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Abstract— To predict the three dimensional structure of pro-
teins, many computational methods sample the conformational
space, generating a large number of candidate structures.
Subsequently, such methods rank the generated structures
using a variety of model quality assessment programs in order
to obtain a small set of structures that are most likely to
resemble the unknown experimentally determined structure.
Model quality assessment programs suffer from two main
limitations: (i) the rank-one structure is not always the best
predicted structure; in other words, the best predicted structure
could be ranked as the 10th structure (ii) no single assessment
method can correctly rank the predicted structures for all
target proteins. However, because often at least some of the
methods achieve a good ranking, a model quality assessment
method that is based on a consensus of a number of model
quality assessment methods is likely to perform better. We
have devised the STPdata algorithm, a consensus method based
on five model quality assessment programs. We have applied
it to build an on-line “custom-trained” hierarchy of general
linear models to select and rank the best predicted structures.
By “custom-trained”, we mean for each target protein the
STPdata algorithm trains a unique model on data related to the
input target protein. To evaluate our method we participated in
CASP8 as human predictors. In CASP8, the STPdata algorithm
has trained 128 hierarchical models for each of the 128 target
proteins. Based on the official results of CASP8 our method
outperformed the best server by 6% and won the fourth position
among human predictors. Our CASP results are purely based
on computational methods without any human intervention.

I. INTRODUCTION

Proteins are very import molecules in nature whose

function depends on their three-dimensional structures. The

knowledge of the tertiary structure of the proteins has

applications in medicine, drug design, the development of

pesticides and herbicides, and in food industry [1]. The

three-dimensional structure of the proteins can be determined

experimentally by X-ray crystallography, nuclear magnetic

resonance and other methods. However, these methods are

slow, expensive, and not applicable to all proteins. Based on
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a conservative estimate, there are more than 1010 proteins on

earth [2] in addition to the engineered ones. The importance

of the knowledge of proteins shape, the abundance of pro-

teins of unknown structures, and the limitations of the exper-

imental methods have all contributed to the need for the com-

putational methods to predict the three dimensional shape of

proteins. The currently available computational methods of

protein structure prediction usually generate large number of

predicted structures for the same target protein. Therefore;

determining or predicting the quality of a predicted structure

without knowing the experimentally determined structure

is an important problem in the protein structure prediction

field. A model quality assessment program (MQAP) aims to

predict the quality of a computationally generated structure

without knowing the real experimental structure.

In our work we developed a machine learning based model

quality assessment program. Traditionally, several machine

learning algorithms have been used to learn one function to

predict the quality of the computationally generated struc-

tures for all target proteins. In contrast to the traditional ap-

proaches, we have developed a framework which is capable

of learning a custom scoring function for each target protein.

In this paper we propose the idea of a custom-trained expert.

Related model quality assessment programs [3]–[7] are based

on machine learning algorithm. The learning algorithm learns

a function that maps a combination of a set of features

extracted form the computationally generated structures to

a quality score such as the RMSD score [8], the MaxSub

score [9], the TM score [10], and the GDT score [11]. The

developers of these methods formulated the problem as a

regression problem. The majority of these methods except the

one developed by Qiu et al. [7] treat all structures the same

way during training, while Qiu’s method pays attention to the

high quality structures during training. In our work we also

distinguish between the high quality structures from the low

quality structures during training and testing. We formulate

the problem as a classification task followed by a regression

task. The two main contributions of our work are: (i) we

devised the STPdata algorithm to build a custom-trained on-

line model for each target protein (ii) we used a hierarchical

model to select the best predicted structures then rank these

structures. At the first level, we classify the structures into

two classes: the high quality structures and the low quality

structure. At the second level, we use a regression model to

rank the high quality structures.

To test our method we participated in CASP8 as human

predictors. Based on the official results of CASP8 [12] our

method outperformed the best server by 6% and won the
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fourth position among human predictors. Our results are

purely based on computational methods and there was no

human intervention.

II. METHODS

A. Data and Preprocessing

Data: the available data consists of the predicted structures

submitted to CASP6 [13], CASP7 [14], and CASP8. We

used CASP6 data in training, servers’ predictions in CASP7

in validation, and CASP7 humans’ predictions in testing.

The first author has participated in CASP8; therefore, the

CASP8 data is used as an independent test conducted by

CASP8 assessors. We consider all of the five structures

submitted by each group not only the rank-one structures

for two reasons: (i) the rank-one structure predicted by

each group is not necessarily the best predicted structure;

the best predicted structure may be ranked as the 4th or

the 5th [15] (ii) our goal is to develop a model quality

assessment program which is capable to select and rank the

best predicted structures among a large set of structures. All

data are preprocessed as the following: (i) select structures

that are at least 85% complete (ii) select full atoms structures

(iii) run the Modeller [16] program on the selections, then

remove structures whose MaxSub score with the original

model is less than 0.85. During training, target proteins

whose best predicted structure has a MaxSub score less

than 0.3 are excluded from the training set. In addition, all

structures which have MaxSub scores less than 0.1 are also

removed from the data sets 1.

Algorithm Input And Output: our learning algorithm

predicts the structure rank based on the MaxSub score

[9]. The MaxSub score is the three dimensional similarity

between two protein structures. The learning algorithm can

be extended easily to predict ranks based on additional

similarity measures such as the RMSD score [8], the GDT

score [11], and the TM score [10]. However, we have decided

to use the MaxSub score due to the high correlation among

these similarity scores. The inputs to our learning algorithm

are five scores obtained from the following MQAPs: ProQ

[3], Prosapair [17], [18], ModCheck [19], DFire [20], and

the 3dSim which is the three dimensional similarity score.

We have used these five scores for two reasons. First, 3dSim,

ProQ, and ModCheck are highly correlated with the MaxSub

score. Second, ModCheck, DFire, ProQ, and Prosa-Pair have

the lowest average of incorrectly ranking the true rank-

one structure. 3dSim is the average of the MaxSub scores

between a structure and the other structures predicted for

the same target protein provided that the MaxSub similarity

score between the two models is greater than 0.4. Similar

scores are implemented by [4], [5], [7], [21]. Equations 1

and 2 show how the 3dSim score is computed.

δ (i, j) =

{

1 if MaxSub(i, j) ≥ 0.4;

0 o.w.
(1)

1Some of the excluded structures were removed erroneously due to
software error. However, this accident does not affect the outcome of the
training or the validation of our algorithms.

3dSim(m,S) =
∑

|S|

si ∈ S and si 6= m
MaxSub(m,si)× δ (m,si)

|S|−1
(2)

Where m is a predicted structure, S is the set of all predicted

structures to the same target protein.

Data Normalization: We use the 0-1 normalization

method and two rank-based normalization methods at dif-

ferent stages to standardize the data. In both cases, the

normalization methods we use are target-wise normalization.

In other words, we standardize the values of each score

with regard to the structures predicted to the same target

protein only. Our target-wise normalization is different from

the method implemented in [7]. Equation 3 shows how to

normalize a score value v of a structure i which is predicted

to target protein t.

vt
i =

vt
i − vt

min

vt
max − vt

min

(3)

Where vt
max and vt

min are the maximum and minimum score

values of all structures predicted to the same target protein.

B. The Learning Framework

The STP algorithm: Sample-Train-Predict [22]. We ap-

ply the STP algorithm when the available data have two

main properties. First, the available training (labeled) data is

constantly growing. For example, the protein structure bank

is increasing in size on a weekly basis. Second, the data

is intrinsically clustered based on similarity in sequence,

structure or function (each cluster has high-level semantic

meaning). For instance, a set of predicted structures to the

same target protein is viewed as a cluster in our current work.

We have devised two variants of the STP algorithm: STPdata

and STPmodel. We describe the application of the STPdata

algorithm in this article.

Figure 1 outlines the STPdata algorithm. The STP algo-

rithm does its prediction in a batch mode i.e. it takes a cluster

of data of unknown target values as its input and outputs

the results in a batch mode as well. The STP algorithm has

three stages: (i) Sample: select a subset of the training data

based on the similarity to the unlabeled data; we use the

distribution of the 3dSim scores as the similarity measures

between the input (test) cluster and the clusters stored in the

database (ii) Train: train a hierarchy of general linear models

on the sampled data (iii) Predict: use the trained hierarchical

model to select and rank the best predicted structures. We

regard the STPdata algorithm as a method to build a custom-

trained expert designed specifically to the input target protein

predictions.

The STP Algorithm Input and Output: input: a n×m

scores matrix S, such that si j is the jth score value of the ith

predicted structure. The scores matrix S contains the MQAPs

scores of the structures predicted to the same target protein.

All scores are standardized between 0.0 and 1.0.

S =













S11 S12 . . . S1m

. . . .

. . . .

. . . .

Sn1 Sn2 . . . Snm












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Fig. 1. The STP algorithm does its prediction in a batch mode i.e. it takes a cluster of data of unknown target values Tx as its input and outputs the
results in a batch mode as well. The STP algorithm has three stages: (i) Sample: select a subset of the training data based on the similarity to the unlabeled
data (ii) Train: train a hierarchy of general linear models on the sampled data (iii) Predict: use the trained hierarchical model to select and rank the best
predicted structures.

Output: The predicted ranks of the best predicted structures.

STPdata Sampling: STPdata considers the MQAPs’

scores of the structures predicted to the same target protein as

one cluster. We represent each cluster by two centers of the

bimodal distribution of the 3dSim scores and the percentages

of the predicted structures that belong to each mode, in

other words, four parameters represent each cluster: two

parameters for centers and two parameters for percentages.

In section IV, we give the reasons for using the 3dSim

distribution as the similarity measure. We obtain the two

centers by applying the k-means clustering algorithm with

initial centers 0.0 and 1.0 to the 3dSim scores of each cluster.

For example, the vector [0.8 0.1 0.6 0.4] means that the k-

means algorithm found two centers at 0.8 and 0.1, and 60%

of the predicted structure are clustered around the 0.8 center

and the other 40% of the predicted structures are clustered

around the 0.1 center. We represent the input cluster in a

similar fashion. Then, we apply the k-nearest algorithm to

the clusters representations to find the nearest 22 clusters to

the input cluster. We have decided to use 22 clusters based

on experimental results on the training and validation sets.

STPdata Training: in this stage the algorithm trains a

custom-made hierarchy of general linear models (GLM) [23]

specifically to the input cluster. The GLM for n observations

can be expressed as

A = Sv + e (4)

Where A is a matrix of target values, S is the n×m MQAPs

scores matrix as defined earlier, v is the m-dimensional

regression coefficients vector, and e is the n-dimensional

errors vector. Next we use the pseudo inverse solution to

solve equation 4 for the weights vector w. Let w be a m+1

dimensional vector of 1 and m regression coefficients, then

Sw = A (5)

w = (ST S)−1ST A (6)

Hierarchy of General Linear Models: the model consists

of three levels. At the first level, DFire selects the top 80

predicted structures to eliminate low quality structures. At the

second level, a linear classifier separates the top 40 structures

from the lower 40 structures. At the third level a linear

regression model ranks the top 40 predicted structures. We

have set these parameters to participate in CASP8 based on

the number of the predicted structures per target protein in

CASP6 and CASP7. However, these two thresholds should

be increased when our method is applied to computational

methods that produce a large number of predicted structures.

The Linear Classifier: the classifier learns to separate

two classes: (i) the class of the top 40 ranks (1-40) and

(ii) the class of the lower 40 ranks (41-80). We choose to

make each class contains 40 structures to make sure that

the classifier is not biased to any of the two classes. The

STPdata algorithm trains the linear classifier on set D1 =
{(x1

,a1), ...,(x
q
,aq)}. Where q = 80× n, such that n is the

number of the target proteins selected at the previous stage,

input xi is a m-dimensional vector representing the m scores

of the structure i, xi = {x1, ...,xm} where

x j =

{

1 if the jth MQAP rank is below 40;

−1 o.w.;

and ai is the target to be learnt such that

ai =

{

1 if the MaxSub rank is below 40;

−1 o.w.;

For example, the pair ([1 1 -1 1 1], 1) means that the 1st ,

2nd , 4th, and 5th MQAPs rank the structure within the top

40 ranks, and the 3rd MQAP ranks the structure within the

lower 40 ranks. MaxSub ranks the predicted structure within

the top 40 ranks.

The Linear Regression Model: the linear classifier in

the previous stage selects 40 structures to pass to the third

and final stage. A regression linear model is trained to

predict the MaxSub rank of the structure. STPdata trains the

linear regression model on set D2 = {(x1
,a1), ...,(x

k
,ak)}.

Where k = 40× n, such that n is the number of proteins

sampled at the sampling step, input xi is a m-dimensional

vector representing the m MQAPs scores of a structure i.

xi = {x1, ...,xm}, where x j is the structure rank assigned by

the jth MQAP, and x j ∈ {1,2, ..,39,40}. The output a j is

the rank assigned by MaxSub, and a j ∈ {1,2, ..,39,40}. For

example, the pair ([1 5 7 3 4],3) means that the five MQAPs
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rank the structure as the 1st , the 5th, the 7th, the 3rd , and the

4th structure, and MaxSub puts the structure on the 3rd rank.

STPdata Prediction: once the on-line custom-trained

hierarchy of general linear models is trained on the related

clusters to the input cluster, the STPdata algorithm outputs

the predicted top 40 structures and their ranks.

III. RESULTS

CASP8 results: the first author has participated with

ZicoSTP 2 in CASP8 to evaluate its performance by in-

dependet assessors. The ZicoSTP database consists of the

predicted structures by the servers and the human predictors

in CASP6. Here we report the performance of our method on

71 domains from the Human/Server targets. These results are

based on the official CASP8 results [12]. Figure 2 shows the

improvement in performance of our method over the best five

performing servers in CASP8 based on the GDT TS score.

ZicoSTP outperformed the first, second, and third performing

servers by 6%, 27%, and 48% respectively.
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Fig. 2. The improvements of the ZicoSTP over the best performing servers
in CASP8

Evaluation on the CASP7 human predictors structures:

we have tested ZicoSTP to select and rank the best structures

predicted by the human predictors in CASP7. All data are

preprocessed in the same manner as in the training stage.

ZicoSTP outperformed the best human predictor (Zhang)

by 3.19% as shown in Table I. ZicoSTP outperformed the

best tested model quality assessment program in our study

(3dSim) by 8.03%. We measure the performance as the sum

of the rank-one structures MaxSub scores.

TABLE I

THE PERFORMANCE OF ZICOSTP ON THE HUMAN PREDICTORS

STRUCTURES IN CASP7

Methods Total

Best Human (Zhang) 47.76
Best MQAP (3dSim) 45.62
ZicoSTP 49.28
Improvement over Best Human 3.19%
Improvement over Best MQAP 8.03%

2The official name in CASP8 is ZicoFullSTP.

IV. DISCUSSION

In this section we take a deeper look at the learnt function.

We give the reasons to use the 3dSim distribution as a cluster

similarity measure and we compare our method to other

related work.

The learnt functions: The STPdata algorithm learns a

hierarchical model for each target protein. Traditionally, there

is only one learnt function used to rank the predicted struc-

tures of all target proteins [3], [5]–[7], [24]. In contrast, we

use a custom-learnt function to rank the structures predicted

to a specific target protein. The STPdata algorithm learnt 128

different hierarchical models for the 128 target proteins in

CASP8. Figure 3 shows the weights associated with the ranks

assigned by the 5 model quality assessment programs in the

linear regression model (the third level). We did this analysis

on target proteins from CASP8. These curves show how the

learnt weights changes for each target protein. 3dSim ranks

has the largest weights followed by Prosa-pair.
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Fig. 3. The weights associated with the ranks assigned by the 5 model
quality assessment programs in the linear regression model (the third level
of the hierarchical model)

The 3dSim Distribution as a Clusters Similarity Mea-

sure: we specifically choose the distribution of the 3dSim

scores as a similarity measure between the input cluster and

the clusters stored in the training database for the following

three reasons: (i) the 3dSim score is highly correlated with

the MaxSub scores (the target to be learnt) (ii) the distribu-

tions of the MaxSub scores and the 3dSim scores are bimodal

as shown in figure 4 (iii) the distribution of the 3dSim scores

has one of the lowest KL divergence from the distribution of

the MaxSub scores indicating the similarity between these

two distributions.

Comparison to The Related Work: we compare our

work to the other machine learning based model quality

assessment programs, namely: ProQ [3], SVMod [6], and

SVR [7]. The following seven aspects highlight the differ-

ences and the similarities between our work and the related

work: (i) the framework learns a unique function per target

protein; however, the other methods learn only one function

for all target proteins (ii) ZicoSTP uses a subset of proteins
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Fig. 4. The distributions of the MaxSub scores and the 3dSim scores

which are related to the input target protein to build on-

line a custom-trained hierarchy of GLM’s. On the other

hand, ProQ, SVMod, and SVR use all available training data

(iii) ProQ and SVMod do not distinguish between the high

quality structures and the low quality ones during training or

testing. SVR assigns higher penalties to errors in ranking the

high quality structures during training. ZicoSTP contains a

linear classifier to separates the high quality structures from

the low quality ones during training and testing (iv) ProQ,

SVMod, and SVR rank the predicted structures in one pass;

however, our system ranks the predicted structures in two

passes (v) the developers of the related MQAP’s formulated

the task as a regression problem. In our work, we formulate

the problem as a classification task followed by a regression

task (vi) SVMod, SVR, and ZicoSTP are based on linear

models, namely: SVM (with linear kernel) and GLM. ProQ

is based on a multi-layer artificial neural network which is

a non-linear model (vii) ProQ predicts the MaxSub and the

LGscore scores. SVMod predicts the RMSD scores. SVR

predicts the GDT TS scores, and our system predicts the

MaxSub ranks (viii) SVR uses a target-wise normalization in

which there is a specific feature to represent the target iden-

tity. We have also used a target-wise normalization; however,

our method is different from the one used in the SVR. We

did not include an extra feature to describe the target identity.

We used two method of normalization at different stages of

the STP algorithm: (a) the 0-1 normalization applied to the

structures predicted to the same target protein only (b) the

rank-based normalization applied to the structures predicted

to the same target protein only.

V. CONCLUSION

In this article we presented an on-line hierarchy of general

linear models to select and rank the best predicted structures.

Our work has two main contributions. First, the application

of an on-line model enables us to have a custom-trained

scoring function trained specifically for a certain target pro-

tein. Second, the application of a hierarchical model provides

a way to distinguish the high quality structures from the

low quality structures during both training and testing. Each

level of the hierarchical model is a linear combination of the

ranks assigned by five model quality assessment programs.

To evaluate our method we participated in CASP8 as human

predictors. Based on the official results of CASP8 our method

outperformed the best server by 6% and won the fourth

position among human predictors.
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