CS726, Fall 2008 Final Examination

Monday, December 15, 2008, 12:25pm-2:25pm.

Answer all FOUR questions below. One handwritten sheet of notes (written front and back) is allowed. EXPLAIN ALL YOUR ANSWERS.

- 1. (a) Consider the unconstrained minimization problem min f(x), where f is a smooth function. Using the motivation from Taylor's Theorem and least-squares, derive a Barzilai-Borwein formula for the line search parameter α_k in the iteration $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.
 - (b) When $f(x) = (1/2)x^T A x$, for symmetric positive definite A, express the formula from part (a) as a function of the latest step $s_k := x_k x_{k-1}$ and the Hessian A.
 - (c) Consider the steepest descent method with exact line search applied to the convex quadratic function f from part (b). The iterations have the form $x_{k+1} = x_k \gamma_k \nabla f(x_k)$, where γ_k is chosen to minimize the function f along the direction $-\nabla f(x_k)$. Express γ_k explicitly in terms of $s_{k+1} := x_{k+1} x_k$ and A (using the fact that $s_{k+1} = \gamma_k \nabla f(x_k)$).
 - (d) Comment on the relationship between γ_k from (c) and α_k from (b).
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function and suppose that $\{x_k\}$ is a sequence of iterates in \mathbb{R}^n . Suppose further that $\liminf \|\nabla f(x_k)\| = 0$ and that \bar{x} and \tilde{x} are the only two accumulation points of the sequence $\{x_k\}$.
 - (a) Must at least one of \bar{x} and \tilde{x} be stationary points of f? Must both of \bar{x} and \tilde{x} be stationary points of f?
 - (b) How does your answer to part (a) change if $\{x_k\}$ is a bounded sequence?
- 3. A fundamental first-order necessary condition for optimality of x^* in the problem $\min_{x \in \Omega} f(x)$, where Ω is closed and convex, is that

$$x^* \in \Omega$$
 and $\nabla f(x^*)^T (z - x^*) \ge 0$ for all $z \in \Omega$.

Find the specialization of the first-order optimality conditions to the following two definitions of Ω , where $v \in \mathbb{R}^n$ is a fixed vector:

- (a) $\Omega = \{ \gamma v \mid \gamma \in \mathbb{R} \}.$
- (b) $\Omega = \{ \gamma v \mid \gamma \ge 0 \}.$
- 4. Consider the direction set $\mathcal{D} = \{p_1, p_2, \dots, p_{n+1}\}$, where all p_i are in \mathbb{R}^n with

$$p_i = e_i, i = 1, 2, \dots, n, p_{n+1} = -\frac{1}{n}(1, 1, \dots, 1)^T,$$

where $e_i = (0, ..., 0, 1, 0, ..., 0)^T$ with the 1 in position *i*. Find a positive value of $\delta > 0$ such that for all possible $v \in \mathbb{R}^n$, we have

$$\max_{i=1,2,...,n+1} p_i^T v \ge \delta ||v||_1.$$