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Abstract

Many low-level vision algorithms assume a prior proba-
bility over images, and there has been great interest in try-
ing to learn this prior from examples. Since images are
very non Gaussian, high dimensional, continuous signals,
learning their distribution presents a tremendous computa-
tional challenge. Perhaps the most successful recent algo-
rithm is the Fields of Experts (FOE) [20] model which has
shown impressive performance by modeling image statis-
tics with a product of potentials defined on filter outputs.
However, as in previous models of images based on filter
outputs [30], calculating the probability of an image given
the model requires evaluating an intractable partition func-
tion. This makes learning very slow (requires Monte-Carlo
sampling at every step) and makes it virtually impossible to
compare the likelihood of two different models. Given this
computational difficulty, it is hard to say whether nonintu-
itive features learned by such models represent a true prop-
erty of natural images or an artifact of the approximations
used during learning.

In this paper we present (1) tractable lower and upper
bounds on the partition function of models based on filter
outputs and (2) efficient learning algorithms that do not re-
quire any sampling. Our results are based on recent results
in machine learning that deal with Gaussian potentials. We
extend these results to non-Gaussian potentials and derive a
novel, basis rotation algorithm for approximating the maxi-
mum likelihood filters. Our results allow us to (1) rigorously
compare the likelihood of different models and (2) calcu-
late high likelihood models of natural image statistics in a
matter of minutes. Applying our results to previous models
shows that the nonintuitive features are not an artifact of the
learning process but rather are capturing robust properties
of natural images.

1. Introduction
Significant progress in low-level vision has been

achieved by algorithms that are based on energy minimiza-
tion. Typically, the algorithm’s output is calculated by min-
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Figure 1. a. A natural image. b-c. Log histogram of derivatives at
different scales. Natural images have characteristic, heavy-tailed,
non-Gaussian distributions.
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Figure 2. Non-intuitive results from previous models. Top: The
filters learned by the FOE algorithm [19]. Note that they look
nothing like derivative filters. Bottom: the potentials learned by
the Zhu and Mumford algorithm on natural images [30]. For deriv-
atives at the finest scale (left), the potential is qualitatively similar
to the log histogram. But at coarser scales (middle and right) the
potential is flipped, favoring many large filter responses.

imizing an energy function that is the sum of two terms: a
data fidelity term which measure the likelihood of the input
image given the output and a prior term which encodes prior
assumptions about the output . Examples of tasks that have
been tackled using this approach include optical flow esti-
mation [20, 2], stereo vision [3, 5] and image segmentation.
An important subclass of these problems is when the out-
put is itself a “natural image”. This includes problems such
as transparency analysis [13], removal of camera blur [6]
image denoising and image inpainting [19].

For low-level vision tasks where the output is a natural
image, the prior should capture some knowledge about the
space of natural images. This space is obviously a tiny
fraction of the space of N × N matrices, but how can we
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characterize it? Some of the earliest energy-based methods
used a quadratic smoothness assumption (e.g. [8]). Thus
the energy was simply the sum of squared local derivative
operators. This corresponds to a Gaussian prior on images
and would be most appropriate if the distribution of nat-
ural images were indeed Gaussian. Unfortunately, images
are very non Gaussian. Figure 1 illustrates a well known
property of natural images. When derivative-like filters are
applied to natural images the distribution of the filter out-
put is highly non Gaussian - it is peaked at zero and has
heavy tails [16, 21, 18]. This property is remarkably ro-
bust and holds for a wide range of natural scenes. Similar,
non Gaussian marginals are also obtained for optical flow
and stereo [19, 9]. Thus a Gaussian prior is not appropriate
and more recent algorithms typically assume a robust, non-
quadratic energy on local derivatives (e.g. [2, 5]). Ideally,
one would like to learn the functional form from a train-
ing data. Also, one would like to know whether basing the
energy functions on local derivatives is the best thing to do.

In a seminal paper [30] Zhu and Mumford showed how
to address both questions using the principle of maximum
likelihood. Denoting by x an image, they defined the prob-
ability of an image by means of an energy function that de-
pends on the output of linear filters wk applied to the image:

Pr(x; {wk,Ψk}) =
1

Z({wk,Ψk}
e−

�
i,k

Ek(wT
ikx)(1)

=
1

Z({wk,Ψk})

∏

i,k

Ψk(wT
ikx) (2)

where i is an index over image pixels and k is an index
over linear filters. wT

ikx is the result of applying the linear
filter wk to image x at location i. The partition function
Z({wk,Ψk}) is an explicit normalization constant and is
defined by:

Z({wk,Ψk}) =

∫

x

∏

i,k

Ψk(wT
ikx)dx (3)

For an arbitrary energy function the partition function is in-
tractable since it requires integrating over all possible im-
ages. If an image has N2 pixels and we discretize it to have
256 possible gray levels, exact calculation would require
summing over 256N2

possible images.
Note that equation 2 contains as special cases some well

known priors used in low-level vision. If the filters are
just horizontal and vertical derivatives and the energy func-
tions are quadratic, this gives the classical smoothness as-
sumptions. If the filters are horizontal and vertical deriva-
tives while the energy functions are robust norms, this gives
the more modern robust smoothness assumptions. Zhu and
Mumford proposed learning both the set of filters wk and
the corresponding energies Ek from data by maximizing the
likelihood of the training set. Specifically, they assumed the

filters were chosen from a discrete set of oriented derivative-
like filters while the energy functions could be arbitrarily
shaped. Their findings, illustrated in figure 2 were very
nonintuitive. For derivatives at the finest scale, the learned
potentials were qualitatively similar to the log histograms
and peaked at zero. But at the coarser scales the potentials
were inverted — they had a minimum at zero, even though
the log histograms have a maximum at zero. This inversion
effect is more pronounced the coarser the filters.

Roth and Black [19] introduced the Fields of Experts
(FOE) model which assumes a parametric, student T dis-
tribution for the potentials, but allows the filters to be ar-
bitrary. Again, they used the principle of maximum likeli-
hood to find the optimal filters. Their learned filters (shown
in figure 2) do not resemble derivative filters at all. Nev-
ertheless, they showed that using the learned filters gave
far superior performance compared to simple derivative fil-
ters on a range of image-restoration problems. In [20] they
extended this work to optical flow estimation, and again
showed that using learned filters improved performance ver-
sus hand-chosen filters such as derivative filters.

Despite the progress made by using maximum likelihood
to learn energy functions for low-level vision, two signifi-
cant problems remain. The first problem is that performing
the learning is excruciatingly slow. In both [30, 19], learn-
ing is performed using gradient ascent - by following the
gradient of the log likelihood in equation 2. This gradi-
ent includes the gradient of the partition function which is
intractable. Zhu and Mumford used Gibbs sampling in or-
der to estimate the gradient of the partition function, and
noted that it could take many sweeps of sampling to con-
verge to a suitable gradient. Since sampling needs to be
performed before each gradient descent step, learning is
extremely slow even when faster sampling techniques are
used [29, 28]. Roth and Black used an approximate sam-
pling method called “contrastive divergence” [7]. Even with
this approximation , they noted that learning is very slow.

A second problem with existing approaches based on
maximum likelihood is that it is extremely difficult to ac-
tually compare the likelihood for two competing models.
Again, this is due to the intractable partition function in
equation 2. Even if we wait long enough for a sampling
algorithm to give us fair samples from the model, calculat-
ing the partition function from a finite number of samples
is a difficult problem [14]. Thus, we have no way of cur-
rently saying whether the nonintuitive findings illustrated
in figure 2 represent a local minimum of the optimization,
or whether they really give higher likelihood to natural im-
ages.

In this paper, we build on recent results in machine learn-
ing with the closely related product of experts model. This
model is similar to equation 2 but every linear filter is ap-
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plied at only one location:

Pr(x; {wk,Ψk}) =
1

Z({wk,Ψk}
e−

�
k

Ek(wT
k x) (4)

=
1

Z({wk,Ψk})

∏

k

Ψk(wT
k x) (5)

For this model it has been shown that when the potentials
are Gaussians, the optimal filters are the minor components
- the principal components of the data with minimal eigen-
value [27]. Thus training in this case is extremely fast and
requires just one eigenvector computation on the training
set. It has also been shown that in the undercomplete case
- when the number of filters is smaller than the dimension-
ality of x, the partition function can be calculated exactly
using the singular value decomposition of the vectors wk.
Unfortunately, neither of these results is directly applica-
ble to the case we are interested in - as mentioned earlier
images are highly non-Gaussian so Gaussian potentials are
not appropriate. Furthermore, the translation invariance of
images would suggest that our prior also needs to be trans-
lation invariant as in the FOE model. If we have K filters in
the FOE model, then the model is K times overcomplete.

It would thus be desirable to obtain (1) a fast algorithm
for learning good filters and (2) a way to calculate the par-
tition function in the overcomplete, non-Gaussian case. In
this paper we provide both. We derive tractable lower and
upper bounds on the partition function based on the Fourier
transform of the filters {wk}. We also show how to calculate
high likelihood filters using iterated PCA with no sampling
required. Applying our results to previous models shows
that the nonintuitive features are not an artifact of the learn-
ing process but rather are capturing robust properties of nat-
ural images.

2. Analysis
We start by reviewing the results of Williams and

Agakov [27] for Gaussian potentials. We will use a slightly
different derivation that extends more easily to the non
Gaussian case. Suppose we define a probability distribu-
tion over images using a single, linear filter. In this case,
the energy of an image x is given by:

EGaussian(x;w) = (wT x)2 + ε‖x‖2 (6)

where the ε‖x‖2 term is there to make sure that e−E(x) is
normalizable - otherwise all directions orthogonal to w are
completely unconstrained.

The log likelihood of a dataset {xi} is given (up to a term
that is independent of w):

ln Pr({xi};w) = −
∑

i

(

(wT xi)
2 − ln Z(w)

)

(7)

What vector w will give the maximum of the log likeli-
hood ? As pointed out by [12] a good vector should give
low energy to the training images (so that (wT xi)

2 is min-
imal) but also give high energy to all other images (so that
Z(w) is minimized). In the absence of the Z(w) term we
could always choose w = 0. But what happens if we con-
strain the norm of w by wT w = 1 ? For the Gaussian case,
we can explicitly calculate ln Z(w) = − ln det(wwT + εI)
and this can be shown to be constant for any w that satisfies
wT w = 1. In fact, the following observation proves this is
true for arbitrary energy functions:

Observation 1: Let E(wT x) be an arbitrary function of
wT x. Define Z(w) =

∫

x
e−E(wT x)+εxT xdx. Then Z(w) =

Z(v) for any unit norm vectors w,v.
The proof follows from the fact that we can always

choose an orthogonal transformation A so that Aw = v.
The result then follows from a change of integration vari-
ables.

Corollary 1: If we restrict ourselves to unit norm vectors
w and Gaussian potentials, then the maximum likelihood w
is the minor component of the data - the eigenvector of the
covariance matrix with minimal eigenvalue.

Proof: Since Z(w) is constant for any unit norm vector,
the MLE w is given by maximizing the first term:

w∗ = arg min
w:wT w=1

∑

i

(wT xi)
2 (8)

and this is the minor component of the data.
Observation 1 and Corollary 1 have analogues in the case

of K orthogonal vectors.
Observation 2: Let E(wT x) be an arbitrary function

of wT x. Define Z(w) =
∫

x
e−

�
k

E(wT
k x)+εxT xdx. Then

Z(w) = Z(v) for any set of K orthonormal vectors
{wi}, {vi}.

Corollary 2: If we restrict ourselves to orthoronormal
set of K vectors w, then the maximum likelihood linear fil-
ters wk for Gaussian potentials are the K minor components
of the data.

To summarize, in the Gaussian case we can find the opti-
mal orthonormal filters wk using an extremely simple algo-
rithm - just calculating the minor components of the data.
It can also be shown [27] that the restriction to orthonor-
mal vectors is not necessary - if we remove that restriction
and solve for the optimal vectors wk without any costraints
we still recover the minor components. The only difference
will be that each minor component vk is rescaled accord-
ing to its eigenvalue wk = vk

1
ε+λk

. Finally, the result also
holds when we restrict our linear filters to be compact in the
image. For example, for computational reasons, we may
want our filters to be no larger than M × M . In this case,
the optimal filters are simply the minor components of the
set of M × M patches of natural images.
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Figure 3. Top: The minor components of 9×9 patches taken from
the Einstein image. Bottom: Log histograms of the filter outputs
on the Einstein image (red) and a white noise image (green). Even
though the minor components look nothing like derivative filters,
they give low energy to natural images but high energy to all other
images.

Figure 3 show the K minor components of a set of nat-
ural image patches (of size 9 × 9). They look nothing like
derivative filters and at first glance seem highly counterin-
tuitive. Nevertheless these are the maximum likelihood fil-
ters to use with Gaussian potentials when building a model
of natural images. This is simply because they rarely fire
on natural images (since they minimize wT x) but fire fre-
quently on all possible images (since they are constrained to
be unit norm). Figure 3b shows the histogram of the filter
output on a natural image (red) versus a white noise image
(green).

What about non Gaussian potentials ? Using observation
2, we have:

Corollary 3: If we restrict ourselves to orthoronormal
set of K vectors w, then the maximum likelihood linear fil-
ters w∗

k for an arbitray energy function E(wT x) are the K
orthogonal vectors that minimize:

{w∗
k} = arg min

{wk}∈ortho

∑

i

∑

k

E(wT
k xi) (9)

Although the minimum in equation 9 cannot be calcu-
lated by a simple eigenvector calculation, note that it does
not require any sampling or evaluation of Z. In section 3
we show an efficient EM algorithm for performing the min-
imization for a large class of energy functions.

The fact that the optimal filters can be found without
sampling or partition function evaluation for undercomplete
models was pointed out by Welling et al. [26]. They used
a slightly different probabilistic model - rather than adding
ε‖x|2 to the energy function, they only assumed a Gaussian
distribution on directions orthogonal to wk. This makes it
difficult to directly extend their result to the overcomplete
case. But the basic idea behind corollaries 1 - 3 is very sim-
ple and holds for overcomplete representations as well - if
we can find a set for which the partition function is constant,
the optimal filters in that set can be found using constrained
optimization and without sampling. The challenge is to find

Gaussian FOE Gaussian POE

a b c d
Figure 4. a.-b The filter that maximizes the likelihood of the Ein-
stein image in a Gaussian Fields of Experts model along with its
power spectrum. c.-d The filter that maximizes the likelihood of
the Einstein image in a Gaussian Products of Experts model along
with its power spectrum.

a constraint set upon which the partition function is con-
stant.

2.1. Gaussian Fields of Experts

A Gaussian Field of Experts (GFOE) prior is of the
form:

Pr(x; {wk}) =
1

ZGFOE({wk})

∏

i,k

e−(wT
ikx)2 (10)

Since this is a jointly Gaussian pdf, its partition function
is simply:

− ln ZGFOE({wk}) = ln det





∑

i,k

wikwT
ik



 (11)

Since the log likelihood is the energy minus ln Z, given
two filter sets that fire equally on the training set, the log
likelihood will favor the set that maximize the log determi-
nant in equation 11. But what filters are these ? We can
get better intuition by looking at the filters in the frequency
domain.

Observation 4: Let Wk(ω) be the Fourier transform of
filter wk. Then:

− ln ZGFOE({wk}) =
∑

ω

ln

(

∑

k

|Wk(ω)|2

)

(12)

Proof: This follows from the fact that wik is simply
the shift of w to pixel i and so applying all wik to an
image is equivalent to convolving the image with k fil-
ters . This makes the determinant on the right hand side
of equation 11 to be the determinant of εI + AT A where
A = [A1;A2; · · ·AK ] and each Ak is a convolution matrix.
It can then be shown that AT A is also a convolution with a
filter whose Fourier coefficients are the sum of the squares
of the individual filters (e.g. [25]). The eigenvalues of con-
volution matrices are simply the Fourier transform of the
corresponding filter.
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From observation 4 it is clear that the log determinant
can always be increased by increasing the norm of the fil-
ters. This is similar to the case of undercomplete products
of experts, where we saw that constraining the filters to be
unit norm was enough to make the partition function con-
stant. This, however, is no longer the case in GFOE.

Corollary 4: Suppose we constrain all filters to have unit
norm. The the negative log partition function − ln ZGFOE

is maximized when the filters satisfy the tiling constraint:.
∑

k

|Wk(ω)|2 = c (13)

In other words, the summed energy of all filters in a given
frequency should be a constant (independent of frequency).

Proof: This follows from adding Lagrange multipliers
to the equation for − ln ZGFOE and differentiating.

The tiling constraint is well studied in filter design and
signal processing. It is equivalent to the requirement that
the set of filters form a tight frame or be self inverting [22].
It means that recovering the original signal from the k con-
volved signals is trivial - we simply convolve each filtered
signal with a flipped version of the same filter and sum
(see [22] for more details). It is interesting that this same
constraint comes up in the case of maximum likelihood es-
timation.

The tiling constraint has a simple interpertation in the
case of a single filter w - it simply requires that w be or-
thogonal to all its translates (the tiling constraint means that
the convolution of w with itself is the delta function). One
such filter is the delta function. Another example is a filter
that is simply white noise - for large filter size, this filter
will become orthogonal to its translates. When there are
multiple filters, however, none of them needs to be orthogo-
nal to its translates to satisfy the tiling constraint. A simple
example are the pair of filters [1, 1] and [1,−1] which can
be shown to tile together. This is because the convolution
of one filter with itself cancels out the convolution of the
second filter with itself everywhere but the origin.

Combining the form of log Z with the energy (which
involves the energy of convolving x with the filters) gives
a simple equation for the optimal filters in the Fourier do-
main.

Observation 5: Let Wk(ω) be the Fourier transform of
filter wk and X(ω) the Fourier transform of x, then the max-
imum likelihood filters for a GFOE model satisfy:

∑

k

|Wk(ω)|2 =
1

|X(ω)|2
(14)

When there is a single filter K = 1, a filter satisfying
equation 14 is called a whitening filter [1]. Figure 4 shows
a 9 × 9 whitening filter for the einstein image along with
its power spectrum. This is the optimal filter for K = 1 in

a Gaussian Fields of Experts model. For comparison, fig-
ure 4 also shows the minor component for the same image
along with its power spectrum. This is the optimal filter for
K = 1 in a Gaussian product of experts model. Whereas
both filters are predominantly high frequency, the Fields of
Experts partition function favors filters that approximately
tile, and hence the filter is much broader in frequency (and
more localized in space).

2.2. Gaussian Scale Mixture Fields of Experts

As mentioned in the introduction, Gaussian potentials
are not well suited to models of natural images. It turns
out, however, that many of the potentials used in low-level
vision are well fit by a Gaussian Scale Mixture (GSM) [18].
These are potentials that are a mixture of zero mean Gaus-
sians:

Ψ(x) ∝
J
∑

j=1

πj

σj

e
− x2

2σ2

j (15)

Explicit GSM priors were used in [18],[6],[13]. Also, the
student T distribution used in the FOE model can be shown
to be a GSM [17]. Essentially the only requirement is that
the potential be monotonically decreasing away from zero
and symmetric at zero. Thus the potentials found by Zhu
and Mumford for the finest scale (see figure 2) are GSM
priors but those at the coarser scales are not.

We now define a Gaussian Scale Mixture Fields of Ex-
perts (GSM FOE) model to be a model of the form:

Pr(x; {wk}) =
1

ZGSM ({wk})

∏

i,k

Ψ(wT
ikx) (16)

where Ψ is a GSM potential.
Since each potential is a mixture of Gaussians the GSM-

FOE can also be seen as a mixture of an exponentially large
number of Gaussians (every time we multiply a mixture of
J Gaussians we obtain a new mixture of J2 Gaussians).
Thus the partition function ZGSMFOE can be expressed an-
alytically as a sum of determinants. Unfortunately, the num-
ber of determinants is the sum is exponentially large, so that
exact evaluation is intractable. We now present, however,
tractable, upper and lower bounds on the partition function.

Theorem 1: Let ZGSM be the partition function of
a GSM FOE model with filters {wk} and GSM poten-
tial defined by {πj , σj}

J
j=1. We assume that the GSM

standard deviations are ordered in increasing magnitude
σ1 ≤ σ2 · · · ≤ σJ . Let ZGFOE be the partition function
of Gaussian FOE model with the same filters but scaled by
1

σJ
. Then ln ZGSM can be bounded above and below by

ln ZGFOE plus constants that do not depend on the filters:

ln ZGFOE + Ma ≤ ln ZGSM ≤ ln ZGFOE + Mb (17)
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Figure 5. a. An illustration of the energy bound lemma. A GSM
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and lower bounds on the negative log likelihood for different fil-
ters using a GSM prior. Note that there is no overlap between the
bounds of the Laplacian and the other filters. Thus the Laplacian
provably gives the highest likelihood among this set of filters.

with:

a = ln
πJ

σJ

(18)

b = ln





∑

j

πj

σj



 (19)

and M is the number of pixels times the number of filters.
The proof is based on the following lemma.
Energy Bound Lemma: Let Ψ(x) be a GSM potential

defined by {πj , σj}
J
j=1. Let E(x) be the energy of that po-

tential E(x) = ln Ψ(x). Then:

x2

2σ2
J

− ln





∑

j

πj

σj



 ≤ E(x) ≤
x2

2σ2
J

− ln
πJ

σJ

(20)

Proof of Lemma: Since E(x) is the negative log proba-
bility of a mixture of Gaussians it has the following, varia-
tional, interpertation (e.g. [4, 15]):

E(x) = min
q

∑

j

qj

(

1

2σ2
j

x2 − ln
πj

σj

+ ln qj

)

(21)

Where the minimum is with respect to vectors q that are
positive and sum to one. An upper bound is immediately
obtained by choosing a particular q that is zero everywhere
but the last component. A lower bound is obtained by allow-
ing two different vectors q, one minimizes the first term and
the other minimizes the second two terms in equation 21.

Since the energy bound lemma holds for any x, expo-
nentiating all sides of the energy bound and then integrating
gives the desired bounds on the partition function.

The tightness of the bounds will depend on various para-
meters. Obviously, if the GSM is close to a single Gaussian
the lower and upper bounds coincide. The table in figure 5
shows the lower and upper bounds of the log likelihood of
the Einstein image for several filters using a specific GSM
FOE model (the GSM parameters were fit to the histogram
in figure 1). As can be seen, even when the upper and
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Figure 6. Explanation of non-intuitive findings in previous mod-
els. a. Natural images have a power spectrum that is mostly con-
centrated at low spatial frequencies and falls off as 1/f 2 (figure
replotted from [23]). b. The Roth and Black filters have a spec-
trum concentrated at the high spatial frequencies so that they fire
rarely on natural images c. A coarse scale derivative filter, actually
fires more frequently on natural images compared to random im-
ages with the same intensity range. Hence the Zhu and Mumford
model learned an inverted potential for the coarse derivatives (see
figure 2).

lower bounds do not coincide, they still allow us to rigor-
ously prefer some filters over others. In particular, the 3× 3
Laplacian, which is close to the optimal filter for a Gaussian
model (see figure 4a) is the best filter in this set when a
GSM potential is used. Interestingly, Zhu and Mumford
also found the 3 × 3 Laplacian to be the best single filter to
use, in their study [30].

2.3. Summary - what makes a good model of natural
images ?

To summarize, when we use GSM priors in models based
on filter outputs, we seek filters that fire rarely on natural
images but frequently on all other images. But how can we
characterize filters that fire rarely on natural images ? One
well-known property property of natural images is that their
image power spectra tend to fall off with increasing spatial
frequency (e.g. [24]). Typically this is modelled by assum-
ing that power falls off as 1/f2. This is a remarkably con-
sistent property - figure 6a shows the mean power of 6000
natural scenes (replotted from [23]) which obeys a power
law with the exponent 2.02. Since maximum likelihood
seeks filters that fire rarely on natural images, this means
that good filters should have most of their power concen-
trated at the high spatial frequencies. Figure 6b shows the
average power spectrum of the Roth and Black filters. Al-
though the filters look relatively random, their power spec-
trum is not uniformly spread out, but rather concentrated at
the high frequencies.

The 1/f amplitude spectrum property also explains the
inverted potentials found by Zhu and Mumford for coarse
derivatives. In their case, the class of “all other images”
was restricted to have the same range in intensities as nat-
ural images (i.e. all signals considered had intensity values
between 0 and 255). When this restriction is combined with
the 1/f property, this means that coarse derivatives (which

6



are primarily low spatial frequency) actually fire more on
natural images than on white noise (compare figure 6c with
figure 3). Thus a strong response from a coarse derivative
filter on a signal x makes it more likely that x is indeed a
natural image, which is precisely what the inverted poten-
tials are imposing.

3. Basis Rotation Algorithm
From the upper and lower bounds on ln ZGSM we can

immediately obtain a lower bound on the log likelihood. As
in many variational approaches to machine learning [11] we
can then run an optimization algorithm such as gradient as-
cent to increase the lower bound.

An even simpler strategy is to restrict the search to a set
of filters w for which ln Z is constant, and just find filters
in that set that fire rarely on natural images. We can eas-
ily define such a set, by considering all possible rotations
of a single basis set of filters bk. That is, if we denote by
B a matrix whose kth column is bk and R is any K × K
orthogonal matrix then ln ZGFOE(B) = ln ZGFOE(RB)
(this follows directly from equation 12).

In order to learn an orthogonal matrix R such that the
columns of W = RB minimize the energy on the train-
ing set we use a variant of the EM algorithm. We learn
the columns of R one by one, where each column rk is
restricted to be unit norm and orthogonal to the previous
columns.

We take the training images and divide them into L × L
patches. Let {y(t)} denote these training patches.

E step:

qj(t) ∝
πj

σj

e
− 1

2σ2

j

(wT y(t))2

(22)

M step:

r = eig min BT





∑

t,j

qj(t)

σ2
j

y(t)yT (t)



B (23)

w = Br (24)

It is easy to show that the GSM energy on the training
set never increases at every iteration, and the unit norm con-
straint on r is satisfied.

After finding k columns of r we require that rk+1 be
orthogonal to the previous columns by building a matrix L
whose columns are all orthogonal to r1 · · · rk. the M step is
then modified by replacing B with LB. The idea of basis
rotation has also proven powerful in the context of complete
ICA algorithms [10].

4. Experiments
We used the algorithms described above to learn filters

for a FOE prior over natural images. We used the same

Figure 7. Filters found using the basis rotation algorithm by only
considering filter sets that have the exact same mean power spec-
trum as the Roth and Black filters. These filters give higher upper
and lower bounds on the likelihood of the training set compared to
the Roth and Black filters, and they exhibit more structure.

Input FOE (5 × 5) Basis Rotation

PSNR:30.65 dB PSNR:31.48 dB
Figure 8. Comparing denoising results with the Roth and Black
5 × 5 filters and the 15 × 15 filters learned using the EM algo-
rithm. The larger filters can pick up faint lines and edges (e.g. the
texture pattern on the vest, the hair) while the 5 × 5 filters tend to
oversmooth.

training set used by Roth and Black [19] – a subset of the
Berkeley segmentation database. For training 5 × 5 filters,
we used the same set of patches used by Roth and Black,
while for training larger filters, we sampled 65, 000 15× 15
patches from the training set. In all the experiments reported
here, the GSM prior was fixed and had the shape shown in
figure 5.

In a first set of experiments, we trained 5 × 5 and 3 × 3
filters using conjugate gradient ascent on the approximate
log likelihood. We found that learning was quite rapid - less
than half an hour to train 24 5 × 5 filters. The filters found
were different between different runs of the learning, but
always had the same characteristics as the Roth and Black
filters shown in figure 2. They were predominantly high
frequencies but otherwise unstructured.

In a second set of experiments, we trained 15 × 15 fil-
ters using the basis rotation algorithm. As a basis set, we
either used shifted versions of the whitening filter or shifted
versions of a filter whose power spectrum equals the mean
power spectrum of the Roth and Black 5 × 5 filters (i.e. the
basis filter was the inverse Fourier transform of the power
spectrum showed in figure 6). The results were essentially
equivalent when using either basis set. Figure 7 shows the

7



learned filters using the Roth and Black basis set. By con-
struction, these filters have the same mean power spectrum
as the Roth and Black filters, so in terms of the second-
order statistics of natural scenes, they are equivalent. But
the higher order statistics are quite different - the basis ro-
tation filters are more structured and elongated, oriented re-
ceptive fields are consistently found. This is consistent with
previous results on learning receptive fields [16, 1].

Since we are searching in a space in which the bound on
the partition function is constant, we can compare the ap-
proximate likelihoods of different filter sets by simply mea-
suring which filter set fires more rarely on natural images.
We indeed find that the larger, more structured filters, have
higher upper and lower bounds on the log likelihood com-
pared to the unstructured Roth and Black filters or compared
to taking translates of a single whitening filter. However,
the differences can be quite small (e.g. the Roth and Black
filters achieve 88% of the minimal energy, while the whiten-
ing filter by itself achieves 98%).

In a final set of experiments, we compared the denoising
performance of the different learned filters. Given an input
image y we used conjugate gradient descent to minimize
J(x) = − ln Pr(x;w) + 1

2σ2 ‖x− y‖2 where σ2 is the vari-
ance of the observation noise and Pr(x;w) is the GSM FOE
prior (equation 16). Figure 8 shows results on the Einstein
image (note that this image was not part of the training set).
The 15 × 15 filters tend to preserve weak edges and lines
(e.g. the texture patterns on the vest and on the hair) while
the 5 × 5 filters tend to oversmooth. Figure 8 also gives the
peak signal to noise ratio (PSNR [19]) which is better for
the 15 × 15 result (although which result looks better may
be a matter of taste). The result in figure 8b uses the FOE
filters, but it is not using the Roth and Black denoising al-
gorithm (which includes a regularization constant tuned on
a training set, and filter-specific student T potentials). Their
full algorithm gives PSNR 31.72 but the perceptual differ-
ence remains - the 5×5 filters consistently oversmooth faint
lines and edges which the 15 × 15 filters can recover.

5. Discussion
Despite much progress in understanding natural image

statistics, it has been difficult to translate this knowledge
into working machine vision algorithms. For example, the
prior learned by Zhu and Mumford, published over 10 years
ago, has not been widely adopted in machine vision. The
more recent FOE model is somewhat more widely used, but
far less than would be expected given the importance of us-
ing a good prior in many machine vision applications. Two
barriers to adoption have been (1) the huge computational
burden to learn them and (2) the nonintuitive features or po-
tentials that have been learned.

In this paper we have addressed both of these problems.
We derived a rigorous upper and lower bound on the log

partition function of models based on filter outputs and sug-
gested a novel basis rotation algorithm to learn high likeli-
hood filters. Our analysis indicates that good filters to use
with a GSM prior are ones that fire rarely on natural im-
ages while frequently on all other images. When this is
combined with the 1/f property of natural image ampli-
tude spectra, it explains why the Roth and Black filters are
predominantly high frequency and why inverted potentials
are obtained for coarse derivative filters. We also showed
that using our basis rotation algorithm it is possible to learn
even better filters in a matter of minutes.
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