

 
(v

eh
ic

le
s/

m
ile

0.
5 /h

ou
r0.

5 )

Figure 3.1: Evolution of the forcing function parameters

according to the fundamental relationship in equation (2.1). From the figure, we can

see that both PF and UKF track with the true state very closely in all the cells, while

the simple estimation without any filtering has comparatively larger error than PF

and UKF in cell 1, 4 and 7 and similar performance with UKF and PF in cell 10.

The reason why the performance of simple estimation is much worse in cell 1, 4 and 7

than in cell 10 is because the traffic density in cell 10 never gets congested. When the
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speed is low due to the high density in that location, the measurement noise in the

speed will have much higher impact to the estimated density than the situation when

the speed is high. In addition, the measurement noise of speed will also be increasing

as the density increases due to the fact that the density is not a continuous variable.

Therefore, when traffic gets congested, the simple estimation will not work properly

and filtering algorithms, such as UKF and PF, can preserve the estimation error.
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Figure 3.2: The result of traffic state estimation given known model parameters

Figure 3.3 compares the three estimation algorithms quantitatively using the

RMSE between estimated density and the true density. From the figure, we can

see that the performance of UKF and PF are pretty stable in all locations. How-

ever the performance of the simple estimation depends on the traffic congestion level.

When the traffic is heavily congested, the error of simple estimation is much larger

than that of UKF and PF. When the traffic is under free flow condition, the error of

simple estimation is similar to that of UKF and PF.

In conclusion, UKF and PF can improve the estimation accuracy of the traffic

state given the model parameters are known especially when the traffic is congested.
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Figure 3.3: RMSE comparison of the density estimation given known model param-
eters

3.6.2 Traffic State and Model Parameters Estimation

In Section 3.6.1, we have proved the advantage of UKF and PF on estimating the

traffic state given that the model parameters are known. In this experiment, it will be

assumed that the model parameters a and b evolve stochastically, and the performance

of UKF and PF on simultaneously estimating the traffic state and model parameters

will be investigated. As described in Section 3.5, there are two types of schemes

to estimate traffic state and model parameters simultaneously: joint estimation and

dual estimation. Combining with UKF and PF, there are 4 filtering algorithms: Joint

UKF, Joint PF, Dual UKF and Dual PF. These 4 filtering algorithms will be discussed

and compared with simple estimation without any filtering.

The traffic state and model parameters are following the state space model in

(3.32). Similar to the steps in Section 3.6.1, the traffic state is simulated according

to Algorithm 2 in Section 2.3.2.3. The parameters used in this numerical experiment

are summarized in Table 3.2.
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Parameters Values
Free flow speed vf = 65 miles/hour
Critical density ρc = 60.87 vehicles/mile

Speed-density function parameter m = −1.2
Number of cells N = 10

Measurement cell set [1, 2, 3, 4, 5, 6 7, 8, 9, 10]
Cell length 4x = 0.6 miles

Time interval for simulation 4t = 30 s
Time interval for measurement T = 60 s

Transition disturbance for a V ar[ξa,ik ] = 4002 (vehicles/mile/hour)2

Transition disturbance for b V ar[ξb,ik ] = 0.052 (hour−1)2

Speed measurement noise V ar[εv,ik ] = 42 (miles/hour)2

Volume measurement noise V ar[εq,ik ] = 2002 (vehicles/mile)2

Table 3.2: Parameters in the experiment for traffic state and model parameters esti-
mation.

Figure 3.4 shows the evolution of true traffic state and the estimated traffic state

obtained by different estimation algorithms in all the cells. Figure 3.5 quantitatively

evaluates the performance of these estimation algorithms using the RMSE between

the true traffic state and estimated traffic state. From the figures, we can see that all

of those 4 filtering algorithms: Joint UKF, Dual UKF, Joint PF and Dual PF, track

the true state closely in every location. While the simple estimation algorithm only

give acceptable performance in the cells where the traffic is not congested. That also

supports the conclusion in Section 3.6.1.

Figure 3.6 shows the performance of 4 different algorithms on tracking the change

of model parameters. In this experiment, it is assumed that parameter a is constantly

equal to 0 except for cell 1, 5 and 9. For cell 1, 5 and 9, parameter a jumps up at

around 0.5 hour and jumps down at 2 hours. Parameter b is constantly equal to 0

except for cell 3 and 7. For cell 3 and 7, parameter b jumps down at around 0.5

hour and jumps up at 2 hours. Parameter σ is constantly equal to 10 for all the

cells. The experiment will investigate whether the filtering algorithms could capture

the jumps of the model parameters. From the result shown in Figure 3.6, we can see
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Figure 3.4: Evolution of true and estimated traffic state in cells

that the filtering algorithms do capture the jumps in model parameters. Therefore

in conclusion, filtering algorithms can improve the estimation accuracy of both the
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Figure 3.5: RMSE comparison of the density estimation given unknown model pa-
rameters

traffic state and model parameters when the model parameters are unknown and

stochastic.

3.6.3 Filtering Based Traffic Prediction

This section is an extension to Section 3.6.2. In this section, we will investigate

whether the filtering algorithms can help improve the accuracy of future traffic state

prediction. The basic idea is plugging the estimated traffic state and model parame-

ters obtained by the filtering algorithms in the prediction algorithm in Section 2.3.3

to output the prediction of the traffic state 5 minutes later.

Figure 3.7 presents the evolution of true traffic state and predicted traffic state

under different filtering algorithms and simple estimation. In simple estimation, the

traffic state is estimated according to the fundamental relationship while the model

parameters are estimated using the initial condition, since the simple estimation does

not have the ability to update the model parameters on-line. Figure 3.8 quantita-
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Figure 3.6: Evolution of true and estimated model parameters
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tively compares the prediction accuracy of different estimation algorithms by using

the RMSE between the true traffic state and predicted traffic state. From the fig-

ures, we can see that the performance of the four filtering algorithms outperforms

simple estimation algorithm significantly. Therefore in conclusion, the filtering algo-

rithms can improve the prediction accuracy of the future traffic state when the model

parameters are unknown and stochastic.

3.7 Conclusion

In this chapter, we first introduce state space modeling and various filtering al-

gorithms for on-line state estimation, such as unscented Kalman filter and particle

filter. Based on that, we developed the on-line calibration algorithm for the stochastic

traffic flow model developed in Chapter II. The on-line calibration algorithms can

estimate the traffic density and capture the change of model parameters in real-time.

We present some numerical results to show the performance of the on-line calibration

algorithms. From the result, we can see that the on-line calibration algorithms are

able to track the traffic density and model parameters simultaneously. In addition,

the prediction accuracy can also be improved by using the estimated traffic density

and model parameters by the on-line calibration algorithm.
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Figure 3.7: Evolution of true and predicted traffic state in cells
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Figure 3.8: RMSE comparison of traffic state prediction for different filtering algo-
rithms

73



CHAPTER IV

Dynamic Pricing For Managed Toll Lanes

4.1 Introduction

Managed lanes are defined as the highway lanes that are operated under fixed or

real-time dynamic strategies to achieve a variety of objectives. The objectives include

but not limited to improving facility utilization efficiency, controlling congestion levels

and increasing the return on investment. Strategies for managing these kinds of

lanes can be roughly classified into three categories: eligibility control, access control

and pricing. Eligibility control strategies set restrictions (such as high occupancy

of vehicle) on vehicles to enter the managed lanes. Different from eligibility control

strategies, access control strategies allow all vehicles to enter but the access rate is

controlled. For example, continuous monitoring of the traffic on the ramp is one type

of access control strategies. On the other hand, pricing strategy charges the drivers a

toll to enter the managed lane. A managed lane implementing pricing strategy is also

called a managed toll lane. In the United States, increasing investments are being

made in managed toll lanes because of their obvious effectiveness on maintaining the

level of service on the road and their revenue generating ability, which helps pay off

the investors or finance the highway construction. A managed toll lane provides an

alternative for the drivers to avoid congestion on the general purpose lane. A driver

pays an amount of money to enter the managed toll lane, and the toll lane guarantees
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that the driver will travel under free flow speed. This not only saves the paying driver

time but also decreases the load on the congested road and helps clear the congestion

more effectively.

The strategy to price tolls on managed toll lanes is an important problem. There

are different pricing strategies for setting the toll and they are highly dependent on

the objective of the toll lane administers, i.e., if the toll lane is owned by a private

company, the administrator of the company might want to maximize the revenue

from the toll lane in order to earn as much profit as possible; Or, if the toll lane is

built by the government, the objective might be to minimize the total travel time

or to maximize the total throughput. In recent years, research in congestion pricing

strategy has received much more attention from both the academic professionals and

the practitioners.

The toll pricing scheme can be classified according to the toll collection base and

rate patterns. There are three types of toll collections: pass-based, per use-based and

distance-based. Also there are three types of rate patterns: flat rate, time-of-day rate

and dynamic rate. Table 4.1 reproduced from Chung and Recker (2011) summarizes

the existing HOT facilities and their pricing strategies in the United States. Pass-

based toll collection scheme issues a toll lane pass to the drivers, and the vehicles

with pass can enter the toll lane at any time. It can be either flat rate or dynamic

rate. In flat rate, the price of the pass is constant while in a dynamic rate, the price

of the pass is adjusted in each month. This is the simplest toll collection scheme.

However it is not a good traffic control strategy since once the pass is issued, there

is no restriction on the entry to the toll lane for the vehicles with a pass even when

the toll lane is congested. Therefore pass-based toll collection is not adaptive and is

thus not suitable for real-time traffic control.
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Table 4.1: Overview of the existing HOT facilities in the United States

Location HOT Configuration Toll Policy Toll Pattern and Range

I-15 Salt Lake

City UT

45.6-mile 2 lanes. Midway acces-

sible. 8 general lanes

HOV2+:free. SOV: tolled Monthly pass: $50 per month.

US-290 Houston

TX

14-mile reversible 1 lane. Mid-

way inaccessible. 8 general

lanes.

Peak (HOT lane)

HOV3+: free

HOV2: tolled

SOV: prohibited

Off peak (HOV2+ lane)

HOV2+: free

SOV: prohibited

A flat rate: $2 per use.

SR-91 Orange

County CA

10-mile 4 lanes. Midway inacces-

sible. 8 general lanes.

Peak

HOV3+: 50% toll off

HOV2, SOV: fully tolled

Off peak

HOV3+: free

HOV2, SOV: fully tolled

Time-of-day tolls: $1.25-9.55

per use.

I-25 Denver CO 6.6-mile reversible 2 lanes. Mid-

way inaccessible. 8 general

lanes.

HOV2+: free

SOV: tolled

Time-of-day tolls: $0.5-3.5 per

use.

I-10W Houston

TX

12-mile 4 lanes. Midway accessi-

ble. 10 general lanes.

Bus: free

HOV2+: peak free; off peak

tolled

SOV: tolled

Time-of-day tolls by distance:

$0.3-1.6 per toll section.

I-15S San Diego

CA

8-mile reversible 2 lanes. Mid-

way inaccessible. 10 general

lanes.

HOV2+: free

SOV: tolled

Dynamic tolls: $0.5-8 per use.

I-95 Miami FL 7.75-mile 4 lanes. Midway inac-

cessible. 8 general lanes.

HOV3+: free

HOV2, SOV:tolled

Dynamic tolls: $0.25-7.25 per

use.

SR-167 Seattle

WA

9-mile 2 lanes. Midway accessi-

ble. 4 general lanes.

HOV2+: free

SOV: tolled

Dynamic tolls:$0.5-9 per use.

I-15N San Diego

CA

12-mile reversible 4 lanes. Mid-

way accessible. 8 general lanes

HOV2+: free

SOV: tolled

Dynamic tolls by distance:

$0.5-8.

I-394 Minneapo-

lis MN

7-mile 2 lanes and 3.3-mile re-

versible 2 lanes. 2 tolling sec-

tions. Midway accessible. 4 gen-

eral lanes.

HOV2+: free

SOV: tolled

Dynamic tolls by distance:

$0.25-8.
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The other two toll collection schemes, per use-based and distance-based, are

more adaptive than pass-based toll collection scheme. Per use-based scheme charges

the same price even though drivers may travel different distances on the toll lane.

Distance-based toll scheme charges the drivers a toll based on the distance travelled,

and is more reasonable than per use-based scheme. However it is also more com-

plicated than per use-based scheme and finding the appropriate pricing strategy is

difficult. Both per use-based and distance-based toll collection schemes can be applied

through a flat rate, time-of-day rate and dynamic rate patterns.

In this chapter, we formulate and solve a very general optimal distance-based

dynamic pricing model based on the stochastic macroscopic traffic flow model devel-

oped in Chapter II. An advantage of using macroscopic model (over a microscopic

simulation model) is that it can be calibrated on-line by applying the traffic state

estimation algorithm developed in Chapter III. Following the formulation, we de-

velop a methodology to obtain an optimal pricing strategy to maximize the total

expected revenue. Although the objective discussed in this study is to maximize the

revenue, the general model formulation and solution can be easily adaptable to any

other objective, like the maximizing of the total throughput, etc. We then propose

a (simulation-based) numerical algorithm to obtain the optimal prices efficiently in

real time. An important fact about this pricing scheme is that it is applicable to

the toll lane with any number of toll entrances and exits. In addition, the general

pricing model developed in this chapter is not limited to specific traffic flow model.

It is readily adapted to other macroscopic traffic models, such as the classical LWR

model, and other traffic flow models. The objective of this chapter is to present the

formulation and solution of a general dynamic toll pricing scheme with an underlying

traffic flow model (developed in Chapter II).

The outline of this chapter is described as follows: Section 4.2 describes the model
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formulation in detail. In section 4.3, we analyze the mathematical optimization model

and present the method to solve this problem. A numerical example is solved in

Section 4.4 to validate the performance of proposed dynamic pricing strategy; and

Section 4.5 concludes this chapter.

4.2 Distance-Based Dynamic Pricing Model

4.2.1 Infrastructure

In this model, there are two different types of lanes running in parallel. One is a

general lane where drivers can enter for free. The other is a managed toll lane where

drivers pay a toll to enter. During peak hours, the general lane is normally congested

and the toll lane is maintained at free flow speed by adjusting the toll prices. This is

very useful for drivers who can pay a toll to avoid congestion as well as in emergency

situations.

Figure 4.1: General lane and managed toll lane

Figure 4.1 illustrates the structure of the managed toll lane and the general lane

in this model. Suppose the managed toll lane starts at mile post 0 and ends at mile

post L. There are N toll entrances located at l1, l2,...,lN . Normally the first toll

entrance is located at the start of the managed toll lane, therefore l1 = 0. There

are also M toll exits located at mile posts l̃1, l̃2,...,l̃M . Normally the last toll exit is
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located at the end of the toll lane, therefore l̃M = L. Vehicles can only enter the toll

lane through the N toll entrances and leave the toll lane through the M toll exits.

For distance-based pricing strategy, the vehicles are charged according to the

distance they travel on the toll lane. However since the distance information is only

available when the vehicles leave the toll lane, the toll should be collected at the toll

exits. In order to record the travel information of vehicles on the toll lane, all the

vehicles must be equipped with an electronic device which can communicate with the

sensors installed at toll entrances and exits. The driver of a vehicle approaching a

toll entrance can see the pricing information and the corresponding estimated travel

time on both lanes to every subsequent toll exit. Based on the information, the driver

then decides whether to switch to the toll lane by evaluating the trade-off between

the price and time saving. If the driver decides to enter the toll lane, when the vehicle

crosses the toll entrance, the sensor at the toll entrance will record the time, location

and toll price table inside this vehicle’s device. When the vehicle leaves the toll lane,

the sensor at the exit will read this information from the vehicle’s device and charge

the appropriate toll to the driver.

4.2.2 The Underlying Traffic Flow Model on the General Lane

In this section, we will describe the underlying traffic flow model on the general

lane. When making decisions, the drivers compare the travel time from the toll

entrance to the toll exit on both lanes. Since the traffic on the toll lane is maintained

under free flow condition with a hard constraint, the travel time from one location to

another on the toll lane is constant. Let vf denote the free flow speed on the toll lane

and τmn denote the travel time from toll entrance n to toll exit m on the toll lane.

The travel time is given in equation (4.1).

τmn (t) ≡ l̃m − ln
vf

n ∈ [1, N ] m ∈ [1,M ] l̃m > ln (4.1)
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Unlike the situation on the toll lane, the general lane is normally congested espe-

cially in peak hours. Thus the travel time on the general lane is not constant. The

prediction of the travel time on the general lane is needed as it is displayed at the

toll entrances. Here we make the following assumption about the traffic flow model

on the general lane, presented in Assumption IV.1.

Assumption IV.1. The traffic flow switching to the toll lane has no impact on

the traffic density evolution on the general lane, and the density on the general lane

is a stochastic process following the stochastic partial differential equation model in

equation (4.2) shown in Chapter II.

ρ̂t + q̂x = g(ρ̂, x, t)

q̂ = ρ̂ · V∗(ρ̂) (4.2)

g(ρ̂, x, t) · dx · dt = (a(x, t) + b(x, t) · ρ̂) · dx · dt+ σ(x, t) · dW (x, t)

where

• (x, t) is the space and time pair, x ∈ [0, L] and t ∈ [0, T ];

• q̂(x, t) is the volume (i.e, number of vehicles passing through per unit time) at

location x and time t on the general lane;

• ρ̂(x, t) is the density (i.e, number of vehicles per unit distance) at location x

and time t on the general lane;

• V∗(·) is the speed-density function.

• W (x, t) is the Brownian Sheet, a Gaussian process indexed by two parameters.

The stochastic traffic flow model in (4.2) has been described in Chapter II, there-

fore we omit the justification of this model here. There are two reasons why we

assume that the traffic flow evolution on the general lane is not affected by the flow

80



switching to the toll lane. First, under this assumption, the travel time between any

two locations on the general lane is not affected by the toll prices. Therefore in the

stochastic control model of the later sections for solving the optimal pricing prob-

lem, a subset of the state variables becomes independent of the decision variables.

That makes it possible to solve the complicated multidimensional stochastic control

problem explicitly: It can be decomposed into several easier and smaller problems, as

explained by Theorem IV.4. Without this assumption, the optimal pricing problem

is unsolvable (due to the curse of dimensionality) when the number of toll stations

is large. The solution of optimal pricing without this assumption is under study.

Another reason for this assumption is that the volume capacity in the general lane

is normally much larger than that of the toll lane since the number of general lanes

is usually larger than the number of toll lanes. Thus the traffic switching to the toll

lane is a small proportion of the traffic flow in the general lane. The impact of the

switching traffic flow on the general lane density evolution is thus small, and can be

neglected.

Let τ̂mn (t) denote the travel time from toll entrance n to toll exit m on the general

lane at time t, and ρ̂(·, t) denote the density vector of the general lane at time t. Then

under the traffic flow model in (4.2), τ̂mn (t) has the following property as shown in

Theorem IV.2.

Theorem IV.2. Under Assumption IV.1, the travel time between any two locations

on the general lane at time t is a function of the traffic density vector on the general

lane at that time. The relationship is given in equation (4.3), where fmn (·) does not

have a closed-form solution and can only be derived by simulation.

τ̂mn (t) = fmn (ρ̂(·, t)) n ∈ [1, N ] m ∈ [1,M ] l̃m > ln (4.3)

Proof of Theorem IV.2. Due to the shock wave caused by the nonlinearity of the flux
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function, there is no closed-form solution for the stochastic model in (4.2). We apply a

numeric scheme, Godunov’s scheme, to solve the stochastic model. The detailed steps

of Godunov’s scheme are explained in Algorithm 2. By using Godunov’s scheme, we

can simulate a number of scenarios for the density evolution in the future given the

density vector ρ̂(·, t) at time t. Under each scenario, the travel time can be calculated

via the speed-density function. The steps of obtaining simulated scenarios of density

evolution are described in Section 2.3.3 in detail. Algorithm 9 describes the steps to

obtain τ̂mn (t), where ρ̂k(x, t) represents the simulated density evolution under scenario

k.

Algorithm 9 Travel time prediction.

Step 1 Suppose there is a vehicle driving from location ln to l̂m along the general
lane. At time t, this vehicle is at location ln. Let T (x) denote the time when
the vehicle arrives at location x on the general lane. Obviously:

T (ln) = t

Step 2 When the vehicle arrives at location x at time T (x), the density at the
location is ρ̂k(x, T (x)). According to the speed-density function, the speed of
the vehicle should be equal to V∗(ρ̂

k(x, T (x))), therefore T (x) should satisfy the
following differential equation:

dT (x) =
dx

V∗(ρ̂k(x, T (x)))

Step 3 Solve the above differential equation numerically by discretizing the time and
space to obtain T k(l̂m), which is the time when this vehicle arrives at location
l̂m under scenario k. Then the travel time from ln to l̂m under this scenario is:

τ̂ k = T k(l̂m)− t

Step 4 Take the average over all scenarios as the prediction of the travel time.

τ̂mn (t) =
1

K

K∑
k=1

τ̂ k

Based on the explanation above, function fmn (·) is very complicated and can only
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be obtained by simulation. However the complication of the travel time function will

not affect the solution of the pricing model. Since the travel time will be independent

of the decision variables, the predicted travel time can be calculated in advance before

they are used in the stochastic control model. An important characteristic of this

optimal pricing model is that it is not limited to any specific underlying traffic flow

model: For any traffic flow model, as long as the travel time can be expressed as an

function of the current density vector, the pricing model and our methodology will

apply.

4.2.3 Demand Function

For every toll entrance, the traffic demand can be classified by the destination.

For example, for toll entrance n, Let Zn denote the index of the first exit following

toll entrance n. Let Φn denote the set of indexes of all toll exits behind toll entrance

n, so Φn = {Zn, Zn+1, · · · ,M}. Let Dn(t) denote the traffic volume entering the toll

lane through toll entrance n at time t, it consists of Dm
n (t) (m ∈ Φn), where Dm

n (t)

represents the traffic volume entering at toll entrance n at time t and and destined

to leave at toll exit m. Equation (4.4) describes this relationship.

Dn(t) =
∑
m∈Φn

Dm
n (t) (4.4)

At time t, the toll entrance n will publish the prices for every downstream exit

as well as the corresponding estimated travel time on both general lane and the toll

lane. The drivers make decisions whether to stay on the general lane or switch to

the toll lane based on this information. The drivers who plan to leave at toll exit

m, observe τmn (t), τ̂mn (t) and pmn (t), where pmn (t) is the toll for entering at entrance n

at time t and leaving at exit m, and decide to/not to enter. Therefore the demand

Dm
n (t) is a function of τmn (t), τ̂mn (t) and pmn (t), and let dmn denote the function, which
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is given in equation (4.5). The demand function should be decreasing in pmn (t), τmn (t)

and increasing in τ̂mn (t), since a higher price and longer travel time on the toll lane

will cause less people to enter the toll lane. Similarly, more drivers will opt for the

toll lane with a longer travel time on the general lane.

Dm
n (t) = dmn (pmn (t), τ̂mn (t), τmn (t)) (4.5)

Multinomial logit model is well established in marketing research literature to

model the demand when multiple alternatives are available. In recent years, it has

been widely used in traffic demand analysis. For examle, Lou et al. (2011) applied

multinomial logit model to approximate the demand function for solving the optimal

pricing problem. The basic idea of multinomial logit model in traffic demand analysis

is described as below. When I drivers are making decisions choosing one route from

J alternatives. The individual utility U?
ij of individual i choosing route j is:

U?
ij = Uj + εij (4.6)

where Uj is the expected utility of route j and εij is the individual noise. Multino-

mial logit model assumes that εij are independently and identically distributed with

an extreme value distribution. The cumulative distribution function of εij is:

P (εij < x) = e−e
−x

(4.7)

Each individual will choose the route which has the highest utility for him-

self/herself. Given the distribution of εij in equation (4.7), we can derive that for

any individual i, the probability this individual chooses route j will be:

Pij = P (U?
ij ≥ U?

ik ∀k = 1, 2, ..., J)
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=
exp(Uj)∑J
k=1 exp(Uk)

(4.8)

In our model, there are two alternatives: general lane and managed toll lane. Lou

et al. (2011) assumes that the utility function for either lane is a linear function of its

toll price and travel time as shown in equation (4.9), where τ and τ̂ are travel time

on the toll lane and general lane from the driver’s origin to destination; p is the toll

price for the driver’s traveling distance. α, η and γh, γg are parameters. α
η

represents

the driver’s trade-off between the time saved and money spent. γh and γg represents

the driver’s fixed preference between the two lanes. When τ = τ̂ and p = 0, drivers

may have different preference because of the road condition and lane capacity. The

difference of γh and γg represents this preference. It should be noted that α, η > 0

because the utility function is decreasing in the travel time and toll price.

Uh = −ατ − ηp+ γh

U g = −ατ̂ + γg (4.9)

Given the utility functions in equation (4.9), we can obtain the demand function

in equation (4.10). D is the realized traffic demand for the toll lane, A is the potential

total demand. Thus the traffic volume entering the toll lane is a function of the time

saving τ̂ − τ and toll price p.

D = A
exp(Uh)

exp(Uh) + exp(U g)

= A
1

1 + exp(α(τ − τ̂) + ηp+ γ)
(4.10)

γ = γg − γh

The traffic demand for each origin-destination pair is assumed to follow the multi-

nomial logit model in equation (4.10). For each pair of toll entrance n and toll exit
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m, there is a set of parameters associated with it: Amn , αmn , ηmn and γmn . Out of the

four parameters, only Amn is dynamically changing over time, while the other three

are constant, because αmn , ηmn and γmn are only affected by the value of time of the

population living in this area, it will only change slightly over a long time. However

Amn is affected by the travel pattern, it is changing quickly during the day. Therefore

generally the demand function of Dm
n at time t is given in equation (4.11). Lou et al.

(2011) applied reactive self-learning algorithm to estimate these parameters.

Dm
n (t) = Amn (t)

1

1 + exp(αmn (τmn (t)− τ̂mn (t)) + ηmn p
m
n (t) + γmn )

(4.11)

4.2.4 Flow Conservation on the Toll Lane

Unlike the density evolution on the general lane, which is an uncontrolled Markov

process described in equation (4.2), the flow on the toll lane is a controlled Markov

process, because the traffic volume entering the toll lane is controlled by the decision

variables, the toll prices. Let qm(x, t) denote the traffic flow, whose destination is

toll exit m, on the toll lane at location x and time t. Then the evolution of qm(x, t)

should follow Theorem IV.3.

Theorem IV.3. qm(x, t) follows the following transition equation for ∀m ∈ [1,M ],

where δ(·) is Dirac delta function.

1

vf

∂

∂t
qm(x, t) +

∂

∂x
qm(x, t) =

∑
n:m∈Φn

Dm
n (t)δ(x− ln) (4.12)

qm(0, t) = 0 ∀t

qm(x, t) = 0 ∀t, ∀x > l̃m
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δ(x) =


+∞ x = 0

0 x 6= 0

(4.13)

+∞∫
−∞

δ(x)dx = 1 (4.14)

Proof of Theorem IV.3. Since the traffic on the toll lane is under free flow speed vf ,

then at any x and t, we have:

qm(x+ vfdt, t+ dt)− qm(x, t) =
∑

n:m∈Φn

Dm
n (t)1{x=ln} (4.15)

1{x=ln} is an indicator function, it is equal to 1 if x = ln and 0 otherwise. Dm
n (t) is

the entering toll traffic volume through toll entrance n with destination at toll exit m.

Therefore, along the characteristic line x = x0 + vf t, q
m only have jumps at those toll

entrances and is constant elsewhere. That is why the right hand side of the equation

(4.15) involves the indicator function.

Using Taylor’s expansion on the left hand side of equation (4.15), gives equation

(4.16). Along the characteristic line x = x0 + vf t, dx = vfdt, the right hand side

of equation (4.16) can be further simplified, and the transition equation for qm(x, t)

in equation (4.12) is proved. The boundary condition qm(0, t) = 0 is based on the

assumption that the first toll entrance is located at the beginning of the toll lane.

qm(x, t) = 0(∀x > l̃m) because all the vehicles with destination at toll exit m will

leave the toll lane at l̃m.

∂

∂t
qm(x, t) + vf

∂

∂x
qm(x, t) =

∑
n:m∈Φn

Dm
n (t)

1{x=ln}

dt
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=
∑

n:m∈Φn

Dm
n (t)vf

1{x=ln}

dx
(4.16)

=
∑

n:m∈Φn

Dm
n (t)vfδ(x− ln)

4.2.5 The Constraint

Maintaining free flow speed on the toll lane is a hard constraint, and the toll prices

will be adjusted dynamically to make sure this constraint is not violated. However in

practice, this constraint might be violated because of sudden spike in demand. Once

this situation happens, the pricing strategy will be switched to another mode under

which all the toll prices will be set to the maximum price or even the toll entrances will

be temporally closed until the managed toll lane recovers to free flow speed condition

again. The maximum price is usually predetermined by an agreement between the

public and highway administrators, which serves as an upper threshold for the toll

prices.

In this study, we mainly focus on the pricing strategy when this constraint is

not violated due to sudden spike in demand. So we consider keeping the toll lane

congestion free as a hard constraint. In other words, the traffic on the toll lane must

travel at the free flow speed. In order to satisfy this constraint, the traffic flow entering

the toll lane must not impact the existing traffic on the toll lane. Every lane has a

traffic flow capacity. We assume that if the flow does not exceed this capacity then

free flow speed is attained. Obviously qm(x, t) is not continuous at the locations of

toll entrances because of the jump of its value caused by the entering traffic volume.

We use qm(l−n , t) to denote the traffic volume right before toll entrance n and qm(l+n , t)

to denote the traffic volume right after toll entrance n. qm(l+n , t) should satisfy the
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constraint in equation (4.17)

∑
m∈Φn

qm(l+n , t) ≤ Cn ∀n ∈ [1, N ] (4.17)

4.2.6 Complete Model Formulation

By summarizing the above sections, we can see that optimal pricing problem

can actually be formulated as a stochastic control model. The state variable of the

system at time t is defined by the density vector on the general lane ρ̂(x, t) and the

flow vector on the toll lane qm(x, t)(m ∈ [1,M ]). The control variable is defined by

pmn (t) (n ∈ [1, N ]),m ∈ Φn). Equation (4.2) and equation (4.12) are the transition

equations of the state variables in the stochastic control model. From the transition

equation, we can see that qm(x, t) is controlled by the control variable pmn (t) and

ρ̂(x, t) is uncontrolled. Besides the transition equation, there is a constraint on the

state variable qm(x, t) as shown in equation (4.17). The objective of the stochastic

control problem is to maximize the expected total revenue from current time t to a

specified time horizon T . The complete stochastic control model of optimal pricing

problem is given in equation (4.18).

maxE[(

T∫
t

N∑
n=1

∑
m∈Φn

Dm
n (s)pmn (s)ds)]

Dm
n (t) = Amn (t)

1

1 + exp(αmn (τmn (t)− τ̂mn (t)) + ηmn p
m
n (t) + γmn )

∀n ∈ [1, N ],∀m ∈ Φn

τmn (t) =
l̃m − ln
vf

n ∈ [1, N ],∀m ∈ Φn

τ̂mn (t) = fmn (ρ̂(·, t)) n ∈ [1, N ],∀m ∈ Φn (4.18)

∂

∂t
ρ̂(x, t) +

∂

∂x
[ρ̂(x, t) · v(ρ̂(x, t))] = g(ρ̂(x, t), x, t)

1

vf

∂

∂t
qm(x, t) +

∂

∂x
qm(x, t) =

∑
n:m∈Φn

Dm
n (t)δ(x− ln) ∀m ∈ [1,M ]∑

m∈Φn

qm(l+n , t) ≤ Cn ∀n ∈ [1, N ]
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In the objective function in equation (4.18), Dm
n (s)pmn (s) is the revenue rate col-

lected from the vehicles entering the toll lane at entrance n and time s and leaving

the toll lane at exit m. The summation over all the pairs of entrance-exit is the total

revenue. From the model in (4.18), the stochastic control problem is very compli-

cated: One state variable ρ̂(x, t) is driven by a stochastic partial differential equation,

while another state variable qm(x, t) is controlled by the intermediate variable Dm
n (t),

which is a function of the decision variable pmn (t) and state variable ρ̂(x, t). In addi-

tion, the decision variable pmn (t) will be constrained so that the state variable qm(x, t)

could satisfy the constraint in equation (4.17). The following sections will continue

to discuss the solution of this stochastic control model.

4.3 Analysis of the Stochastic Control Model

4.3.1 Complexity Analysis

There are different kinds of approaches to solve a stochastic control problem. An

classical approach is Bellman equation. It writes the optimal value at a certain point

in time in terms of the immediate reward incurred by the optimal decision plus the

optimal value of the remaining control problem that results from the optimal decision.

In the stochastic control model in equation (4.18), let J(t, q1(·, t), · · · , qM(·, t), ρ̂(·, t))

represent the maximum expected total revenue from time t to T given that the state of

the system at t is q1(·, t), · · · , qM(·, t) and ρ̂(·, t). P represents the space of all possible

prices satisfying the constraint in equation (4.17). The Bellman equation, which is also

called Hamilton-Jacobi-Bellman(HJB) equation in continuous-time stochastic control

problem, is given in equation (4.19).

J(t, q1(·, t), · · · , qM(·, t), ρ̂(·, t)) = sup
pmn (t)∈P

{R(pmn (t), q1(·, t), · · · , qM(·, t), ρ̂(·, t))dt

+E[J(t+ dt, q1(·, t+ dt), · · · , qM(·, t+ dt), ρ̂(·, t+ dt))]}
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J(T, q1(·, T ), · · · , qM(·, T ), ρ̂(·, T )) ≡ 0 (4.19)

The reward function in the HJB equation in (4.19) is defined in equation (4.20).

It is the total revenue rate at time t.

R(pmn (t), q1(·, t), · · · , qM(·, t), ρ̂(·, t)) =
N∑
n=1

∑
m∈Φn

pmn (t)Dm
n (t) (4.20)

=
N∑
n=1

∑
m∈Φn

pmn (t)Amn (t)

1 + exp(αmn (τmn (t)− τ̂mn (t)) + ηmn p
m
n (t) + γmn )

Theoretically, the optimal value function of the stochastic control problem in

equation (4.19) can be obtained analytically by solving a partial differential equation.

However in practice, it is usually extremely difficult to get an analytic solution for

the HJB equation, especially when the state variables ρ̂(·, t) and qm(·, t) m ∈ [1,M ]

are infinite dimensional. A close form solution for HJB equation only exists in a few

special cases.

Often numerical solution is also impossible due to the curse of dimensionality. In

order to solve the stochastic control problem in this model, both the time and state

variables are discretized. After discretization, the model becomes a discrete-time

Markov decision process with time intervals 4t. The highway is also discretized into

small cells with length4x, and the states of the system, ρ̂(·, t) and qm(·, t) m ∈ [1,M ],

are represented by vectors instead of functions. When discretizing time and space, in

order to guarantee that the waves do not interact with each other, 4t and 4x should

satisfy Courant-Friedrichs-Lewy(CFL) condition(?) given in equation (4.21).

vf4t <= 4x (4.21)

If 4x is too large, the approximate solution obtained by the numerical algorithm

is not accurate. If 4x is too small, then 4t has to be small too, which will increase
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the computational cost. In most literature it is suggested that an acceptable value of

4x is about 0.5 miles, and we use this in our numerical algorithm as well.

There are several difficulties encountered when solving the stochastic control prob-

lem in (4.19). First, the dimension of the state space is very high, making it impossible

to solve due to the curse of dimensionality. For example, if the toll lane is 10 miles

long and each cell is 0.5 miles, there would be 20 cells, which means ρ̂(·, t), q1(·, t),· · · ,

qM(·, t) all would be a vector of dimension of 20. In total, the dimension of the state

variable is 20(M + 1). This high dimension leads to a huge computational cost and

makes the problem almost unsolvable. Another difficulty is related to the dimension-

ality of the decision variable. The decision variable pmn (t) is the price vector covering

all the pairs of the toll entrance and its downstream toll exits. When the number of

toll entrances and exits is large, the dimension of pmn may also blow up the compu-

tational time for the solution. The high dimensionality of both the state space and

control variables makes the stochastic control problem almost impossible to solve by

classical approaches.

4.3.2 Solution

The analysis in previous section shows that it is almost impossible to solve the

stochastic control problem by using traditional numerical approach. In this section,

we will present a feasible solution to the stochastic control problem. At first, we

will decompose the high dimensional stochastic control problem into several separate

low dimensional stochastic optimization problems. Then the sub stochastic optimiza-

tion problem is transformed to a deterministic convex optimization problem by using

simulated scenarios to approximate the stochastic process. Since the deterministic

convex optimization problem can be solved quickly and efficiently by convex optimiza-

tion software packages, this strategy gives a good numerical scheme for the original

stochastic control problem.
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4.3.2.1 Decomposition

An important property of the transition equation in the stochastic control model

(4.18) is that the state variable ρ̂(x, t) is independent of the control variable pmn (t).

This property results in Theorem IV.4. Based on Theorem IV.4, the stochastic control

problem can be decomposed into small sub problems.

Theorem IV.4. At time t, the price vector of toll entrance n: pmn (t), (∀m ∈ Φn) only

affects the price vector of downstream toll entrance n+ 1 at time t+κn: pm̄n+1(t+κn),

(∀m̄ ∈ Φn+1), where κn = ln+1−ln
vf

. In other words, the decisions at any toll entrance

only affects the decisions of downstream toll entrances along the characteristic line,

which has slope 1
vf

as shown in figure 4.2. It does not have any impact on the decisions

that are not on the characteristic line.

Figure 4.2: Decomposition of dynamic toll pricing problem

Proof of Theorem IV.4. First, let us prove that pmn (t), (∀m ∈ Φn) affects the price
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vector of downstream toll entrance n+ 1 at time t+ κn, which is pm̄n+1(t+ κn) ∀m̄ ∈

Φn+1. At time t in toll entrance n, pmn (t) will determine Dm
n (t) and it must satisfy

the constraint so that the total traffic flow right after toll entrance n does not exceed

the lane capacity. According to the flow conservation in (4.12), the traffic will travel

along the line with slope 1
vf

on the toll lane as shown in figure 4.2. The entering

traffic flow Dm
n (t) will reach toll station n+ 1 at time t+ κn. Because of the capacity

constraint, it will set another constraint for the price vector of toll entrance n+ 1 at

time t+κn. For example, at time t+κn, the upcoming traffic flow at toll station n+1:

qm̄(l−n+1, t + κn) = qm̄(l−n , t) + Dm̄
n (t). Since qm̄(l−n+1, t + κn) would set a constraint

for the decision pm̄n+1(t+ κn) as illustrated in equation (4.17), obviously pm̄n+1(t+ κn)

will be affected by pmn (t). For the same reason, pn+2(t + κn + κn+1) is affected by

pn+1(t+κn) and so on. Therefore, pn(t) will affect the decisions of all its downstream

toll entrances on the characteristic line.

Secondly, pmn (t) does not have any impact on the decisions of any toll entrance

outside the characteristic line. For example, for toll station ń at time s, suppose (lń, s)

is not on the same characteristic line with (ln, t), in other words, the line connecting

(lń, s) and (ln, t) does not have slope 1
vf

. pm̄ń (s) is determined by qm̄(l−ń , s) m ∈ Φń and

ρ̂(·, s). Because qm̄(l−ń , s) m ∈ Φń is only affected by the upstream decisions on the

characteristic line of (lń, s), and ρ̂(·, s) is independent of all the decision variables. So

pm̄ń (s) is not affected by pmn (t) if (lń, s) and (ln, t) are not on the same characteristic

line. Therefore the proof is complete.

Based on Theorem IV.4, the problem could be decomposed along the characteristic

line shown in Figure 4.2. Since the decision variables in one characteristic line are

independent of those on any others, pmn (t) only affects the total revenue rate collected

on its characteristic line and it does not have any impact on other lines. Therefore

at time t, the price decisions of every toll entrance are independent of each other,

and problem (4.18) can be decomposed into N subproblems, where each subproblem
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obtains the optimal prices for one toll entrance to maximize the expected total revenue

rate along the characteristic line passing this toll station at time t. In other words,

pmn (t) is determined to maximize the expected total revenue rate of all its downstream

toll entrances along the characteristic line.

For toll entrance n at time t, the stochastic control problem for this toll entrance

is formulated as equation (4.22).

max E[
n∑

n=n

(
∑
m∈Φn

Dm
n p

m
n )]

qmn = qmn−1 +Dm
n−1 ∀n ∈ [n+ 1, n],m ∈ Φn

Dm
n = Amn

1

1 + exp(αmn (τmn − τ̂mn ) + ηmn p
m
n + γmn )∑

m∈Φn

Dm
n +

∑
m∈Φn

qmn ≤ Cn ∀n ∈ [n+ 1, n] (4.22)

τmn =
l̃m − ln
vf

n ∈ [1, N ] m ∈ Φn

τ̂mn = fmn (ρ̂(·, t+
n−1∑
i=n

κi))

κn =
ln+1 − ln

vf
n ∈ [1, N ]

In equation (4.22), Dm
n , pmn , qmn , τmn , τ̂mn and Amn are actually simplified notations

as illustrated below:

Dm
n = Dm

n (t+
n−1∑
i=n

κi)

pmn = pmn (t+
n−1∑
i=n

κi)

qmn = qm(l−n , t+
n−1∑
i=n

κi) (4.23)

τmn = τmn (t+
n−1∑
i=n

κi)
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τ̂mn = τ̂mn (t+
n−1∑
i=n

κi)

Amn = Amn (t+
n−1∑
i=n

κi)

Since the toll lane is under free flow speed vf , κn represents the travel time between

toll entrance n and toll entrance n+ 1 on the toll lane. Therefore t+
∑n−1

i=n κi is the

time when traffic arrives at toll entrance n given that at t the traffic is at n. In other

words, t+
∑n−1

i=n κi is the corresponding time of toll entrance n along the characteristic

line. From equation (4.23), we can see that in the sub problem (4.22), we only focus on

the revenue and capacity constraint along the characteristic line: qmn is the incoming

traffic, which destined at toll exit m, on the toll lane right before toll entrance n on

the characteristic line. The constrain in equation (4.22) guarantees that the capacity

could not be exceeded along the characteristic line. pmnD
m
n is the revenue rate of toll

entrance n at the point of time on the characteristic line. Since the revenue rate of

all the characteristic lines are independent of each other, the optimal solution must

also maximize the revenue rate along this characteristic line.

n represents the index of the farthest toll entrance on the characteristic line the

traffic could reach before time T . It is given in equation (4.24). ρ̂(x, t) follows the

stochastic partial differential equation model (4.2) given the initial condition at time

t. qmn (t) are observed and known at time t. Given the information of ρ̂(·, t) and qmn (t),

solving problem (4.22) gives the optimal price vector for toll entrance n at time t.

n = max{k ∈ [n,N ] :
lk − ln
vf

≤ T − t} (4.24)

In the stochastic control problem (4.22), the solution for the optimal prices at toll

entrance n at time t should only depend on ρ̂(·, t) and q1
n,· · · , q|Φn|

n . The Bellman

equation could be formulated as shown in equation (4.25): Jn(ρ̂(·, t), q1
n, · · · , q

|Φn|
n )
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represents the optimal value function given the state of the system.
∑

m∈Φn
Dm
n p

m
n

is the immediate revenue rate collected at toll entrance n at time t. Jn+1(ρ̂(·, t +

κn), q1
n+1, · · · , q

|Φn+1|
n+1 ) is the maximum expected total revenue rate starting from toll

entrance n + 1 along the characteristic line. P is the set of possible prices satisfying

the constraint in equation (4.22).

Jn(ρ̂(·, t), q1
n, · · · , q|Φn|

n ) = sup
Dm

n ∈D
{
∑
m∈Φn

Dm
n p

m
n + E[Jn+1(ρ̂(·, t+ κn), q1

n+1, · · · , q
|Φn+1|
n+1 )]}

qmn+1 = qmn +Dm
n ∀m ∈ Φn+1 (4.25)∑

m∈Φn

Dm
n +

∑
m∈Φn

qmn ≤ Cn

Jn+1(ρ̂, ·) = 0 ∀ρ̂

4.3.2.2 Uniqueness of the Solution

The stochastic control problem in (4.25) is much simpler than the original stochas-

tic control problem in (4.19). ρ̂(·, t) is a state variable in the sub stochastic control

problem, the dimension of another state variable, qm(·, t), reduces from a function

to a constant variable qmn . This represents a significant simplification and helps in

generating an efficient numerical solution. In addition, the dimension of decision vari-

ables in the sub stochastic control problem also decreases significantly. The decision

variables in the original stochastic control problem include the price vector at all toll

entrances, while the sub stochastic control problem only covers the price vector at

one toll entrance. In conclusion, the dimension reduction brought by the separation

makes the pricing problem solvable. This section will show that the stochastic con-

trol problem in (4.25) has a unique optimal solution. For simplification purpose, we

simplify the notations as:

qn = [q1
n, q

2
n, · · · , q|Φn|

n ]

Dn = [D1
n, D

2
n, · · · , D|Φn|

n ]
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pn = [p1
n, p

2
n, · · · , p|Φn|

n ]

We change the decision variables from pn to Dn because the constraint on Dn is

linear, so changing the decision variables will make the constraint become linear.

Theorem IV.5. In the sub stochastic control problem (4.25), when D · p(D) is a

concave function on D, then for any n, Jn(ρ̂, qn) is a concave function on qn given ρ̂

is fixed. And there exists a unique optimal solution D?
n solving the stochastic control

problem in (4.25).

Proof of Theorem IV.5. First, we will apply induction method to prove that Jn(ρ̂, qn)

is a concave function on qn when ρ̂ is fixed for any n:

From the terminal condition: Jn+1(ρ̂, ·) ≡ 0, therefore Jn(ρ̂, qn) is a concave func-

tion on qn when n = n + 1. Now suppose that Jn(ρ̂, qn) is a concave function on qn,

we are going to prove that Jn−1(ρ̂, qn−1) is also a concave function on qn−1.

Let q1
n−1 and q2

n−1 denote any two realizations of qn−1. Let D∗,1n−1 and D∗,2n−1 repre-

sent the optimal solution of Dn for q1
n−1 and q2

n−1 respectively. For fixed ρ̂, Therefore

Jn−1(ρ̂, q1
n−1) = f(D∗,1n−1) + E[Jn(ρ̂(t+ κn−1), q1

n−1 +D∗,1n−1)]

Jn−1(ρ̂, q2
n−1) = f(D∗,2n−1) + E[Jn(ρ̂(t+ κn−1), q2

n−1 +D∗,2n−1)] (4.26)

Because the constraint on Dn is linear, for any λ ∈ [0, 1], λD∗,1n +(1−λ)D∗,2n must

also be a feasible solution when qn−1 = λq1
n−1 + (1− λ)q2

n−1. Therefore:

Jn−1(ρ̂, λq1
n−1 + (1− λ)q2

n−1)

≥ f(λD∗,1n + (1− λ)D∗,2n ) + E[Jn(ρ̂(t+ κn−1), λ(q1
n−1 +D∗,1n ) + (1− λ)(q2

n−1 +D∗,2n )]

≥ λf(D∗,1n ) + (1− λ)f(D∗,2n )

+E[λJn(ρ̂(t+ κn−1), q1
n−1 +D∗,1n ) + (1− λ)Jn(ρ̂(t+ κn−1), q2

n−1 +D∗,2n )] (4.27)

= λ(f(D∗,1n−1) + E[Jn(ρ̂(t+ κn−1), q1
n−1 +D∗,1n−1)])
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+(1− λ)(f(D∗,2n−1) + E[Jn(ρ̂(t+ κn−1), q2
n−1 +D∗,2n−1)])

= λJn−1(ρ̂, q1
n−1) + (1− λ)Jn−1(ρ̂, q2

n−1)

From the equations above, we proved the concavity of Jn−1(ρ̂, qn−1) by definition.

According to induction, Jn(ρ̂, qn) is concave on qn for any n.

Next we are going to prove that there exists a unique solution D?
n for any n. Since

Jn+1(ρ̂(t+ κn), qn+1) is concave on qn+1 for any ρ̂(t+ κn). It must also be concave on

Dn because qn+1 is a linear function of Dn. Then the objective function in (4.25) is

a strictly concave function on Dn. The constraint is linear, therefore there exists a

unique optimal solution for the stochastic control problem in (4.25).

4.3.2.3 Simulation-Based Numerical Algorithm

Section 4.3.2.2 shows that the stochastic control problem (4.25) has a unique

solution. However it is not easy to obtain a closed form solution since ρ̂(·, t) is a

vector. Under Assumption IV.1 the evolution of ρ̂(·, t) is independent of the decision

variables. With this condition, we propose a simulation-based numerical algorithm

to obtain an approximate optimal solution.

In the simulation-based numerical algorithm, we first simulate a number of scenar-

ios, say K, for the evolution of ρ̂(·, t) according to the underlying traffic flow model

(4.2). Let ρ̂k(·, t) represents the evolution of ρ̂(·, t) under scenario k. These K scenar-

ios approximate the stochastic process, and all scenarios are assumed to be equally

likely with probability 1/K. Then we develop an optimal pre-determined strategy,

under which the expected total revenue over these K scenarios is maximized with

the capacity constraint being satisfied for each scenario. The model to obtain the

optimal pre-determined pricing strategy for toll entrance n at time t is formulated in

equation (4.28). ρ̂k(·, t+
∑n−1

i=n κi) represents the density vector of the general lane at

time t+
∑n−1

i=n κi under scenario k. Similar to the notation simplification in equation
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(4.22), Dm,k
n , pm,kn , qm,kn and τ̂m,kn are actually simplified notation of Dm

n (t+
∑n−1

i=n κi),

pmn (t+
∑n−1

i=n κi), q
m
n (t+

∑n−1
i=n κi) and τ̂mn (t+

∑n−1
i=n κi) under scenario k. In the mathe-

matical programming problem in (4.28), qmn (m ∈ Φn) is the input of the programming

problem, since they are observed at time t. By changing the decision variables from

pmn to Dm
n , the mathematical programming problem becomes a convex programming

problem and it can be solved efficiently.

max
∑
m∈Φn

pmnD
m
n +

1

K

K∑
k=1

[
n∑

n=n+1

∑
m∈Φn

pm,kn Dm,k
n ]

qm,kn = qm,kn−1 +Dm,k
n−1 ∀n ∈ [n+ 1, n],∀m ∈ Φn, ∀k ∈ [1, K]

qm,kn = qmn ∀m ∈ Φn,∀k ∈ [1, K]∑
m∈Φn

qm,kn +
∑
m∈Φn

Dm,k
n ≤ Cn ∀n ∈ [n, n],∀m ∈ Φn,∀k ∈ [1, K] (4.28)

Dm,k
n = Amn

1

1 + exp(αmn (τmn − τ̂
m,k
n ) + ηmn p

m,k
n + γmn )

∀n ∈ [n+ 1, n],∀m ∈ Φn,∀k ∈ [1, K]

Dm,k
n = Amn

1

1 + exp(αmn (τmn − τ̂
m,k
n ) + ηmn p

m
n + γmn )

∀m ∈ Φn,∀k ∈ [1, K]

τmn =
l̃m − ln
vf

∀n ∈ [n, n] ∀m ∈ Φn

τ̂m,kn = fmn (ρ̂k(·, t+
n−1∑
i=n

κi)) ∀n ∈ [n, n] ∀m ∈ Φn, ∀k ∈ [1, K]

The pre-determined strategy means that, at time t when solving the sub optimal

problem for toll entrance n, actually we will obtain one unique price vector for toll

entrance n and K price vectors for the subsequent toll entrances along the charac-

teristic line, where each price vector is the corresponding pricing strategy for one

scenario. The reason why there is unique price vector for toll entrance n is that the

price decision of this toll entrance is made before knowing which scenario will occur.

However for the subsequent toll entrances, before making the price decisions, we ob-

serve the scenario and thus choose the corresponding price vectors for this scenario.

Therefore we generate K price vectors for subsequent toll entrances when solving the
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sub optimal problem for toll entrance n. For every chosen time interval, when the

price is to be updated, we solve N such sub optimal problems for all N toll entrances

to obtain the new prices.

In conclusion, to solve this problem, a Markov decision process is first formulated

and the Bellman equation is derived. However due to the high dimension of both state

variables and decision variables, the Bellman equation is very difficult to solve. Under

the assumption of the independence between the general lane traffic evolution and

the toll prices, the original problem is decomposed to N sub problems and a discrete

Markov decision process model is formulated for each of the N toll entrances. Each

sub problem solves the optimal prices for one toll entrance. Finally, a simulation

based numerical algorithm is applied to obtain an approximate optimal solution to

the original problem.

4.4 Numerical Case Study

This section will illustrate how the algorithm works to solve the optimal pricing

problem for a multi-entry and multi-exit managed toll lane. In this numerical ex-

ample, a 15-miles long managed toll lane is assumed to be located in parallel with a

general lane. There are 4 toll entrances located at 0, 4, 8 and 12 miles, and 4 toll

exits located at 3, 7, 11 and 15 miles from the start of the managed toll lane. The

last toll exit is at the end of the managed toll lane.

The experiment will simulate the scenario of the managed toll lane system, in-

cluding the evolution of traffic density on the general lane and the optimal toll prices

on each individual toll entrance, during the morning peak hours from 5am to 10am.

The traffic density evolution on the general lane is assumed to follow the stochastic

model in equation (2.11) and the density evolution can be simulated according to

the steps in Algorithm 2 in Section 2.3.2.3. The highway is equally divided to 75

cells and the length of each cell is 0.2 miles. In the following cells: 10, 13, 16, 19,
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22, 25, 45, 48, 51, 54, 57 and 60, the parameters a, b and σ in the stochastic traffic

flow model are assumed to evolve as shown in Figure 4.3. For the other cells, a and

b are constantly equal to 0, while σ follows the same evolution as shown in Figure

4.3. From the figures, we can see that at around 5:40am, a starts to jump from 500

vehicles/mile/hour to 2400 vehicles/mile/hour, while b starts to drop from −10 to

−15 and σ starts to rise from 5 to 15. Then at around 8:00am, those parameters

gradually revert back to their normal values. The reason behind this assumption on

parameter evolution is that starting from 5:40am, the traffic system starts to enters

into the peak hour, and there are more vehicles entering and leaving the highway,

so the absolute values of both a and b increase. In addition, the volatility σ also

increases because the congestion will cause more uncertainty on the traffic condition.

When the congestion starts to diminish at around 8:00am, the absolute values of a,

b and σ revert back to their normal values. Figure 2.10 in Section 2.4.2 also shows

that, in reality, the absolute values of a, b and σ hover during peak hours.

The demand function for each toll station follows equation (4.11). Table 4.2

summarizes the values of all the parameters used in this experiment. A is the demand

matrix where Aij is the potential demand between entrance i and exit j. We assume

that the demand matrix A is static. This assures that the congestion toll prices are

determined by the traffic conditions and not due to the changes in demand. This then

illustrates how the traffic state condition affects the optimal congestion prices. As we

see in the utility function, α is the sensitivity to the time saving, η is the sensitivity

to the price, and γ is the preference factor. They are assumed to be constant for

different pairs of origin and destination. These parameters are heavily dependent

on the income and sensitivity of time saving of the residents in the region. For

simplification, we assume they are the same at each toll entrance. C is the capacity

where Ci is the capacity right after toll entrance i. vf is the free flow speed on both

the managed toll lane and the general lane.
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Figure 4.3: Parameters in the stochastic traffic flow model used for simulation.

Figure 4.4 shows the evolution of the traffic density on the general lane, and

Figure 4.5 illustrates the speed evolution on the general lane. From the figures, we

can see that congestion on the general lanes starts at around 6:00am and continues to

deteriorate until around 8:30am due to hover of the absolute values of parameters a, b

and σ. From around 8:30am, the congestion starts to alleviate because the parameters

revert back to their normal values and the general lane reaches the free flow condition

at around 9:00am.
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Parameters Values

Demand Matrix A =


1400 1400 1400 1400

0 1400 1400 1400
0 0 1400 1400
0 0 0 1400

 vehicles/hour

Time Sensitivity α = 7 hour−1

Price Sensitivity η = 1.5 $−1

Preference Factor γ = 0.69
Capacity Vector C = [1800 1800 1800 1800]T vehicles/hour
Free Flow Speed vf = 65 miles/hour

Table 4.2: Parameters in the numerical experiment

Figure 4.4: Density evolution on the general lane

Under the general lane traffic condition in Figure 4.4 and Figure 4.5, the optimal

toll prices of each individual toll entrances are shown in figure 4.6. From the figures,

we can see that the prices increases when the general lane becomes congested and

decreases when the general lane is running smooth.
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Figure 4.5: Speed evolution on the general lane

Figure 4.7 plots the evolution of the volume on the toll lane under the optimal toll

pricing strategy. From this figure, we can see that the volume along the toll lane is

maintained below the volume capacity, and traffic along the toll lane is maintained at

the free flow condition during the peak hour. Since the traffic on the toll lane travel

under free flow speed, we can see there are characteristic lines with slope vf in Figure

4.7.

Figure 4.8 plots the cumulative revenue of each individual toll entrance, we can see

that the revenue increases faster during the peak hours from 6:00am to 8:00am, which

means that more congested on the general lane, the more is the revenue collected at

the toll entrances.
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Figure 4.6: Optimal toll prices on each individual toll entrance

4.5 Conclusion

In this chapter, we investigate a dynamic distance-based pricing strategy for man-

aged toll lane with multiple toll entrances and exits. The mathematical model devel-
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Figure 4.7: Volume evolution on the toll lane

oped in this chapter is very general and can be easily applied in practice. We use a

stochastic partial differential equation model to describe the traffic evolution of the

general lane. However the general pricing model developed in this paper is not lim-

ited to specific traffic flow model and is readily adapted to other macroscopic traffic

models, such as the classical LWR model. Any model that fits the real data can be

used in the pricing model as long as the traffic flow model has the ability to predict

the travel time. This pricing model can be used with other objective functions, such

as maximizing the total throughput, and thus a comparison of the pricing strate-

gies under different objectives can be carried out. In another direction, an empirical

study of the pricing model can be examined as well: First obtain real data on both

toll prices and traffic flow; calibrate the stochastic model by using the real data; plug

in calibrated traffic model into the pricing model to obtain the optimal prices, and
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Figure 4.8: Cumulative revenue collected by each individual toll entrance

compare theoretical prices with the real prices. A simulation can also be used to get

an idea of the increment in revenue by implementing the developed optimal pricing

strategy.

108



CHAPTER V

Conclusions and Future Work

5.1 Conclusions and Summary of Contributions

This dissertation systematically studies and discusses an innovative stochastic

traffic flow model and its application. The three main chapters in this dissertation

are closely connected. In Chapter II, we propose the stochastic traffic flow model and

investigate the off-line calibration algorithm for this model. The numerical procedure

to predict the future traffic state based on this stochastic model is examined as well.

Based on the result of model validation using real highway data, the stochastic model

outperforms, in terms of prediction accuracy, the traditional macroscopic traffic flow

model, and has been proved to be an accurate model capturing the characteristic of

traffic flow evolution. Then in Chapter III, the on-line calibration algorithm for this

stochastic traffic flow model is proposed. Various filtering techniques is analyzed and

their performance on the speed of tracking the change of parameters are studied and

compared. The numerical results show that the on-line calibration algorithm not only

captures the change of model parameters but also improves the prediction accuracy

of the traffic flow model. Last in Chapter IV, we formulate a general mathematical

model for the problem of optimal dynamic distance-based congestion pricing. This

mathematical model incorporates the traffic flow model proposed in Chapter II and

the on-line calibration technique developed in Chapter III. The optimal pricing strat-
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egy under a specified objective is explored. The integration of these three chapters

makes the analysis of this stochastic traffic flow model systematic and complete.

The major contributions of this dissertation are summarized as follows:

1. This dissertation introduces, for the first time, Brownian sheet into the trans-

portation engineering area to model the stochastic behavior of traffic flow evolu-

tion. This state-of-the-art modeling methodology makes the traffic flow model

more robust and flexible than traditional deterministic macroscopic traffic flow

models. In the quantitative finance area, since Fischer Black and Myron Scholes

applied the geometric Brownian motion to model the evolution of stock price

and derived the option pricing formula(Black and Scholes , 1973), many other

derivative pricing problems have been solved based on this model. Therefore a

good underlying model can be a significant for the development for this area.

2. This dissertation presents a complete and detailed procedure on traffic flow

modeling: model assumption, model calibration and model validation. There is

not much work which uses real traffic data to validate a traffic flow model. This

dissertation uses a case study to explicitly explain and validate each step in

traffic modeling. It also describes simulation can be used to give the prediction

on future traffic state based on the stochastic traffic flow model.

3. This dissertation reviews the various filtering algorithms that can be used for

on-line traffic state and parameter estimation. It compares and summarizes

the performance of different on-line filtering algorithms, and can be used as a

comprehensive document in this area for future research.

4. To the author’s best knowledge, this dissertation presents the first ever at-

tempt to rigorously investigate the problem of dynamic distance-base optimal

congestion pricing for multi-entry and multi-exit managed lanes. It formulates

a general framework for this problem, and the solution of the optimal pricing
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strategy can be adapted to any preferred objective function and underlying traf-

fic flow model. Under this general framework, the model can be extended easily.

The flexibility and the efficiency of the developed algorithms for the solution of

this model makes it very adaptable to on-line use.

5.2 Future Work

To further investigate this traffic flow model and its applications, there are many

more topics that can be explored. Several directions for future research related to

this dissertation are described as below:

1. Analytic solution of the SPDE.

In this dissertation, we numerically solve the stochastic partial differential equa-

tion using a simulation based Godunov’s scheme. It has been shown that weak

solutions exist, but it is not known what the properties (like pdf etc.) of the

resulting random variables are. Getting an analytic solution would be very help-

ful. The analytic solution gives the probability distribution of the future traffic

state explicitly without the large computation cost incurred by a simulation. In

financial engineering, the analytic solution of the geometric Brownian motion

results in the closed-form formula of the option price, as found by Black-Scholes.

The analytical solution of the stochastic partial differential equation will open

doors to many other interesting research areas.

2. On-line calibration incorporating Lagrangian measurement.

In this dissertation, we developed an on-line calibration algorithms using Eule-

rian measurement. In the future, as more and more Lagrangian measurement

become available, the investigation of filtering algorithm using the combination

of Eulerian and Lagrangian measurements becomes meaningful and important.
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We believe that the incorporation of Lagrangian measurement will make the

estimation more accurate.

3. Verification of the optimal pricing strategy under practical operation.

In this dissertation, we mathematically formulated the dynamic optimal pricing

model and derive the methods to output the optimal pricing strategy. However

in this model, some parameters, such as the parameters in the demand function,

still need to be calibrated using practical operational data. Thus it will be

important to validate these assumptions with the performance of the pricing

strategy developed from this mathematical model in real highway operation.
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