
Open Geospatial Consortium

Approval Date: 2012-03-09

Publication Date: 2012-04-04

External identifier of this OGC
®
 document: http://www.opengis.net/spec/citygml/2.0

Reference number of this OGC
®
 project document: OGC 12-019

Version: 2.0.0

Category: OpenGIS
®
 Encoding Standard

Editors: Gerhard Gröger, Thomas H. Kolbe, Claus Nagel, Karl-Heinz Häfele

OGC City Geography Markup Language (CityGML) E n-

coding Standard

Copyright © 2012 Open Geospatial Consortium.

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

This document is an OGC Member approved international standard. This document is

available on a royalty free, non-discriminatory basis. Recipients of this document are

invited to submit, with their comments, notification of any relevant patent rights of

which they are aware and to provide supporting documentation.

Document type: OpenGIS
®
 Encoding Standard

Document subtype: Encoding

Document stage: Approved for public release

Document language: English

ii Copyright © 2012 Open Geospatial Consortium.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to

any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without

restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute,
and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided

that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished

agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright

notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.
THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT

MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE

DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR

FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USERôS OWN RISK. IN NO

EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE
INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY,
ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF

THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in

any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the
following sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual

Property which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the

Intellectual Property, infringe, or in LICENSORôs sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third
party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your

licensees or any other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together

with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property

shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written
authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any

third party to use certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or

specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations

Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall
be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the

entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any

rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in

violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which

may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or

registration procedures required by applicable law to make this license enforceable

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. iii

Contents

i. Abstract ... ix

ii. Preface and Acknowledgements ... ix

iii. Submitting organizations ... ix

iv. Submission contact points .. x

v. Participants in development ... x

vi. Changes to the OGC
®
 Abstract Specification ... xi

vii. Acknowledgments .. xi

Foreword .. xii

0 Introduction .. xiv

0.1 Motivation ... xiv

0.2 Historical background ... xiv

0.3 Additions in CityGML 2.0 .. xv

1 Scope ... 1

2 Conformance ... 2

3 Normative references .. 2

4 Conventions ... 3

4.1 Abbreviated terms .. 3

4.2 UML Notation .. 4

4.3 XML namespaces and namespace prefixes ... 6

4.4 XML -Schema ... 7

5 Overview of CityGML .. 9

6 General characteristics of CityGML ... 11

6.1 Modularisation ... 11

6.2 Multi -scale modelling (5 levels of detail, LOD) .. 11

6.3 Coherent semantical-geometrical modelling ... 12

6.4 Closure surfaces ... 12

6.5 Terrain Intersection Curve (TIC) ... 13

6.6 Code lists for enumerative attributes ... 14

6.7 External references ... 14

6.8 City object groups .. 14

6.9 Appearances ... 15

6.10 Prototypic objects / scene graph concepts ... 15

6.11 Generic city objects and attributes ... 15

6.12 Application Domain Extensions (ADE) .. 16

iv Copyright © 2012 Open Geospatial Consortium.

7 Modularisation .. 17

7.1 CityGML core and extension modules .. 18

7.2 CityGML profiles ... 23

8 Spatial model ... 25

8.1 Geometric-topological model .. 25

8.2 Spatial reference system .. 28

8.3 Implicit geometries, prototypic objects, scene graph concepts 28

8.3.1 Code lists .. 30

8.3.2 Example CityGML datasets ... 30

8.3.3 Conformance requirements .. 31

9 Appearance model ... 33

9.1 Relation between appearances, features and geometry 34

9.2 Appearance and SurfaceData ... 36

9.3 Material .. 37

9.4 Texture and texture mapping ... 38

9.5 Related concepts .. 44

9.6 Code lists .. 44

9.7 Conformance requirements .. 44

9.8 Material model of previous CityGML versions [deprecated] 46

9.8.1 Textured surfaces ... 47

9.8.2 Conformance requirements .. 48

10 Thematic model ... 49

10.1 CityGML Core ... 50

10.1.1 Base elements ... 52

10.1.2 Generalisation relation, RelativeToTerrainType and RelativeToWaterType 53

10.1.3 External references ... 54

10.1.4 Address information ... 54

10.1.5 Code lists .. 56

10.1.6 Conformance requirements .. 56

10.2 Digital Terrain Model (DTM) .. 57

10.2.1 Relief feature and relief component ... 58

10.2.2 TIN relief .. 59

10.2.3 Raster relief .. 59

10.2.4 Mass point relief ... 60

10.2.5 Breakline relief ... 60

10.2.6 Conformance requirements .. 61

10.3 Building model ... 62

10.3.1 Building and building part.. 64

10.3.2 Outer building installations .. 68

10.3.3 Boundary surfaces .. 69

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. v

10.3.4 Openings .. 73

10.3.5 Building interior ... 74

10.3.6 Modelling building storeys using CityObjectGroups ... 76

10.3.7 Examples .. 76

10.3.8 Code lists .. 78

10.3.9 Conformance requirements .. 78

10.4 Tunnel model ... 82

10.4.1 Tunnel and tunnel part ... 84

10.4.2 Outer tunnel installations ... 87

10.4.3 Boundary surfaces .. 87

10.4.4 Openings .. 91

10.4.5 Tunnel interior .. 92

10.4.6 Examples .. 94

10.4.7 Code lists .. 94

10.4.8 Conformance requirements .. 95

10.5 Bridge model .. 99

10.5.1 Bridge and bridge part .. 102

10.5.2 Bridge construction elements and bridge installations ... 104

10.5.3 Boundary surfaces .. 106

10.5.4 Openings .. 109

10.5.5 Bridge interior .. 111

10.5.6 Examples .. 112

10.5.7 Code lists .. 114

10.5.8 Conformance requirements .. 114

10.6 Water bodies .. 119

10.6.1 Water body ... 121

10.6.2 Boundary surfaces .. 121

10.6.3 Code lists .. 123

10.6.4 Conformance requirements .. 123

10.7 Transportation objects .. 124

10.7.1 Transportation complex.. 127

10.7.2 Subclasses of transportation complexes ... 128

10.7.3 Subdivisions of transportation complexes .. 130

10.7.4 Code lists .. 130

10.7.5 Conformance requirements .. 130

10.8 Vegetation objects .. 132

10.8.1 Vegetation object ... 134

10.8.2 Solitary vegetation objects ... 134

10.8.3 Plant cover objects ... 135

10.8.4 Code lists .. 135

10.8.5 Example CityGML dataset ... 135

10.8.6 Conformance requirements .. 136

10.9 City furniture .. 137

vi Copyright © 2012 Open Geospatial Consortium.

10.9.1 City furniture object ... 138

10.9.2 Code lists .. 139

10.9.3 Example CityGML dataset ... 139

10.9.4 Conformance requirements .. 140

10.10 Land use ... 141

10.10.1 Land use object .. 142

10.10.2 Code lists .. 142

10.10.3 Conformance requirements .. 143

10.11 City object groups .. 144

10.11.1 City object group .. 144

10.11.2 Code lists .. 145

10.11.3 Conformance requirements .. 145

10.12 Generic city objects and attributes ... 146

10.12.1 Generic city object ... 147

10.12.2 Generic attributes ... 148

10.12.3 Code lists .. 149

10.12.4 Conformance requirements .. 149

10.13 Application Domain Extensions (ADE) .. 150

10.13.1 Technical principle of ADEs .. 150

10.13.2 Example ADE .. 151

10.14 Code lists .. 154

 (normative) XML Schema definition .. 157 Annex A

A.1 CityGML Core module .. 157

A.2 Appearance module ... 162

A.3 Bridge module .. 167

A.4 Building module ... 175

A.5 CityFurniture module ... 182

A.6 CityObjectGroup module ... 183

A.7 Generics module .. 185

A.8 LandUse module .. 188

A.9 Relief module ... 189

A.10 Transportation module ... 192

A.11 Tunnel module ... 195

A.12 Vegetation module ... 202

A.13 WaterBody module .. 204

A.14 TexturedSurface module [deprecated] ... 207

A.15 Schematron rules on referential integrity ... 209

 (normative) Abstract test suite for CityGML instance documents 211 Annex B

B.1 Test cases for mandatory conformance requirements 211

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. vii

B.1.1 Valid CityGML instance document ... 211

B.1.2 Valid CityGML profile .. 211

B.1.3 Conformance classes related to CityGML modules ... 212

B.1.4 Spatial geometry objects .. 212

B.1.5 Spatial topology relations ... 212

B.1.6 Address objects .. 212

B.2 Conformance classes related to CityGML modules 213

B.2.1 CityGML Core module .. 213

B.2.2 Appearance module .. 213

B.2.3 Bridge module .. 214

B.2.4 Building module ... 214

B.2.5 CityFurniture module ... 215

B.2.6 CityObjectGroup module ... 215

B.2.7 Generics module... 216

B.2.8 LandUse module .. 217

B.2.9 Relief module ... 217

B.2.10 Transportation module ... 218

B.2.11 Tunnel module ... 218

B.2.12 Vegetation module ... 219

B.2.13 WaterBody module .. 220

B.2.14 TexturedSurface module [deprecated] ... 220

 (informative) Code lists proposed by the SIG 3D .. 223 Annex C

C.1 Building module ... 226

C.2 Tunnel module ... 233

C.3 Bridge module .. 234

C.4 CityFurniture module ... 235

C.5 LandUse module .. 236

C.6 Mime types ... 237

C.7 Vegetation module ... 238

C.8 Transportation module ... 240

C.9 WaterBody module .. 243

C.10 CityObjectGroup module ... 245

 (informative) Overview of employed GML3 geometry classes 247 Annex D

 (informative) Overview of the assignment of features to LODs 249 Annex E

 (informative) Changelog for CityGML 2.0 ... 261 Annex F

 (informative) Example CityGML datasets... 269 Annex G

G.1 Example of a CityGML dataset for a building in LOD0 269

G.2 Example of a CityGML dataset for a building in LOD1 272

G.3 Example of a CityGML dataset for a building in LOD2 275

viii Copyright © 2012 Open Geospatial Consortium.

G.4 Example of a CityGML dataset for a building in LOD2 with an adjacent

building part illustrating CityGMLôs topology representation 278

G.5 Example of a CityGML dataset for a building in LOD3 282

G.6 Example of a CityGML dataset for a building in LOD4 286

G.7 Example of a CityGML dataset illustrating the appearance model 291

G.8 Example of a CityGML dataset illustrating the use of texture coordinates for

complex surfaces with holes .. 298

G.9 Example of a CityGML dataset illustrating the use of local coordinate

reference systems ... 301

 (informative) Example ADE for Noise Immission Simulation 305 Annex H

H.1 CityGML Noise ADE .. 308

H.2 Example dataset ... 312

 (informative) Example ADE for Ubiquitous Network Robots Services 315 Annex I

I.1 Overview of Ubiquitous Network Robots ... 315

I.2 Overview of the Spatial Master Database .. 317

I.3 Overview of the CityGML ADE .. 318

I.4 Example Dataset .. 321

Annex K (informative) Revision history ... 324

Bibliography ... 325

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. ix

i. Abstract

CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models.

It is an application schema for the Geography Markup Language version 3.1.1 (GML3), the extendible interna-

tional standard for spatial data exchange issued by the Open Geospatial Consortium (OGC) and the ISO TC211.

The aim of the development of CityGML is to reach a common definition of the basic entities, attributes, and

relations of a 3D city model. This is especially important with respect to the cost-effective sustainable mainte-

nance of 3D city models, allowing the reuse of the same data in different application fields.

ii. Preface and Acknowledgements

This is the official CityGML logo. For current news on CityGML and information

about ongoing projects and fields of research in the area of CityGML see

http://www.citygml.org and http://www.citygmlwiki.org

OGC work on CityGML is discussed and coordinated by the OGC 3D Information

Management (3DIM) Working Group.CityGMLwas initally implemented and

evaluated as part of the OGC Web Services Testbed, Phase 4 (OWS-4) in the

CAD/GIS/BIM thread.

Version 2.0 of this standards document was prepared by the OGC CityGML Stand-

ards Working Group (SWG). Future discussion and development will be led by the

3DIM Working Group.

For further information see http://www.opengeospatial.org/projects/groups/3dimwg

CityGML also continues to be developed by the members of the Special Interest

Group 3D (SIG 3D) of the GDI-DE Geodateninfrastruktur Deutschland (Spatial

Data Infrastructure Germany) in joint cooperation with the 3DIM Working Group

and the CityGML SWG within OGC.

For further information see http://www.sig3d.org/

The preparation of the English document version and the European discussion has

been supported by the European Spatial Data Research Organization (EuroSDR;

formerly known as OEEPE) in an EuroSDR Commission III project.

For further information see http://www.eurosdr.net

iii. Submitting organizations

This International Standard was submitted to the Open Geospatial Consortium Inc. by the members of the

CityGML 1.0 Standards Working Group of the OGC. Amongst others, this comprises the following organiza-

tions:

a) Autodesk, Inc. (primary submitter)

b) Bentley Systems, Inc. (primary submitter)

c) Technical University Berlin (submitter of technology)

d) Ordnance Survey, UK

http://www.citygml.org/
http://www.citygmlwiki.org/
http://www.opengeospatial.org/projects/groups/3dimwg
http://www.sig3d.org/
http://www.eurosdr.net/

x Copyright © 2012 Open Geospatial Consortium.

e) University of Bonn, Germany

f) Hasso-Plattner-Institute for IT Systems Engineering, University of Potsdam

g) Institute for Applied Computer Science, Karlsruhe Institute of Technology

CityGML was originally developed by the Special Interest Group 3D (SIG 3D), 2002 ï 2012 - www.citygml.org.

iv. Submission contact points

All questions regarding this document should be directed to the editors or the contributors (including participants

in development, cf. clause v):

Name Institution Email

Prof. Dr. Thomas H. Kolbe

Claus Nagel

Alexandra Lorenz

Institute for Geodesy and Geoinformation Science,

Technical University Berlin

thomas.kolbe<at>tu-berlin.de

claus.nagel<at>tu-berlin.de

alexandra.lorenz<at>tu-berlin.de

Dr. Gerhard Gröger

Prof. Dr. Lutz Plümer

Angela Czerwinski

Institute for Geodesy and Geoinformation, University of

Bonn

Groeger<at>ikg.uni-bonn.de

Pluemer<at>ikg.uni-bonn.de

Czerwinski<at>ikg.uni-bonn.de

Haik Lorenz Autodesk, Inc. haik.lorenz<at>autodesk.com

Alain Lapierre

Stefan Apfel

Paul Scarponcini

Bentley Systems, Inc. alain.lapierre<at>bentley.com

stefan.apfel<at>bentley.com

paul.scarponcini<at>bentley.com

Carsten Rönsdorf Ordnance Survey, Great Britain carsten.roensdorf<at>ordnancesurvey.co.uk

Prof. Dr. Jürgen Döllner

Hasso-Plattner-Institute for IT Systems Engineering,

University of Potsdam

juergen.doellner<at>hpi.uni-potsdam.de

Dr. Joachim Benner

Karl-Heinz Häfele

Institute for Applied Computer Science,

Karlsruhe Institute of Technology

joachim.benner<at>kit.edu

karl-heinz.haefele<at>kit.edu

v. Participants in development

Name Institution

Ulrich Gruber,

Sandra Schlüter

District Administration Recklinghausen, Cadastre

Department, Germany

Frank Bildstein Rheinmetall Defence Electronics, Germany

Rüdiger Drees T-Systems Enterprise Services GmbH, Bonn, Germany

Andreas Kohlhaas GIStec GmbH (formerly), Germany

Frank Thiemann Institute for Cartography and Geoinformatics, University

of Hannover

Martin Degen Cadastre Department, City of Dortmund

Heinrich Geerling Architekturbüro Geerling, Germany

Dr. Frank Knospe Cadastre and Mapping Department, City of Essen,

Hardo Müller Snowflake Software Ltd., Great Britain

Martin Rechner rechner logistic, Germany

Jörg Haist

Daniel Holweg

Fraunhofer Institute for Computer Graphics (IGD),

Darmstadt, Germany

Prof. Dr. Peter A. Henning Faculty for Computer Science,

University of Applied Sciences, Karlsruhe, Germany

Rolf Wegener

Stephan Heitmann

State Cadastre and Mapping Agency of

North-Rhine Westphalia, Germany

Prof. Dr. Marc-O. Löwner Institute for Geodesy and Photogrammetry, Technical

University of Braunschweig

Dr. Egbert Casper Zerna Ingenieure, Germany

Christian Dahmen con terra GmbH, Germany

Nobuhiro Ishimaru Hitachi, Ltd., Japan

http://www.citygml.org/
mailto:alain.lapierre@bentley.com
mailto:frank.steggink@bentley.com
mailto:paul.scarponcini@bentley.com

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. xi

Kishiko Maruyama

Eiichiro Umino

Takahiro Hirose

Linda van den Brink Geonovum, The Netherlands

Ron Lake

David Burggraf

Galdos Systems Inc., Canada

Marie-Lise Vautier

Emmanuel Devys

Institut géographique national, France

Mark Pendlington Ordnance Survey, Great Britain

vi. Changes to the OGC
®
 Abstract Specification

The OGC
®
 Abstract Specification does not require changes to accommodate this OGC

®
 standard.

vii. Acknowledgments

The SIG 3D wishes to thank the members of the CityGML Standards Working Group and the 3D Information

Management (3DIM) Working Group of the OGC as well as all contributors of change requests and comments.

In particular: Tim Case, Scott Simmons, Paul Cote, Clemens Portele, Jeffrey Bell, Chris Body, Greg Buehler,

François Golay, John Herring, Jury Konga, Kai-Uwe Krause, Gavin Park, Richard Pearsall, George Percivall,

Mauro Salvemini, Alessandro Triglia, David Wesloh, Tim Wilson, Greg Yetman, Jim Farley, Cliff Behrens,

Lukas Herman, Danny Kita, and Simon Cox.

Further credits for careful reviewing and commenting of this document go to: Ludvig Emgard, Bettina Petzold,

Dave Capstick, Mark Pendlington, Alain Lapierre, and Frank Steggink.

xii Copyright © 2012 Open Geospatial Consortium.

Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. Open Geospatial Consortium shall not be held responsible for identifying any or all such patent rights.

However, to date, no such rights have been claimed or identified.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent

claims or other intellectual property rights of which they may be aware that might be infringed by any imple-

mentation of the standard set forth in this document, and to provide supporting documentation.

Significant changes between CityGML version 2.0.0 and CityGML version 1.0.0 (OGC document no. 08-007r1):

¶ New thematic modules for the representation of tunnels and bridges;

¶ Additional boundary surfaces for the semantic classification of the outer shell of buildings and building

parts (OuterCeilingSurface and OuterFloorSurface);

¶ LOD0 representation (footprint and roof egde representations) for buildings and building parts;

¶ Additional attributes denoting a city objectôs location with respect to the surrounding terrain and water

surface (relativeToTerrain and relativeToWater);

¶ Additional generic attributes for measured values and attribute sets; and

¶ Redesign of the CityGML code list mechanism (enumerative attributes are now of type gml:CodeType

which facilitates to provide additional code lists enumerating their possible attribute values).

Migration of existing CityGML 1.0 instances to valid 2.0 instances only requires changing the CityGML

namespace and schema location values in the document to the actual 2.0 values.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. xiii

xiv Copyright © 2012 Open Geospatial Consortium.

0 Introduction

0.1 Motivation

An increasing number of cities and companies are building virtual 3D city models for different application areas

like urban planning, mobile telecommunication, disaster management, 3D cadastre, tourism, vehicle and pedes-

trian navigation, facility management and environmental simulations. Furthermore, in the implementation of the

European Environmental Noise Directive (END, 2002/49/EC) 3D geoinformation and 3D city models play an

important role.

In recent years, most virtual 3D city models have been defined as purely graphical or geometrical models,

neglecting the semantic and topological aspects. Thus, these models could almost only be used for visualisation

purposes but not for thematic queries, analysis tasks, or spatial data mining. Since the limited reusability of

models inhibits the broader use of 3D city models, a more general modelling approach had to be taken in order to

satisfy the information needs of the various application fields.

CityGML is a common semantic information model for the representation of 3D urban objects that can be shared

over different applications. The latter capability is especially important with respect to the cost-effective sustain-

able maintenance of 3D city models, allowing the possibility of selling the same data to customers from different

application fields. The targeted application areas explicitly include city planning, architectural design, tourist and

leisure activities, environmental simulation, mobile telecommunication, disaster management, homeland securi-

ty, real estate management, vehicle and pedestrian navigation, and training simulators.

CityGML is designed as an open data model and XML-based format for the storage and exchange of virtual 3D

city models. It is implemented as an application schema of the Geography Markup Language 3 (GML3), the

extendible international standard for spatial data exchange and encoding issued by the Open Geospatial Consor-

tium (OGC) and the ISO TC211. CityGML is based on a number of standards from the ISO 191xx family, the

Open Geospatial Consortium, the W3C Consortium, the Web 3D Consortium, and OASIS.

CityGML defines the classes and relations for the most relevant topographic objects in cities and regional mod-

els with respect to their geometrical, topological, semantical, and appearance properties. ñCityò is broadly

defined to comprise not just built structures, but also elevation, vegetation, water bodies, ñcity furnitureò, and

more. Included are generalisation hierarchies between thematic classes, aggregations, relations between objects,

and spatial properties. CityGML is applicable for large areas and small regions and can represent the terrain and

3D objects in different levels of detail simultaneously. Since either simple, single scale models without topology

and few semantics or very complex multi-scale models with full topology and fine-grained semantical differenti-

ations can be represented, CityGML enables lossless information exchange between different GI systems and

users.

0.2 Historical background

CityGML has been developed since 2002 by the members of the Special Interest Group 3D (SIG 3D). Since

2010, this group is part of the initiative Spatial Data Infrastructure Germany (GDI-DE). Before 2010, the SIG 3D

was affiliated to the initiative Geodata Infrastructure North Rhine-Westphalia (GDI NRW). The SIG 3D is an

open group consisting of more than 70 companies, municipalities, and research institutions from Germany, Great

Britain, Switzerland, and Austria working on the development and commercial exploitation of interoperable 3D

city models and geovisualisation. Another result of the work from the SIG 3D is the proposition of the Web 3D

Service (W3DS), a 3D portrayal service that is also being discussed in the Open Geospatial Consortium (OGC

Doc. No. 05-019 and OGC Doc. No. 09-104r1).

A first successful implementation and evaluation of a subset of CityGML has been performed in the project

ñPilot 3Dò of the GDI NRW in 2005. Participants came from all over Germany and demonstrated city planning

scenarios and tourist applications. By the beginning of 2006, a CityGML project within EuroSDR (European

Spatial Data Research) started focusing on the European harmonisation of 3D city modelling. From June to

December 2006, CityGML was employed and evaluated in the CAD/GIS/BIM thread of the OpenGIS Web

Services Testbed #4 (OWS-4). Since 2008, CityGML (version 1.0.0) is an adopted OGC standard.

http://ec.europa.eu/environment/noise/home.htm
http://www.sig3d.org/
http://www.eurosdr.net/
http://www.eurosdr.net/

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. xv

From that point in time, CityGML has disseminated worldwide. Many cities in Germany and in other countries

in Europe provide their 3D city model in CityGML (Berlin, Cologne, Dresden and Munich, to mention only a

few). In France, the project Bâti3D (IGN France) defines a profile of CityGML LOD2 and provides data from

Paris and the city centres of Aix-en-Provence, Lille, Nantes and Marseille. CityGML also plays an important role

in the pilot 3D project to obtain a 3D geoinformation standard and a 3D infrastructure for The Netherlands.

Many cities in Europe like Monaco, Geneva, Zurich, Leewarden use CityGML LOD 2 or 3 to represent and

exchange data, as well as cities in Denmark (LOD 2 and 3, partly LOD4). CityGML has strongly influenced the

building model (version 2.0) of the INSPIRE initiative of the EU commission, which aims at the creation of an

European spatial data infrastructure providing public sector data in an interoperable way. In Asia, the 3D city

models of Istanbul (LOD 1 and 2), Doha, Katar (LOD3), and Yokohama (LOD2) are represented and exchanged

in CityGML. Moreover, CityGML plays a crucial role for the 3D Spatial data infrastructure in Malaysia.

Today many commercial and academic tools support CityGML by providing import interfaces, export interfaces

or both. An example is the 3D City Database which is a free and open source 3D geo database to store, represent,

and manage virtual 3D city models on top of Oracle 10g R2 and 11g R1/R2 provided by the Technische Univer-

sität Berlin. It fully supports CityGML and is shipped with a tool for the import and export of CityGML models.

Furthermore, an open source Java class library and API for the processing of CityGML models (citygml4j) is

provided by the Technische Universität Berlin. The conversion tool FME (Feature Manipulation Engine) from

Safe Software Inc., which is part of the interoperability extension of ESRIôs ArcGIS, has read and write interfac-

es for CityGML. The same applies to CAD tools as BentleyMap from Bentley Systems as well as to GIS tools

like SupportGIS from CPA Geo-Information. Many 3D viewers (which all are freely available) provide read

interfaces for CityGML: the Aristoteles Viewer from the University of Bonn, LandXplorer CityGML Viewer

from Autodesk Inc. (the studio version for authoring and management is not free) and the FZKViewer for IFC

and CityGML from KIT Karlsruhe and BS Contact from Bitmanagement Software GmbH which offers a

CityGML plugin for the geospatial extension BS Contact Geo. This enumeration of software tools is not exhaus-

tive and steadily growing. Please refer to the official website of CityGML at http://www.citygml.org as well as

the CityGML Wiki at http://www.citygmlwiki.org for more information.

0.3 Additions in CityGML 2.0

CityGML 2.0 is a major revision of the previous version 1.0 of this International Standard (OGC Doc. No. 08-

007r1), and introduces substantial additions and new features to the thematic model of CityGML. The revision

was originally planned to be a minor update to version 1.1. The main endeavor of the revision process was to

ensure backwards compatibility both on the level of the conceptual model and on the level of CityGML instance

documents. However, some changes could not be implemented consistent with directives for minor revisions and

backwards compatibility as enforced by OGC policy (cf. OGC Doc. No. 135r11). The major version number

change to 2.0 is therefore a consequence of conforming to the OGC versioning policy without having to abandon

any changes or additions which reflect requests from the CityGML community.

CityGML 2.0 is backwards compatible with version 1.0 in the following sense: each valid 1.0 instance is a valid

2.0 instance provided that the CityGML namespaces and schema locations in the document are changed to their

actual 2.0 values. This step is required because the CityGML version number is encoded in these values, but no

further actions have to be taken. Hence, there is a simple migration path from existing CityGML 1.0 instances to

valid 2.0 instances.

The following clauses provide an overview of what is new in CityGML 2.0.

New thematic modules for the representation of bridges and tunnels

Bridges and tunnels are important objects in city and landscape models. They are an essential part of the trans-

portation infrastructure and are often easily recognizable landmarks of a city. CityGML 1.0 has been lacking

thematic modules dedicated to bridges and tunnels, and thus such objects had to be modelled and exchanged

using a GenericCityObject as proxy (cf. chapter 10.12). CityGML 2.0 now introduces two new thematic modules

for the explicit representation of bridges and tunnels which complement the thematic model of CityGML: the

Bridge module (cf. chapter 10.4) and the Tunnel module (cf. chapter 10.5).

Bridges and tunnels can be represented in LOD 1 ï 4 and the underlying data models have a coherent structure

with the Building model. For example, bridges and tunnels can be decomposed into parts, thematic boundary

surfaces with openings are available to semantically classify parts of the shell, and installations as well as interi-

http://www.citygml.org/
http://www.citygmlwiki.org/

xvi Copyright © 2012 Open Geospatial Consortium.

or built structures can be represented. This coherent model structure facilitates the similar understanding of

semantic entities and helps to reduce software implementation efforts. Both the Bridge and the Tunnel model

introduce further concepts and model elements which are specific to bridges and tunnels respectively.

Additions to existing thematic modules

¶ CityGML Core module (cf. chapter 10.1)

Two new optional attributes have been added to the abstract base class core:_CityObject within the

CityGML Core module: relativeToTerrain and relativeToWater. These attributes denote the featureôs

location with respect to the terrain and water surface in a qualitative way, and thus facilitate simple and

efficient queries (e.g., for the number of subsurface buildings) without the need for an additional digital

terrain model or a model of the water body.

¶ Building module (cf. chapter 10.3)

o LOD0 representation

Buildings can now be represented in LOD0 by footprint and/or roof edge polygons. This al-

lows the easy integration of existing 2D data and of roof reconstructions from aerial and satel-

lite imagery into a 3D city model. The representations are restricted to horizontal, 3-

dimensional surfaces.

o Additional thematic boundary surfaces

In order to semantically classify parts of the outer building shell which are neither horizontal

wall surfaces nor parts of the roof, two additional boundary surfaces are introduced:

OuterFloorSurface and OuterCeilingSurface.

o Additional relations to thematic boundary surfaces

In addition to _AbstractBuilding and Room, the surface geometries of BuildingInstallation and

IntBuildingInstallation features can now be semantically classified using thematic boundary

surfaces. For example, this facilitates the semantic differentiation between roof and wall sur-

faces of dormers which are modeled as BuildingInstallation.

o Additional use of implicit geometries

Implicit geometries (cf. chapter 8.3) are now available for the representation of _Opening,

BuildingInstallation, and IntBuildingInstallation in addition to BuildingFurniture. A prototyp-

ical geometry for these city objects can thus be stored once and instantiated at different loca-

tions in the 3D city model.

¶ Generics module (cf. chapter 10.12)

Two generic attributes have been added to the Generics module: MeasureAttribute and

GenericAttributeSet. A MeasureAttribute facilitates the representation of measured values together with

a reference to the employed unit. A GenericAttributeSet is a named collection of arbitrary generic at-

tributes. It provides an optional codeSpace attribute to denote the authority organization who defined

the attribute set.

¶ LandUse module (cf. chapter 10.10)

The scope of the feature type LandUse has been broadened to comprise both areas of the earthôs surface

dedicated to a specific land use and areas of the earthôs surface having a specific land cover with or

without vegetation.

¶ Attributes class, function, and usage (all modules)

In order to harmonize the use of the attributes class, function, and usage, this attribute triplet has been

complemented for all feature classes that at least provided one of the attributes in CityGML 1.0.

Additions to the CityGML code list mechanism

In CityGML, code lists providing the allowed values for enumerative attributes such as class, function, and

usage can be specified outside the CityGML schema by any organization or information community according to

their specific information needs. This mechanism is, however, not fully reflected in the CityGML 1.0 encoding

schema, because in a CityGML 1.0 instance document a corresponding attribute cannot point to the dictionary

with the used code list values. This has been corrected for CityGML 2.0: All attributes taking values from code

lists are now of type gml:CodeType following the GML 3.1.1 mechanism for the encoding of code list values (cf.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. xvii

chapter 10.14 for more information). The gml:CodeType adds an optional codeSpace value to enumerative

attributes which allows for providing a persistent URI pointing to the corresponding dictionary.

Changelog for CityGML 2.0

Changes on the level of XML schema components are provided in Annex F.

Further edits to the specification document

¶ Accuracy requirements for Levels of Detail (LOD) (cf. chapter 6.2)

The accuracy requirements for the different CityGML LODs proposed in chapter 6.2 are non-

normative. The wording of chapter 6.2 in CityGML 1.0 is however inconsistent with regard to this fact

and thus has been clarified for CityGML 2.0.

¶ Rework of the CityGML example datasets (cf. Annex G)

The CityGML examples provided in Annex G have been reworked and extended. They now show a

consistent building model in all five LODs and demonstrate, for example, the semantic and geometric

refinement of the building throughout the different LODs as well as the usage of XLinks to share geom-

etry elements between features. The datasets are shipped with the CityGML XML Schema package, and

are available at http://schemas.opengis.net/citygml/examples/2.0/.

¶ New example for the usage of Application Domain Extensions (cf. Annex I)

A second example for the usage of Application Domain Extensions in the field of Ubiquitous Network

Robots Services has been added in Annex I.

http://schemas.opengis.net/citygml/examples/2.0/

OpenGIS
®

Encoding Standard OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 1

OGC® City Geography Markup Language (CityGML)

Encoding Standard

1 Scope

This document is an OGC Encoding Standard for the representation, storage and exchange of virtual 3D city and

landscape models. CityGML is implemented as an application schema of the Geography Markup Language

version 3.1.1 (GML3).

CityGML models both complex and georeferenced 3D vector data along with the semantics associated with the

data. In contrast to other 3D vector formats, CityGML is based on a rich, general purpose information model in

addition to geometry and appearance information. For specific domain areas, CityGML also provides an exten-

sion mechanism to enrich the data with identifiable features under preservation of semantic interoperability.

Targeted application areas explicitly include urban and landscape planning; architectural design; tourist and

leisure activities; 3D cadastres; environmental simulations; mobile telecommunications; disaster management;

homeland security; vehicle and pedestrian navigation; training simulators and mobile robotics.

CityGML is considered a source format for 3D portraying. The semantic information contained in the model can

be used in the styling process which generates computer graphics represented e.g. as KML/COLLADA or X3D

files. The appropriate OGC Portrayal Web Service for this process is the OGC Web 3D Service (W3DS). An

image-based 3D portrayal service for virtual 3D landscape and city models is provided by the OGC Web View

Service (WVS).

Features of CityGML:

¶ Geospatial information model (ontology) for urban landscapes based on the ISO 191xx family

¶ GML3 representation of 3D geometries, based on the ISO 19107 model

¶ Representation of object surface characteristics (e.g. textures, materials)

¶ Taxonomies and aggregations

o Digital Terrain Models as a combination of (including nested) triangulated irregular networks

(TINs), regular rasters, break and skeleton lines, mass points

o Sites (currently buildings, bridges, and tunnels)

o Vegetation (areas, volumes, and solitary objects with vegetation classification)

o Water bodies (volumes, surfaces)

o Transportation facilities (both graph structures and 3D surface data)

o Land use (representation of areas of the earthôs surface dedicated to a specific land use)

o City furniture

o Generic city objects and attributes

o User-definable (recursive) grouping

¶ Multiscale model with 5 well-defined consecutive Levels of Detail (LOD):

o LOD0 ï regional, landscape

o LOD1 ï city, region

o LOD2 ï city districts, projects

o LOD3 ï architectural models (outside), landmarks

o LOD4 ï architectural models (interior)

¶ Multiple representations in different LODs simultaneously; generalisation relations between objects in

different LODs

¶ Optional topological connections between feature (sub)geometries

¶ Application Domain Extensions (ADE): Specific ñhooksò in the CityGML schema allow to define ap-

plication specific extensions, for example for noise pollution simulation, or to augment CityGML by

properties of the new National Building Information Model Standard (NBIMS) in the U.S.

2 Copyright © 2012 Open Geospatial Consortium.

2 Conformance

Conformance targets addressed by this International standard are CityGML instance documents only. Future

revisions of this International Standard may also address consumers or producers as conformance targets.

Clauses 8 to 10 of this International standard specify separate CityGML XML Schema definitions and normative

aspects, i.e. CityGML modules, which shall be used in CityGML instance documents in accordance with clause

7. Implementations are not required to support the full range of capabilities provided by the universe of all

CityGML modules. Valid partial implementations are supported following the rules and guidelines for CityGML

profiles in chapter 7.2.

CityGML instance documents claiming conformance to this International Standard shall:

a) conform to the rules and requirements specified in clauses 7 to 10;

b) pass all relevant test cases of the abstract test suite in annex B.1;

c) satisfy all relevant conformance classes of the abstract test suite related to CityGML modules in annex

B.2.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provi-

sions of this part of OGC 12-019. For dated references, subsequent amendments to, or revisions of, any of these

publications do not apply. However, parties to agreements based on this part of OGC 12-019 are encouraged to

investigate the possibility of applying the most recent editions of the normative documents indicated below. For

undated references, the latest edition of the normative document referred to applies.

The following documents are indispensable for the application of the CityGML standard. The geometry model of

GML 3.1.1 is used except for some added concepts like implicit geometries (cf. chapter 8.2). The appearance

model (cf. chapter 9) draws concepts from both X3D and COLLADA. Addresses are represented using the

OASIS extensible Address Language xAL.

ISO 8601:2004, Data elements and interchange formats ï Information interchange ï Representation of dates

and times

ISO/TS 19103:2005, Geographic Information ï Conceptual Schema Language

ISO 19105:2000, Geographic information ï Conformance and testing

ISO 19107:2003, Geographic Information ï Spatial Schema

ISO 19109:2005, Geographic Information ï Rules for Application Schemas

ISO 19111:2003, Geographic information ï Spatial referencing by coordinates

ISO 19115:2003, Geographic Information ï Metadata

ISO 19123:2005, Geographic Information ï Coverages

ISO/TS 19139:2007, Geographic Information ï Metadata ï XML schema implementation

ISO/IEC 19775:2004, X3D Abstract Specification

OpenGIS
®

 Abstract Specification Topic 0, Overview, OGC document 04-084

OpenGIS
®

 Abstract Specification Topic 5, The OpenGIS Feature, OGC document 99-105r2

OpenGIS
®

 Abstract Specification Topic 8, Relations between Features, OGC document 99-108r2

OpenGIS
®

 Abstract Specification Topic 10, Feature Collections, OGC document 99-110

OpenGIS
®

 Geography Markup Language Implementation Specification, Version 3.1.1, OGC document 03-105r1

OpenGIS
®

 GML 3.1.1 Simple Dictionary Profile, Version 1.0.0, OGC document 05-099r2

IETF RFC 2045 & 2046, Multipurpose Internet Mail Extensions (MIME). (November 1996)

IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax. (August 1998)

W3C XLink, XML Linking Language (XLink) Version 1.0. W3C Recommendation (27 June 2001)

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 3

W3C XMLName, Namespaces in XML. W3C Recommendation (14 January 1999)

W3C XMLSchema-1, XML Schema Part 1: Structures. W3C Recommendation (2 May 2001)

W3C XMLSchema-2, XML Schema Part 2: Datatypes. W3C Recommendation (2 May 2001)

W3C XPointer, XML Pointer Language (XPointer) Version 1.0. W3C Working Draft (16 August 2002)

W3C XML Base, XML Base, W3C Recommendation (27 June 2001)

W3C XML, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation (6 October 2000)

OASIS (Organization for the Advancement of Structured Information Standards): extensible Address Language

(xAL v2.0).

Khronos Group Inc.: COLLADA ï Digital Asset Schema Release 1.4.1

The Schematron Assertion Language 1.5. Rick Jelliffe 2002-10-01

4 Conventions

4.1 Abbreviated terms

The following abbreviated terms are used in this document:

2D Two Dimensional

3D Three Dimensional

AEC Architecture, Engineering, Construction

ALKIS German National Standard for Cadastral Information

ATKIS German National Standard for Topographic and Cartographic Information

B-Rep Boundary Representation

bSI buildingSMART International

CAD Computer Aided Design

COLLADA Collaborative Design Activity

CSG Constructive Solid Geometry

DTM Digital Terrain Model

DXF Drawing Exchange Format

EuroSDR European Spatial Data Research Organisation

ESRI Environmental Systems Research Institute

FM Facility Management

GDF Geographic Data Files

GDI-DE Spatial Data Infrastructure Germany (Geodateninfrastruktur Deutschland)

GDI NRW Geodata Infrastructure North-Rhine Westphalia

GML Geography Markup Language

IAI International Alliance for Interoperability (now buildingSMART International (bSI))

IETF Internet Engineering Task Force

IFC Industry Foundation Classes

ISO International Organization for Standardisation

LOD Level of Detail

NBIMS National Building Information Model Standard

OASIS Organisation for the Advancement of Structured Information Standards

OGC Open Geospatial Consortium

OSCRE Open Standards Consortium for Real Estate

4 Copyright © 2012 Open Geospatial Consortium.

SIG 3D Special Interest Group 3D of the GDI-DE

TC211 ISO Technical Committee 211

TIC Terrain Intersection Curve

TIN Triangulated Irregular Network

UML Unified Modeling Language

URI Uniform Resource Identifier

VRML Virtual Reality Modeling Language

W3C World Wide Web Consortium

W3DS OGC Web 3D Service

WFS OGC Web Feature Service

X3D Open Standards XML-enabled 3D file format of the Web 3D Consortium

XML Extensible Markup Language

xAL OASIS extensible Address Language

4.2 UML Notation

The CityGML standard is presented in this document in diagrams using the Unified Modeling Language (UML)

static structure diagram (see Booch et al. 1997). The UML notations used in this standard are described in the

diagram below (Fig. 1).

Fig. 1: UML notation (see ISO TS 19103, Geographic information - Conceptual schema language).

According to GML3 all associations between model elements in CityGML are uni-directional. Thus, associa-

tions in CityGML are navigable in only one direction. The direction of navigation is depicted by an arrowhead.

In general, the context an element takes within the association is indicated by its role. The role is displayed near

the target of the association. If the graphical representation is ambiguous though, the position of the role has to

be drawn to the element the association points to.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 5

The following stereotypes are used:

<<Geometry>> represents the geometry of an object. The geometry is an identifiable and distinguishable object

that is derived from the abstract GML type AbstractGeometryType.

<<Feature>> represents a thematic feature according to the definition in ISO 19109. A feature is an identifiable

and distinguishable object that is derived from the abstract GML type AbstractFeatureType.

<<Object>> represents an identifiable and distinguishable object that is derived from the abstract GML type

AbstractGMLType.

<<Enumeration>> enumerates the valid attribute values in a fixed list of named literal values. Enumerations are

specified inline the CityGML schema.

<<CodeList>> enumerates the valid attribute values. In contrast to Enumeration, the list of values is open and,

thus, not given inline the CityGML schema. The allowed values can be provided within an external code list.

It is recommended that code lists are implemented as simple dictionaries following the GML 3.1.1 Simple

Dictionary Profile (cf. chapter 6.6 and chapter 10.14).

<<Union>> is a list of attributes. The semantics are that only one of the attributes can be present at any time.

<<PrimitiveType>> is used for representations supported by a primitive type in the implementation.

<<DataType>> is used as a descriptor of a set of values that lack identity. Data types include primitive prede-

fined types and user-definable types. A DataType is thus a class with few or no operations whose primary

purpose is to hold the abstract state of another class for transmittal, storage, encoding or persistent storage.

<<Leaf>> is used within UML package diagrams to indicate model elements that can have no further subtypes.

<<XSDSchema>> is used within UML package diagrams to denote the root element of an XSD Schema contain-

ing all the definitions for a particular namespace. All the package contents or component classes are placed

within the one schema.

<<ApplicationSchema>> is used within UML package diagrams to denote an XML Schema definition funda-

mentally dependent on the concepts of another independent Standard within the XML Schema metalan-

guage. For example, ApplicationSchema indicates extensions of GML consistent with the GML ñrules for

application schemasò.

In order to enhance the readability of the CityGML UML diagrams, classes are depicted in different colors if

they belong to different UML packages (see Fig. 8 for an overview of UML packages). The following coloring

scheme is applied:

¶ Classes painted in yellow belong to the UML package which is subject of discussion in that clause of

the specification in which the UML diagram is given. For example, in the context of chapter 10.1

which introduces the CityGML Core module, the yellow color is used to denote classes which are de-

fined in the CityGML Core UML package. Likewise, the yellow classes shown in UML diagrams in

chapter 10.3 are associated with the Building module which is subject of discussion in that chapter.

¶ Classes painted in blue belong to a CityGML UML package different to that associated with the yellow

color. In order to explicitly denote the UML package of such classes, their class names carry a

namespace prefix which is uniquely associated with a CityGML module throughout this specification

(cf. section 4.3 for a list of namespaces and prefixes). For example, in the context of the Building mod-

ule, classes from the CityGML Core module are painted in blue and their class names are preceded by

the prefix core.

¶ Classes painted in green are defined in GML3 and their class names are preceded by the prefix gml.

6 Copyright © 2012 Open Geospatial Consortium.

The following example UML diagram demonstrates the UML notation and coloring scheme used throughout this

specification. In this example, the yellow classes are associated with the CityGML Building module, the blue

classes are from the CityGML Core module, and the green class depicts a geometry element defined by GML3.

Fig. 2: Example UML diagram demonstrating the UML notation and coloring scheme used throughout the CityGML specification.

4.3 XML namespaces and namespace prefixes

The CityGML data model is thematically decomposed into a core module and thematic extension modules. All

modules including the core are specified by their own XML schema file, each defining a globally unique XML

namespace. The extension modules are based on the core module and, thus, contain (by reference) the CityGML

core schema.

Within this document the module namespaces are associated with recommended prefixes. These prefixes are

consistently used within the normative parts of this specification, for all UML diagrams and example CityGML

instance documents. The CityGML core and extension modules along with their XML namespace identifiers and

recommended namespace prefixes are listed in Tab. 1.

CityGML module Namespace identifier Namespace prefix

CityGML Core http://www.opengis.net/citygml/2.0 core

Appearance http://www.opengis.net/citygml/appearance/2.0 app

Bridge http://www.opengis.net/citygml/bridge/2.0 brid

Building http://www.opengis.net/citygml/building/2.0 bldg

CityFurniture http://www.opengis.net/citygml/cityfurniture/2.0 frn

CityObjectGroup http://www.opengis.net/citygml/cityobjectgroup/2.0 grp

Generics http://www.opengis.net/citygml/generics/2.0 gen

LandUse http://www.opengis.net/citygml/landuse/2.0 luse

Relief http://www.opengis.net/citygml/relief/2.0 dem

Transportation http://www.opengis.net/citygml/transportation/2.0 tran

Tunnel http://www.opengis.net/citygml/tunnel/2.0 tun

Vegetation http://www.opengis.net/citygml/vegetation/2.0 veg

WaterBody http://www.opengis.net/citygml/waterbody/2.0 wtr

TexturedSurface [deprecated] http://www.opengis.net/citygml/texturedsurface/2.0 tex

Tab. 1: List of CityGML modules, their associated XML namespace identifiers, and example namespace prefixes.

<<Feature>>

_AbstractBuilding

<<Feature>>

Building

<<Feature>>

BuildingPart

<<Feature>>

core::_CityObject

<<Feature>>

core::_Site

<<Geometry>>

gml::_Solid

*

*

*

*

*

consistsOfBuildingPart

0..1

*

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 7

Further XML Schema definitions relevant to this standard are shown in Tab. 2 along with the corresponding

XML namespace identifiers and namespace prefixes consistently used within this document.

XML Schema definition Namespace identifier Namespace prefix

Geography Markup Language

version 3.1.1 (from OGC)

http://www.opengis.net/gml gml

Extensible Address Language

version 2.0 (from OASIS)

urn:oasis:names:tc:ciq:xsdschema:xAL:2.0 xAL

Schematron Assertion Lan-

guage version 1.5

http://www.ascc.net/xml/schematron sch

Tab. 2: List of XML Schema definitions, their associated XML namespace identifiers, and example namespace prefixes used within this

document.

4.4 XML-Schema

The normative parts of the standard use the W3C XML schema language to describe the grammar of conformant

CityGML data instances. XML schema is a rich language with many capabilities. While a reader who is unfamil-

iar with an XML schema may be able to follow the description in a general fashion, this standard is not intended

to serve as an introduction to XML schema. In order to have a full understanding of this candidate standard, it is

necessary for the reader to have a reasonable knowledge of XML schema.

8 Copyright © 2012 Open Geospatial Consortium.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 9

5 Overview of CityGML

CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models.

It is an application schema for the Geography Markup Language version 3.1.1 (GML3), the extendible interna-

tional standard for spatial data exchange issued by the Open Geospatial Consortium (OGC) and the ISO TC211.

The aim of the development of CityGML is to reach a common definition of the basic entities, attributes, and

relations of a 3D city model. This is especially important with respect to the cost-effective sustainable mainte-

nance of 3D city models, allowing the reuse of the same data in different application fields.

CityGML not only represents the graphical appearance of city models but specifically addresses the representa-

tion of the semantic and thematic properties, taxonomies and aggregations. CityGML includes a geometry model

and a thematic model. The geometry model allows for the consistent and homogeneous definition of geometrical

and topological properties of spatial objects within 3D city models (chapter 8). The base class of all objects is

_CityObject which is a subclass of the GML class _Feature. All objects inherit the properties from _CityObject.

The thematic model of CityGML employs the geometry model for different thematic fields like Digital Terrain

Models, sites (i.e. buildings, bridges, and tunnels), vegetation (solitary objects and also areal and volumetric

biotopes), land use, water bodies, transportation facilities, and city furniture (chapter 10). Further objects, which

are not explicitly modelled yet, can be represented using the concept of generic objects and attributes (chapter

6.11). In addition, extensions to the CityGML data model applying to specific application fields can be realised

using the Application Domain Extensions (ADE) (chapter 6.12). Spatial objects of equal shape which appear

many times at different positions like e.g. trees, can also be modelled as prototypes and used multiple times in

the city model (chapter 8.2). A grouping concept allows the combination of single 3D objects, e.g. buildings to a

building complex (chapter 6.8). Objects which are not geometrically modelled by closed solids can be virtually

sealed in order to compute their volume (e.g. pedestrian underpasses, tunnels, or airplane hangars). They can be

closed using ClosureSurfaces (chapter 6.4). The concept of the TerrainIntersectionCurve is introduced to inte-

grate 3D objects with the Digital Terrain Model at their correct positions in order to prevent e.g. buildings from

floating over or sinking into the terrain (chapter 6.5).

CityGML differentiates five consecutive Levels of Detail (LOD), where objects become more detailed with

increasing LOD regarding both their geometry and thematic differentiation (chapter 6.2). CityGML files can -

but do not have to - contain multiple representations (and geometries) for each object in different LOD simulta-

neously. Generalisation relations allow the explicit representation of aggregated objects over different scales.

In addition to spatial properties, CityGML features can be assigned appearances. Appearances are not limited to

visual data but represent arbitrary observable properties of the featureôs surface such as infrared radiation, noise

pollution, or earthquake-induced structural stress (chapter 9).

Furthermore, objects can have external references to corresponding objects in external datasets (chapter 6.7). The

possible attribute values of enumerative object attributes can be enumerated in code lists defined in external,

redefinable dictionaries (chapter 6.6).

10 Copyright © 2012 Open Geospatial Consortium.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 11

6 General characteristics of CityGML

6.1 Modularisation

The CityGML data model consists of class definitions for the most important types of objects within virtual 3D

city models. These classes have been identified to be either required or important in many different application

areas. However, implementations are not required to support the overall CityGML data model in order to be

conformant to the standard, but may employ a subset of constructs according to their specific information needs.

For this purpose, modularisation is applied to the CityGML data model (cf. chapter 7).

The CityGML data model is thematically decomposed into a core module and thematic extension modules. The

core module comprises the basic concepts and components of the CityGML data model and, thus, must be

implemented by any conformant system. Based on the core module, each extension covers a specific thematic

field of virtual 3D city models. CityGML introduces the following thirteen thematic extension modules: Appear-

ance, Bridge, Building, CityFurniture, CityObjectGroup, Generics, LandUse, Relief, Transportation, Tunnel,

Vegetation, WaterBody, and TexturedSurface [deprecated].

CityGML compliant implementations may support any combination of extension modules in conjunction with

the core module. Such combinations of modules are called CityGML profiles. Therefore, CityGML profiles

allow for valid partial implementations of the overall CityGML data model.

6.2 Multi -scale modelling (5 levels of detail, LOD)

CityGML supports different Levels of Detail (LOD). LODs are required to reflect independent data collection

processes with differing application requirements. Further, LODs facilitate efficient visualisation and data

analysis (see Fig. 3). In a CityGML dataset, the same object may be represented in different LOD simultaneous-

ly, enabling the analysis and visualisation of the same object with regard to different degrees of resolution.

Furthermore, two CityGML data sets containing the same object in different LOD may be combined and inte-

grated. However, it will be within the responsibility of the user or application to make sure objects in different

LODs refer to the same real-world object.

The coarsest level LOD0 is essentially a two and a half dimensional Digital Terrain Model over which an aerial

image or a map may be draped. Buildings may be represented in LOD0 by footprint or roof edge polygons.

LOD1 is the well-known blocks model comprising prismatic buildings with flat roof structures. In contrast, a

building in LOD2 has differentiated roof structures and thematically differentiated boundary surfaces. LOD3

denotes architectural models with detailed wall and roof structures potentially including doors and windows.

LOD4 completes a LOD3 model by adding interior structures for buildings. For example, buildings in LOD4 are

composed of rooms, interior doors, stairs, and furniture. In all LODs appearance information such as high-

resolution textures can be mapped onto the structures (cf. 6.9).

LOD0 LOD1 LOD2

LOD3 LOD4

Fig. 3: The five levels of detail (LOD) defined by CityGML (source: IGG Uni Bonn)

12 Copyright © 2012 Open Geospatial Consortium.

LODs are also characterised by differing accuracies and minimal dimensions of objects (cf. Tab. 3). The accura-

cy requirements given in this standard are debatable and are to be considered as discussion proposals. Accuracy

is described as standard deviation s of the absolute 3D point coordinates. Relative 3D point accuracy will be

added in a future version of CityGML and it is typically much higher than the absolute accuracy. In LOD1, the

positional and height accuracy of points should be 5m or less, while all objects with a footprint of at least 6m by

6m should be considered. The positional and height accuracy of LOD2 is proposed to be 2m or better. In this

LOD, all objects with a footprint of at least 4m × 4m should be considered. Both types of accuracies in LOD3

should be 0.5m, and the minimal footprint is suggested to be 2m × 2m. Finally, the positional and height accura-

cy of LOD4 should be 0.2m or less. By means of these figures, the classification in five LOD may be used to

assess the quality of 3D city model datasets. The LOD categorisation makes datasets comparable and provides

support for their integration.

 LOD0 LOD1 LOD2 LOD3 LOD4

Model scale description regional,

landscape

city, region city, city districts,

projects

city districts,

architectural
models (exteri-

or), landmark

architectural

models (interi-
or), landmark

Class of accuracy lowest low middle high very high

Absolute 3D point accuracy
(position / height)

lower than
LOD1

5/5m 2/2m 0.5/0.5m 0.2/0.2m

Generalisation maximal

generalisation

object blocks as

generalised
features;

> 6*6m/3m

objects as

generalised
features;

> 4*4m/2m

object as real

features;
> 2*2m/1m

constructive

elements and
openings are

represented

Building installations no no yes representative

exterior features

real object form

Roof structure/representation yes flat differentiated roof

structures

real object form real object form

Roof overhanging parts yes no yes, if known yes yes

CityFurniture no important objects prototypes, gener-
alized objects

real object form real object form

SolitaryVegetationObject no important objects prototypes, higher

6m

prototypes,

higher 2m

prototypes, real

object form

PlantCover no >50*50m >5*5m < LOD2 <LOD2

éto be continued for the other feature themes

Tab. 3: LOD 0-4 of CityGML with their proposed accuracy requirements (discussion proposal, based on: Albert et al. 2003).

Whereas in CityGML each object can have a different representation for every LOD, often different objects from

the same LOD will be generalised to be represented by an aggregate object in a lower LOD. CityGML supports

the aggregation / decomposition by providing an explicit generalisation association between city objects (further

details see UML diagram in chapter 10.1).

6.3 Coherent semantical-geometrical modelling

One of the most important design principles for CityGML is the coherent modelling of semantics and geomet-

rical/topological properties. At the semantic level, real-world entities are represented by features, such as build-

ings, walls, windows, or rooms. The description also includes attributes, relations and aggregation hierarchies

(part-whole-relations) between features. Thus the part-of-relationship between features can be derived at the

semantic level only, without considering geometry. However, at the spatial level, geometry objects are assigned

to features representing their spatial location and extent. So the model consists of two hierarchies: the semantic

and the geometrical in which the corresponding objects are linked by relationships (cf. Stadler & Kolbe 2007).

The advantage of this approach is that it can be navigated in both hierarchies and between both hierarchies

arbitrarily, for answering thematic and/or geometrical queries or performing analyses.

If both hierarchies exist for a specific object, they must be coherent (i.e. it must be ensured that they match and

fit together). For example, if a wall of a building has two windows and a door on the semantic level, then the

geometry representing the wall must contain also the geometry parts of both windows and the door.

6.4 Closure surfaces

Objects, which are not modelled by a volumetric geometry, must be virtually closed in order to compute their

volume (e.g. pedestrian underpasses or airplane hangars). They can be sealed using a ClosureSurface. These are

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 13

special surfaces, which are taken into account, when needed to compute volumes and are neglected, when they

are irrelevant or not appropriate, for example in visualisations.

The concept of ClosureSurface is also employed to model the entrances of subsurface objects. Those objects like

tunnels or pedestrian underpasses have to be modelled as closed solids in order to compute their volume, for

example in flood simulations. The entrances to subsurface objects also have to be sealed to avoid holes in the

digital terrain model (see Fig. 4). However, in close-range visualisations the entrance must be treated as open.

Thus, closure surfaces are an adequate way to model those entrances.

Fig. 4: Closure surfaces to seal open structures. Passages are subsurface objects (left). The entrance is sealed by a virtual

ClosureSurface, which is both part of the DTM and the subsurface object (right) (graphic: IGG Uni Bonn).

6.5 Terrain Intersection Curve (TIC)

A crucial issue in city modelling is the integration of 3D objects and the terrain. Problems arise if 3D objects

float over or sink into the terrain. This is particularly the case if terrains and 3D objects in different LOD are

combined, or if they come from different providers (Kolbe and Gröger 2003). To overcome this problem, the

TerrainIntersectionCurve (TIC) of a 3D object is introduced. These curves denote the exact position, where the

terrain touches the 3D object (see Fig. 5). TICs can be applied to buildings and building parts (cf. chapter 10.3),

bridge, bridge parts and bridge construction elements (cf. chapter 10.5), tunnel and tunnel parts (cf. chapter

10.4), city furniture objects (cf. chapter 10.9), and generic city objects (cf. chapter 10.12). If, for example, a

building has a courtyard, the TIC consists of two closed rings: one ring representing the courtyard boundary, and

one which describes the building's outer boundary. This information can be used to integrate the building and a

terrain by ópulling upô or ópulling downô the surrounding terrain to fit the TerrainIntersectionCurve. The DTM

may be locally warped to fit the TIC. By this means, the TIC also ensures the correct positioning of textures or

the matching of object textures with the DTM. Since the intersection with the terrain may differ depending on

the LOD, a 3D object may have different TerrainIntersectionCurves for all LOD.

Fig. 5: TerrainIntersectionCurve for a building (left, black) and a tunnel object (right, white). The tunnelôs hollow space is sealed by a

triangulated ClosureSurface (graphic: IGG Uni Bonn).

14 Copyright © 2012 Open Geospatial Consortium.

6.6 Code lists for enumerative attributes

CityGML feature types often include attributes whose values can be enumerated in a list of discrete values. An

example is the attribute roof type of a building, whose attribute values typically are saddle back roof, hip roof,

semi-hip roof, flat roof, pent roof, or tent roof. If such an attribute is typed as string, misspellings or different

names for the same notion obstruct interoperability. Moreover, the list of possible attribute values often is not

fixed and may substantially vary for different countries (e.g., due to national law and regulations) and for differ-

ent information communities.

In CityGML, such enumerative attributes are of type gml:CodeType and their allowed attribute values can be

provided in a code list which is specified outside the CityGML schema. A code list contains coded attribute

values and ensures that the same code is used for the same notion or concept. If a code list is provided for an

enumerative attribute, the attribute may only take values from this list. This allows applications to validate the

attribute value and thus facilitates semantic and syntactic interoperability. It is recommended that code lists are

implemented as simple dictionaries following the GML 3.1.1 Simple Dictionary Profile (cf. Whiteside 2005).

The governance of code lists is decoupled from the governance of the CityGML schema and specification. Thus,

code lists may be specified by any organisation or information community according to their information needs.

There shall be one authority per code list who is in charge of the code list values and the maintenance of the code

list. Further information on the CityGML code list mechanism is provided in chapter 10.14.

Code lists can have references to existing models. For example, room codes defined by the Open Standards

Consortium for Real Estate (OSCRE) can be referenced or classifications of buildings and building parts intro-

duced by the National Building Information Model Standard (NBIMS) can be used. Annex C contains non-

normative code lists proposed by the SIG 3D for almost all enumerative attributes in CityGML. They can be

directly referenced in CityGML instance documents and serve as an example for the definition of code lists.

6.7 External references

3D objects are often derived from or have relations to objects in other databases or data sets. For example, a 3D

building model may have been constructed from a two-dimensional footprint in a cadastre data set, or may be

derived from an architectural model (Fig. 6). The reference of a 3D object to its corresponding object in an

external data set is essential, if an update must be propagated or if additional data is required, for example the

name and address of a buildingôs owner in a cadastral information system or information on antennas and doors

in a facility management system. In order to supply such information, each _CityObject may refer to external

data sets (for the UML diagram see Fig. 21; and for XML schema definition see annex A.1) using the concept of

ExternalReference. Such a reference denotes the external information system and the unique identifier of the

object in this system. Both are specified as a Uniform Resource Identifier (URI), which is a generic format for

references to any kind of resources on the internet. The generic concept of external references allows for any

_CityObject an arbitrary number of links to corresponding objects in external information systems (e.g. ALKIS,

ATKIS, OS MasterMap
®
, GDF, etc.).

Fig. 6: External references (graphic: IGG Uni Bonn).

6.8 City object groups

The grouping concept of CityGML allows for the aggregation of arbitrary city objects according to user-defined

criteria, and to represent and transfer these aggregations as part of a city model (for the UML diagram see

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 15

chapter 10.11; XML schema definition see annex A.6). A group may be assigned one or more names and may be

further classified by specific attributes, for example, "escape route from room no. 43 in house no. 1212 in a fire

scenario" as a name and "escape route" as type. Each member of the group can optionally be assigned a role

name, which specifies the role this particular member plays in the group. This role name may, for example,

describe the sequence number of this object in an escape route, or in the case of a building complex, denote the

main building.

A group may contain other groups as members, allowing nested grouping of arbitrary depth. The grouping

concept is delivered by the thematic extension module CityObjectGroup of CityGML (cf. chapter 10.11).

6.9 Appearances

Information about a surfaceôs appearance, i.e. observable properties of the surface, is considered an integral part

of virtual 3D city models in addition to semantics and geometry. Appearance relates to any surface-based theme,

e.g. infrared radiation or noise pollution, not just visual properties. Consequently, data provided by appearances

can be used as input for both presentation of and analysis in virtual 3D city models.

CityGML supports feature appearances for an arbitrary number of themes per city model. Each LOD of a feature

can have an individual appearance. Appearances can represent ï among others ï textures and georeferenced

textures. CityGMLôs appearance model is packaged within its own extension module Appearance (cf. chapter 9).

6.10 Prototypic objects / scene graph concepts

In CityGML, objects of equal shape like trees and other vegetation objects, traffic lights and traffic signs can be

represented as prototypes which are instantiated multiple times at different locations (Fig. 7). The geometry of

prototypes is defined in local coordinate systems. Every instance is represented by a reference to the prototype, a

base point in the world coordinate reference system and a transformation matrix that facilitates scaling, rotation,

and translation of the prototype. The principle is adopted from the concept of scene graphs used in computer

graphics standards like VRML and X3D. As the GML3 geometry model does not provide support for scene

graph concepts, it is implemented as an extension to the GML3 geometry model (for further description cf.

chapter 8.2).

Fig. 7: Examples of prototypic shapes (source: Rheinmetall Defence Electronics).

6.11 Generic city objects and attributes

CityGML is being designed as a universal topographic information model that defines object types and attributes

which are useful for a broad range of applications. In practical applications the objects within specific 3D city

models will most likely contain attributes which are not explicitly modelled in CityGML. Moreover, there might

be 3D objects which are not covered by the thematic classes of CityGML. CityGML provides two different

16 Copyright © 2012 Open Geospatial Consortium.

concepts to support the exchange of such data: 1) generic objects and attributes, and 2) Application Domain

Extensions (cf. chapter 6.12).

The concept of generic objects and attributes allows for the extension of CityGML applications during runtime,

i.e. any _CityObject may be augmented by additional attributes, whose names, data types, and values can be

provided by a running application without any change of the CityGML XML schema. Similarly, features not

represented by the predefined thematic classes of the CityGML data model may be modelled and exchanged

using generic objects. The generic extensions of CityGML are provided by the thematic extension module

Generics (cf. chapter 10.12).

The current version of CityGML does not include, for example, explicit thematic models for embankments,

excavations and city walls. These objects may be stored or exchanged using generic objects and attributes.

6.12 Application Domain Extensions (ADE)

Application Domain Extensions (ADE) specify additions to the CityGML data model. Such additions comprise

the introduction of new properties to existing CityGML classes like e.g. the number of habitants of a building or

the definition of new object types. The difference between ADEs and generic objects and attributes is, that an

ADE has to be defined in an extra XML schema definition file with its own namespace. This file has to explicitly

import the XML Schema definition of the extended CityGML modules.

The advantage of this approach is that the extension is formally specified. Extended CityGML instance docu-

ments can be validated against the CityGML and the respective ADE schema. ADEs can be defined (and even

standardised) by information communities which are interested in specific application fields. More than one

ADE can be actively used in the same dataset (further description cf. chapter 10.13).

ADEs may be defined for one or even several CityGML modules providing a high flexibility in adding addition-

al information to the CityGML data model. Thus, the ADE mechanism is orthogonally aligned with the modular-

isation approach of CityGML. Consequently, there is no separate extension module for ADEs.

In this specification, two examples for ADEs are included:

¶ An ADE for Noise Immission Simulation (Annex H) which is employed in the simulation of environ-

mental noise dispersion according to the Environmental Noise Directive of the European Commission

(2002/49/EC);

¶ An ADE for Ubiquitous Network Robots Services (Annex I) which demonstrates the usage of

CityGML for the navigation of robots in indoor environments.

Further examples for ADEs are the CAFM ADE (Bleifuß et al., 2009) for facility management, the UtilityNet-

workADE (Becker et al., 2011) for the integrated 3D modeling of multi-utility networks and their interdependen-

cies, the HydroADE (Schulte and Coors, 2008) for hydrographical applications and the GeoBIM (IFC) ADE (van

Berlo et al., 2011) which combines BIM information from IFC (from bSI) with CityGML and is implemented in

the open source modelserver BIMserver.org.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 17

7 Modularisation

CityGML is a rich standard both on the thematic and geometric-topological level of its data model. On its the-

matic level CityGML defines classes and relations for the most relevant topographic objects in cities and region-

al models comprising built structures, elevation, vegetation, water bodies, city furniture, and more. In addition to

geometry and appearance content these thematic components allow to employ virtual 3D city models for sophis-

ticated analysis tasks in different application domains like simulations, urban data mining, facility management,

and thematic inquiries.

CityGML is to be seen as a framework giving geospatial 3D data enough space to grow in geometrical, topologi-

cal and semantic aspects over its lifetime. Thus, geometry and semantics of city objects may be flexibly struc-

tured covering purely geometric datasets up to complex geometric-topologically sound and spatio-semantically

coherent data. By this means, CityGML defines a single object model and data exchange format applicable to

consecutive process steps of 3D city modelling from geometry acquisition, data qualification and refinement to

preparation of data for specific end-user applications, allowing for iterative data enrichment and lossless infor-

mation exchange (cf. Kolbe et al. 2009).

According to this idea of a framework, applications are not required to support all thematic fields of CityGML in

order to be compliant to the standard, but may employ a subset of constructs corresponding to specific relevant

requirements of an application domain or process step. The use of logical subsets of CityGML limits the com-

plexity of the overall data model and explicitly allows for valid partial implementations. As for version 2.0 of the

CityGML standard, possible subsets of the data model are defined and embraced by so called CityGML mod-

ules. A CityGML module is an aggregate of normative aspects that must all be implemented as a whole by a

conformant system. CityGML consists of a core module and thematic extension modules.

The CityGML core module defines the basic concepts and components of the CityGML data model. It is to be

seen as the universal lower bound of the overall CityGML data model and a dependency of all thematic exten-

sion modules. Thus, the core module is unique and must be implemented by any conformant system. Based on

the CityGML core module, each extension module contains a logically separate thematic component of the

CityGML data model. The extensions to the core are derived by vertically slicing the overall CityGML data

model. Since the core module is contained (by reference) in each extension module, its general concepts and

components are universal to all extension modules. The following thirteen thematic extension modules are

introduced by version 2.0 of the CityGML standard. They are directly related to clauses of this document each

covering the corresponding thematic field of CityGML:

¶ Appearance (cf. clause 9),

¶ Bridge (cf. clause 10.5)

¶ Building (cf. clause 10.3),

¶ CityFurniture (cf. clause 10.9),

¶ CityObjectGroup (cf. clause 10.11),

¶ Generics (cf. clause 10.12),

¶ LandUse (cf. clause 10.10),

¶ Relief (cf. clause 10.2),

¶ Transportation (cf. clause 10.7),

¶ Tunnel (cf. clause 10.4)

¶ Vegetation (cf. clause 10.8),

¶ WaterBody (cf. clause 10.6), and

¶ TexturedSurface [deprecated] (cf. clause 9.8).

The thematic decomposition of the CityGML data model allows for implementations to support any combination

of extension modules in conjunction with the core module in order to be CityGML conformant. Thus, the exten-

sion modules may be arbitrarily combined according to the information needs of an application or application

domain. A combination of modules is called a CityGML profile. The union of all modules is defined as the

18 Copyright © 2012 Open Geospatial Consortium.

CityGML base profile. The base profile is unique at any given time and forms the upper bound of the overall

CityGML data model. Any other CityGML profile must be a valid subset of the base profile. By following the

concept of CityGML modules and profiles, valid partial implementations of the CityGML data model may be

realised in a well-defined way.

As for future development, each CityGML module may be further developed independently from other modules

by expert groups and information communities. Resulting proposals and changes to modules may be introduced

into future revisions of the CityGML standard without affecting the validity of other modules. Furthermore,

thematic components not covered by the current CityGML data model may be added to future revisions of the

standard by additional thematic extension modules. These additional extensions may establish dependency

relations to any other existing CityGML module but shall at least be dependent on the CityGML core module.

Consequently, the CityGML base profile may vary over time as new extensions are added. However, if a specific

application has information needs to be modelled and exchanged which are beyond the scope of the CityGML

data model, this application data can also be incorporated within the existing modules using CityGMLôs Applica-

tion Domain Extension mechanism (cf. clause 10.13) or by employing the concepts of generic city objects and

attributes (cf. chapter 10.12).

The introduced modularisation approach supports CityGMLôs versatility as a data modelling framework and

exchange format addressing various application domains and different steps of 3D city modelling. For sake of

clarity, applications should announce the level of conformance to the CityGML standard by declaring the em-

ployed CityGML profile. Since the core module is part of all profiles, this should be realised by enumerating the

implemented thematic extension modules. For example, if an implementation supports the Building module, the

Relief module, and the Vegetation module in addition to the core, this should be announced by ñCityGML

[Building, Relief, Vegetation]ò. In case the base profile is supported, this should be indicated by ñCityGML

[full]ò.

7.1 CityGML core and extension modules

Each CityGML module is specified by its own XML Schema definition file and is defined within an individual

and globally unique XML target namespace. According to dependency relations between modules, each module

may, in addition, import namespaces associated to such related CityGML modules. However, a single

namespace shall not be directly included in two modules. Thus, all elements belonging to one module are associ-

ated to the moduleôs namespace only. By this means, module elements are guaranteed to be properly separated

and distinguishable in CityGML instance documents.

Compared to CityGML versions before 1.0, the aforementioned namespace conventions introduce an extra level

of complexity to data files as there is no single CityGML namespace any more. In contrast, components of

different CityGML modules and, thus, of different namespaces may be arbitrarily mixed within the same

CityGML instance document. Furthermore, an application might have to parse instance documents containing

elements of modules which are not employed by the application itself. These parsing problems though can easily

be overcome by non-ñschema-awareò applications, i.e. applications that do not parse and interpret GML applica-

tion schemas in a generic way. Elements from different namespaces than those declared by the applicationôs

employed CityGML profile could be skipped. Comparable observations have to be made when using CityGMLôs

Application Domain Extension mechanism (cf. clause 10.13).

As for version 2.0 of the CityGML standard, there are no two thematic extension modules related by dependen-

cy. Thus, all extension modules are truly independent from each other and may be separately supported by

implementations. However, the CityGML core module is a dependency for any extension module. This means

that the XML schema file of the core module is imported by each XML schema file defining an extension.

The dependency relations between CityGMLôs modules are illustrated in Fig. 8 using an UML package diagram.

Each module is represented by a package. The package names correspond to the module names. A dashed arrow

in the figure indicates that the schema at the tail of the arrow depends upon the schema at the head of the arrow.

For CityGML modules, a dependency occurs where one schema <import>s another schema and accordingly the

corresponding XML namespace. For example, the extension module Building imports the schema of the

CityGML Core module. A short description of each module is given in Tab. 4.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 19

Fig. 8: UML package diagram illustrating the separate modules of CityGML and their schema dependencies. Each extension module

(indicated by the leaf packages) further imports the GML 3.1.1 schema definition in order to represent spatial properties of its thematic

classes. For readability reasons, the corresponding dependencies have been omitted.

Module name CityGML Core

XML namespace identifier http://www.opengis.net/citygml/2.0

XML Schema file cityGMLBase.xsd

Recommended namespace

prefix

core

Module description The CityGML Core module defines the basic components of the CityGML data

model. Primarily, this comprises abstract base classes from which all thematic

classes are (transitively) derived. But also non-abstract content common to

more than one extension module, for example basic data types, is defined

within the core module.

The core module itself imports the XML schema definition files of GML

version 3.1.1 and the OASIS extensible Address Language xAL.

Module name Appearance

XML namespace identifier http://www.opengis.net/citygml/appearance/2.0

XML Schema file appearance.xsd

Recommended namespace

prefix

app

Module description The Appearance module provides the means to model appearances of

CityGML features, i.e. observable properties of the featureôs surface. Appear-

ance data may be stored for each city object. Therefore, the abstract base class

_CityObject defined within the core module is augmented by an additional

property using CityGMLôs Application Domain Extension mechanism. Thus,

the Appearance module has a deliberate impact on all thematic extension

modules.

20 Copyright © 2012 Open Geospatial Consortium.

Modul name Bridge

XML namespace identifier http://www.opengis.net/citygml/bridge/2.0

XML Schema file bridge.xsd

Recommended namespace

prefix

brid

Module description

The Bridge module allows the representation of thematic and spatial aspects

of bridges, bridge parts, bridge installations, and interior bridge structures in

four levels of detail (LOD 1 ï 4).

Module name Building

XML namespace identifier http://www.opengis.net/citygml/building/2.0

XML Schema file building.xsd

Recommended namespace

prefix

bldg

Module description The Building module allows the representation of thematic and spatial aspects

of buildings, building parts, building installations, and interior building struc-

tures in five levels of detail (LOD 0 ï 4).

Module name CityFurniture

XML namespace identifier http://www.opengis.net/citygml/cityfurniture/2.0

XML Schema file cityFurniture.xsd

Recommended namespace

prefix

frn

Module description The CityFurniture module is used to represent city furniture objects in cities.

City furniture objects are immovable objects like lanterns, traffic signs, adver-

tising columns, benches, or bus stops that can be found in traffic areas, residen-

tial areas, on squares, or in built -up areas.

Module name CityObjectGroup

XML namespace identifier http://www.opengis.net/citygml/cityobjectgroup/2.0

XML Schema file cityObjectGroup.xsd

Recommended namespace

prefix

grp

Module description The CityObjectGroup module provides a grouping concept for CityGML.

Arbitrary city objects may be aggregated in groups according to user-defined

criteria to represent and transfer these aggregations as part of the city model. A

group may be further classified by specific attributes.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 21

Module name Generics

XML namespace identifier http://www.opengis.net/citygml/generics/2.0

XML Schema file generics.xsd

Recommended namespace

prefix

gen

Module description The Generics module provides generic extensions to the CityGML data model

that may be used to model and exchange additional attributes and features not

covered by the predefined thematic classes of CityGML. However, generic

extensions shall only be used if appropriate thematic classes or attributes are

not provided by any other CityGML module.

In order to represent generic attributes, the Generics module augments the

abstract base class _CityObject defined within the core module by an addition-

al property using CityGMLôs Application Domain Extension mechanism.

Thus, the Generics module has a deliberate impact on all thematic extension

modules.

Module name LandUse

XML namespace identifier http://www.opengis.net/citygml/landuse/2.0

XML Schema file landUse.xsd

Recommended namespace

prefix

luse

Module description The LandUse module allows for the representation of areas of the earthôs

surface dedicated to a specific land use.

Module name Relief

XML namespace identifier http://www.opengis.net/citygml/relief/2.0

XML Schema file relief.xsd

Recommended namespace

prefix

dem

Module description The Relief module allows for the representation of the terrain in a city model.

CityGML supports terrain representations in different levels of detail, reflect-

ing different accuracies or resolutions. The terrain may be specified as a

regular raster or grid, as a TIN, by break lines, and by mass points.

Module name Transportation

XML namespace identifier http://www.opengis.net/citygml/transportation/2.0

XML Schema file transportation.xsd

Recommended namespace

prefix

tran

Module description The Transportation module is used to represent the transportation features

within a city, for example roads, tracks, railways, or squares. Transportation

features may be represented as a linear network or by geometrically describing

their 3D surfaces.

22 Copyright © 2012 Open Geospatial Consortium.

Module Name Tunnel

XML namespace identifier http://www.opengis.net/citygml/tunnel/2.0

XML Schema file tunnel.xsd

Recommended namespace

prefix

tun

Module description The Tunnel module facilitates the representation of thematic and spatial

aspects of tunnels, tunnel parts, tunnel installations, and interior tunnel struc-

tures in four level of detail (LOD 1 ï 4)

Module name Vegetation

XML namespace identifier http://www.opengis.net/citygml/vegetation/2.0

XML Schema file vegetation.xsd

Recommended namespace

prefix

veg

Module description The Vegetation module provides thematic classes to represent vegetation

objects. CityGMLôs vegetation model distinguishes between solitary vegeta-

tion objects like trees, and vegetation areas which represent biotopes like

forests or other plant communities.

Module name WaterBody

XML namespace identifier http://www.opengis.net/citygml/waterbody/2.0

XML Schema file waterBody.xsd

Recommended namespace

prefix

wtr

Module description The WaterBody module represents the thematic aspects and 3D geometry of

rivers, canals, lakes, and basins. It does, however, not inherit any hydrological

or other dynamic aspects so far.

Module name TexturedSurface [deprecated]

XML namespace identifier http://www.opengis.net/citygml/texturedsurface/2.0

XML Schema file texturedSurface.xsd

Recommended namespace

prefix

tex

Module description The TexturedSurface module allows for assigning visual appearance properties

(color, shininess, transparency) and textures to 3D surfaces. Due to inherent

limitations of its modelling approach this module has been marked deprecated

and is expected to be removed in future CityGML versions. Appearance

information provided by this module can be converted to CityGMLôs Appear-

ance module without information loss. Thus, the use of the TexturedSurface

module is strongly discouraged.

Tab. 4: Overview of CityGMLôs core and thematic extensions modules.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 23

7.2 CityGML profiles

A CityGML profile is a combination of thematic extension modules in conjunction with the core module of

CityGML. Each CityGML instance document shall employ the CityGML profile appropriate to the provided

data. In general, two approaches to employ a CityGML profile within an instance document can be differentiat-

ed:

1. CityGML profile definition embedded inline the CityGML instance document

A CityGML profile can be bound to an instance document using the schemaLocation attribute defined

in the XML Schema instance namespace, http://www.w3.org/2001/XMLSchema-instance (commonly

associated with the prefix xsi). The xsi:schemaLocation attribute provides a way to locate the XML

Schema definition for namespaces defined in an XML instance document. Its value is a whitespace-

delimited list of pairs of Uniform Resource Identifiers (URIs) where each pair consists of a namespace

followed by the location of that namespaceôs XML Schema definition, which is typically a .xsd file.

By this means, the namespaces of the respective CityGML modules shall be defined within a CityGML

instance document. The xsi:schemaLocation attribute then shall be used to provide the location to the

respective XML Schema definition of each module. All example instance documents given in Annex G

follow this first approach.

2. CityGML profile definition provided by a separate XML Schema definition file

The CityGML profile may also be specified by its own XML Schema file. This schema file shall com-

bine the appropriate CityGML modules by importing the corresponding XML Schema definitions. For

this purpose, the import element defined in the XML Schema namespace shall be used,

http://www.w3.org/2001/XMLSchema (commonly associated with the prefix xs). For the xs:import el-

ement, the namespace of the imported CityGML module along with the location of the namespaceôs

XML Schema definition have to be declared. In order to apply a CityGML profile to an instance docu-

ment, the profileôs schema has to be bound to the instance document using the xsi:schemaLocation at-

tribute. The XML Schema file of the CityGML profile shall not contain any further content.

The targetNamespace of the profileôs schema shall differ from the namespaces of the imported

CityGML modules. The namespace associated with the profile should be in control of the originator of

the instance document and must be given as a previously unused and globally unique URI. The profileôs

XML Schema file must be available (or accessible on the internet) to everybody parsing the associated

CityGML instance document.

The second approach is illustrated by the following example XML Schema definition for the base profile of

CityGML. Since the base profile is the union of all CityGML modules, the corresponding XML Schema defini-

tion imports each and every CityGML module. By this means, all components of the CityGML data model are

available in and may be exchanged by instance documents referencing this example base profile. The schema

definition file of the base profile is shipped with the CityGML schema package, and is accessible at

http://schemas.opengis.net/citygml/profiles/base/2.0/CityGML.xsd.

<xs:schema xmlns="http://www.opengis.net/citygml/profiles/base/2.0" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.opengis.net/citygml/profiles/base/2.0" elementFormDefault="qualified"

 attributeFormDefault="unqualified" version="2.0.0">

 <xs:import namespace="http://www.opengis.net/citygml/appearance/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/appearance/2.0/appearance.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/bridge/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/bridge/2.0/bridge.xsd"/>
 <xs:import namespace="http://www.opengis.net/citygml/building/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/building/2.0/building.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/cityfurniture/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/cityfurniture/2.0/cityFurniture.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/cityobjectgroup/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/cityobjectgroup/2.0/cityObjectGroup.xsd"/>
 <xs:import namespace="http://www.opengis.net/citygml/generics/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/generics/2.0/generics.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/landuse/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/landuse/2.0/landUse.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/relief/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/relief/2.0/relief.xsd"/>

http://schemas.opengis.net/citygml/profiles/base/2.0/CityGML.xsd

24 Copyright © 2012 Open Geospatial Consortium.

 <xs:import namespace="http://www.opengis.net/citygml/transportation/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/transportation/2.0/transportation.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/tunnel/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/tunnel/2.0/tunnel.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/vegetation/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/vegetation/2.0/vegetation.xsd"/>
 <xs:import namespace="http://www.opengis.net/citygml/waterbody/2.0"

 schemaLocation="http://schemas.opengis.net/citygml/waterbody/2.0/waterBody.xsd"/>

 <xs:import namespace="http://www.opengis.net/citygml/texturedsurface/2.0"
 schemaLocation="http://schemas.opengis.net/citygml/texturedsurface/2.0/texturedSurface.xsd"/>

</xs:schema>

The following excerpt of a CityGML dataset exemplifies how to apply the base profile schema CityGML.xsd to a

CityGML instance document. The dataset contains two building objects and a city object group. The base profile

defined by CityGML.xsd is referenced using the xsi:schemaLocation attribute of the root element. Thus, all

CityGML modules are employed by the instance document and no further references to the XML Schema

documents of the CityGML modules are necessary.

<core:CityModel xmlns="http://www.opengis.net/citygml/profiles/base/2.0"

 xmlns:core="http://www.opengis.net/citygml/2.0"
 xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

 xmlns:grp="http://www.opengis.net/citygml/cityobjectgroup/2.0"

 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xAL="urn:oasis:names:tc:ciq:xsdschema:xAL:2.0"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/citygml/profiles/base/2.0

 http://schemas.opengis.net/citygml/profiles/base/2.0/CityGML.xsd">

 <core:cityObjectMember>
 <bldg:Building gml:id="Build0815">

 <core:externalReference>

 <core:informationSystem>http://www.adv-online.de</core:informationSystem>
 <core:externalObject>

 <core:uri>urn:adv:oid:DEHE123400007001</core:uri>

 </core:externalObject>
 </core:externalReference>

 <bldg:function
 codeSpace="http://www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_function.xml">1000</bldg:function>

 <bldg:yearOfConstruction>1985</bldg:yearOfConstruction>

 <bldg:roofType
 codeSpace="http://www.sig3d.org/codelists/standard//building/2.0/_AbstractBuilding_roofType.xml">1030</bldg:roofType>

 <bldg:measuredHeight uom="#m">8.0</bldg:measuredHeight>

 <bldg:storeysAboveGround>2</bldg:storeysAboveGround>
 <bldg:storeyHeightsAboveGround uom="#m">2.5 2.5</bldg:storeyHeightsAboveGround>

 <bldg:lod2Solid> ... </bldg:lod2Solid>

 </bldg:Building>
 </core:cityObjectMember>

 <core:cityObjectMember>

 <bldg:Building gml:id="Build0817">
 é

 </bldg:Building>

 </core:cityObjectMember>
 <core:cityObjectMember>

 <grp:CityObjectGroup gml:id="Complex113">

 <gml:name>Hotel complex 'Scenic View'</gml:name>
 <grp:function>building group</grp:function>

 <grp:groupMember role="main building" xlink:href="#Build0817"/>

 <grp:groupMember xlink:href="#Build0815"/>
 </grp:CityObjectGroup>

 </core:cityObjectMember>

</core:CityModel>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 25

8 Spatial model

Spatial properties of CityGML features are represented by objects of GML3ôs geometry model. This model is

based on the standard ISO 19107 óSpatial Schemaô (Herring 2001), representing 3D geometry according to the

well-known Boundary Representation (B-Rep, cf. Foley et al. 1995). CityGML actually uses only a subset of the

GML3 geometry package, defining a profile of GML3. This subset is depicted in Fig. 9 and Fig. 10. Further-

more, GML3ôs explicit Boundary Representation is extended by scene graph concepts, which allow the represen-

tation of the geometry of features with the same shape implicitly and thus more space efficiently (chapter 8.2).

8.1 Geometric-topological model

The geometry model of GML3 consists of primitives, which may be combined to form complexes, composite

geometries or aggregates. For each dimension, there is a geometrical primitive: a zero-dimensional object is a

Point, a one-dimensional a _Curve, a two-dimensional a _Surface, and a three-dimensional a _Solid (Fig. 9).

Each geometry can have its own coordinate reference system. A solid is bounded by surfaces and a surface by

curves. In CityGML, a curve is restricted to be a straight line, thus only the GML3 class LineString is used.

Surfaces in CityGML are represented by Polygons, which define a planar geometry, i.e. the boundary and all

interior points are required to be located in one single plane.

Fig. 9: UML diagram of CityGMLôs geometry model (subset and profile of GML3): Primitives and Composites.

Combined geometries can be aggregates, complexes or composites of primitives (see illustration in Fig. 11). For

an aggregate, the spatial relationship between components is not restricted. They may be disjoint, overlapping,

touching, or disconnected. GML3 provides a special aggregate for each dimension, a MultiPoint, a MultiCurve, a

MultiSurface, and a MultiSolid (see Fig. 10). In contrast to aggregates, a complex is topologically structured: its

parts must be disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts of

their boundaries. A composite is a special complex provided by GML3. It can only contain elements of the same

dimension. Its elements must be disjoint as well, but they must be topologically connected along their bounda-

ries. A composite can be a CompositeSolid, a CompositeSurface, or CompositeCurve. (cf. Fig. 9).

<<Geometry>>

gml::_GeometricPrimitive

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Surface

<<Geometry>>

gml::_Curve

+position : gml::DirectPosition [1]

<<Geometry>>

gml::Point

<<Geometry>>

gml::CompositeSolid

<<Geometry>>

gml::Solid

<<Geometry>>

gml::CompositeSurface

<<Geometry>>

gml::TriangulatedSurface

<<Geometry>>

gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]

+maxLength : gml::LengthType [1]

+controlPoint : gml::posList [1]

<<Geometry>>

gml::TIN

<<Geometry>>

gml::Polygon

+orientation : gml::SignType [0..1]

<<Geometry>>

gml::OrientableSurface

<<Geometry>>

gml::CompositeCurve

+position : gml::DirectPosition [2..*]

<<Geometry>>

gml::LineString

<<Geometry>>

gml::_Ring

+position : gml::DirectPosition [4..*]

<<Geometry>>

gml::LinearRing

<<Geometry>>

gml::Surface

<<Geometry>>

gml::_SurfacePatch

<<Geometry>>

gml::_Geometry

<<Geometry>>

gml::Rectangle

0..*

0..1

interior

*

*

1..*

*

solidMember

1

*

*

1

trianglePatches

0..2

1

baseSurface

1

*

1..*

*

curveMember

1

0..1

exterior

1..*

1

patches

1

*

exterior

1..*

*

surfaceMember

interior

exterior

exterior

Visual Paradigm for UML Standard Edition(Technical University Berlin)

26 Copyright © 2012 Open Geospatial Consortium.

Fig. 10: UML diagram of CityGMLôs geometry model: Complexes and Aggregates

An OrientableSurface is a surface with an explicit orientation, i.e. two sides, front and back, can be distin-

guished. This may be used to assign textures to specific sides of a surface, or to distinguish the exterior and the

interior side of a surface when bounding a solid. Please note, that curves and surfaces have a default orientation

in GML which results from the order of the defining points. Thus, an OrientableSurface only has to be used, if

the orientation of a given GML geometry has to be reversed.

TriangulatedSurfaces are special surfaces, which specify triangulated irregular networks often used to represent

the terrain. While a TriangulatedSurface is a composition of explicit Triangles, the subclass TIN is used to

represent a triangulation in an implicit way by a set of control points, defining the nodes of the triangles. The

triangulation may be reconstructed using standard triangulation methods (Delaunay triangulation). In addition,

break lines and stop lines define contour characteristics of the terrain.

MultiSurface GeometricComplex CompositeSurface

Fig. 11: Combined geometries.

The GML3 composite model realises a recursive aggregation schema for every primitive type of the correspond-

ing dimension. This aggregation schema allows the definition of nested aggregations (hierarchy of components).

For example, a building geometry (CompositeSolid) can be composed of the house geometry (CompositeSolid)

and the garage geometry (Solid), while the houseôs geometry is further decomposed into the roof geometry

(Solid) and the geometry of the house body (Solid).

CityGML provides the explicit modelling of topology, for example the sharing of geometry objects between

features or other geometries. One part of space is represented only once by a geometry object and is referenced

by all features or more complex geometries which are defined or bounded by this geometry object. Thus redun-

dancy is avoided and explicit topological relations between parts are maintained. Basically, there are three cases.

First, two features may be defined spatially by the same geometry. For example, if a path is both a transportation

feature and a vegetation feature, the surface geometry defining the path is referenced both by the transportation

object and by the vegetation object. Second, geometry may be shared between a feature and another geometry. A

geometry defining a wall of a building may be referenced twice: by the solid geometry defining the geometry of

the building, and by the wall feature. Third, two geometries may reference the same geometry, which is in the

boundary of both. For example, a building and an adjacent garage may be represented by two solids. The surface

describing the area where both solids touch may be represented only once and it is referenced by both solids. As

<<Geometry>>

gml::_AbstractGeometricAggregate

<<Geometry>>

gml::MultiSolid

<<Geometry>>

gml::MultiSurface

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiPoint

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Surface

<<Geometry>>

gml::_Curve

<<Geometry>>

gml::Point

<<Geometry>>

gml::MultiGeometry

<<Geometry>>

gml::GeometricComplex

<<Geometry>>

gml::_GeometricPrimitive

<<Geometry>>

gml::_Geometry

*

*

surfaceMember

*

*

curveMember

*

*

solidMember

*

*

geometryMember

1..**

element

*

*

pointMember

Visual Paradigm for UML Standard Edition(Technical University Berlin)

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 27

it can be seen from Fig. 12, this requires partitioning of the respective surfaces. In general, Boundary Represen-

tation only considers visible surfaces. However, to make topological adjacency explicit and to allow the possibil-

ity of deletion of one part of a composed object without leaving holes in the remaining aggregate touching

elements are included. Whereas touching is allowed, permeation of objects is not in order to avoid the multiple

representation of the same space. However, the use of topology in CityGML is optional.

In order to implement topology, CityGML uses the XML concept of XLinks provided by GML. Each geometry

object that should be shared by different geometric aggregates or different thematic features is assigned an

unique identifier, which may be referenced by a GML geometry property using a href attribute. CityGML does

not deploy the built-in topology package of GML3, which provides separate topology objects accompanying the

geometry. This kind of topology is very complex and elaborate. Nevertheless, it lacks flexibility when data sets,

which might include or neglect topology, should be covered by the same data model. The XLink topology is

simple and flexible and nearly as powerful as the explicit GML3 topology model. However, a disadvantage of

the XLink topology is that navigation between topologically connected objects can only be performed in one

direction (from an aggregate to its components), not (immediately) bidirectional as it is the case for GMLôs built-

in topology. An example for CityGMLôs topology representation is given in the dataset listed in annex G.4.

Fig. 12: Recursive aggregation of objects and geometries in CityGML (graphic: IGG Uni Bonn).

The following excerpt of a CityGML example file defines a gml:Polygon with a gml:id wallSurface4711, which

is part of the geometry property lod2Solid of a building. Another building being adjacent to the first building

references this shared polygon in its geometry representation.

<bldg:Building>
 <bldg:lod2Solid>

 <gml:surfaceMember>

 <gml:Polygon gml:id="wallSurface4711">
 <gml:exterior>

 <gml:LinearRing>

 <gml:pos srsDimension="3">32.0 31.0 2.5</gml:pos>
 ...

 </gml:LinearRing>

 </gml:exterior>
 </gml:Polygon>

 </gml:surfaceMember>

 ...
 </bldg:lod2Solid>

</bldg:Building>

...
<bldg:Building>

 <bldg:lod2Solid>

 <gml:surfaceMember>
 <gml:OrientableSurface orientation="-">

 <gml:baseSurface xlink:href="#wallSurface4711"/>

 </gml:OrientableSurface>
 </gml:surfaceMember>

 ...

 </bldg:lod2Solid>
</bldg:Building>

28 Copyright © 2012 Open Geospatial Consortium.

8.2 Spatial reference system

When dealing with geoinformation and virtual 3D city models in particular, the exact spatial reference is of

utmost importance and a key requirement for the integration of different spatial datasets in a single 3D city

model. CityGML inherits GML3ôs spatial capabilities of handling Coordinate Reference Systems (CRS) which

is the usual way of denoting the spatial reference in GML 3.1.1. As CityGML is a true 3D standard, geometry

elements are associated with a 3D CRS. There are only few exceptions to this rule where CityGML allows a 2D

geometry element (for example, the referencePoint of a GeoreferencedTexture defined in CityGMLôs Appear-

ance module must be given with 2D coordinate values, cf. chapter 9.4).

In general, a geometry may point to the CRS definition used by this geometry through the attribute srsName

which is inherited from the abstract GML superclass gml:_Geometry. This may be a reference to a well-known

CRS definition provided by an authority organization such as the European Petroleum Survey Group (EPSG),

but may also be a pointer to a CRS that is locally defined within the same CityGML instance document. The

OGC document ñDefinition identifier URNs in OGC namespaceò (cf. Whiteside 2009; OGC Doc. No. 07-092r3)

provides best practices for the URN encoding of CRS references. Amongst others, it describes how to reference

a single well-known 3D CRS definition (such as a 3D geographic CRS) as well as a compound CRS which

combines two or more well-known CRS definitions (e.g., a projected CRS for the planimetry with a vertical CRS

for the height reference). Examples for denoting a compound CRS for a CityGML instance document are given

in Annex G.

GML3 also supports the definition of engineering CRSs which are used in a contextually local sense. For exam-

ple, this might be a local 3D Cartesian coordinate system that is essentially based on a flat-earth approximation

of the earthôs surface, and thus ignores the effect of earth curvature on feature geometry (cf. chapter 12.1.4.4 of

the GML 3.1.1 specification document). Local engineering CRSs are commonly applied in the AEC/FM domain

and thus are useful when integrating CAD data or BIM models into a 3D city model. Annex G.9 provides an

example demonstrating the definition of an engineering CRS within a CityGML instance document and the use

of local coordinate values for the feature geometry. The definition of an engineering CRS requires an anchor

point which relates the origin of the local coordinate system to a point on the earthôs surface in order to facilitate

the transformation of coordinates from the local engineering CRS.

According to GML 3.1.1, if no srsName attribute is given on a geometry element, then the CRS shall be speci-

fied as part of the larger context this geometry element is part of, e.g. a geometric aggregate. For convenience in

constructing feature and feature collection instances, the value of the srsName attribute on the gml:Envelope (or

gml:Box) which is the value of the gml:boundedBy property of the feature shall be inherited by all directly

expressed geometries in all properties of the feature or members of the collection, unless overruled by the pres-

ence of a local srsName. Thus it is not necessary for a geometry to carry an srsName attribute if it uses the same

CRS as given on the gml:boundedBy property of its parent feature. Inheritance of the CRS continues to any

depth of nesting, but if overruled by a local srsName declaration, then the new CRS is inherited by all its chil-

dren in turn (cf. chapter 8.3 of the GML 3.1.1 specification document).

It is strongly recommended that any CityGML instance document explicitly specifies the CRS for all contained

geometry elements. This is especially important if the instance document is to be exchanged externally with third

parties or is to be integrated with other spatial datasets. A mixed usage of different CRSs within the same dataset

is possible and conformant with GML 3.1.1, whereas a single CRS reference given on the embracing

CityModel feature collection (cf. chapter 10.1) simplifies the processing of the dataset by software systems. As

for CityGML 2.0, this recommendation is non-normative and thus not accompanied by a conformance class. The

main reason for this is to maintain backwards compatibility with CityGML 1.0.

8.3 Implicit geometries, prototypic objects, scene graph concepts

The concept of implicit geometries is an enhancement of the geometry model of GML3. It is, for example, used

in CityGMLôs building, bridge, tunnel, and vegetation model as well as for city furniture and generic objects.

Implicit geometries may be applied to features from different thematic fields of CityGML in order to geometri-

cally represent the features within a specific level of detail (LOD). Thus, each extension module may define

spatial properties providing implicit geometries for its thematic classes. For this reason, the concept of implicit

geometries is defined within the CityGML core module (cf. chapter 10.1). However, its description is drawn here

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 29

since implicit geometries are part of CityGMLôs spatial model. The UML diagram is depicted in Fig. 13. The

corresponding XML schema definition is provided in annex A.1.

An implicit geometry is a geometric object, where the shape is stored only once as a prototypical geometry, for

example a tree or other vegetation objects, a traffic light or a traffic sign. This prototypic geometry object is re-

used or referenced many times, wherever the corresponding feature occurs in the 3D city model. Each occur-

rence is represented by a link to the prototypic shape geometry (in a local cartesian coordinate system), by a

transformation matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point denot-

ing the base point of the object in the world coordinate reference system. This reference point also defines the

CRS to which the world coordinates belong after the application of the transformation. In order to determine the

absolute coordinates of an implicit geometry, the anchor point coordinates have to be added to the matrix multi-

plication results. The transformation matrix accounts for the intended rotation, scaling, and local translation of

the prototype. It is a 4x4 matrix that is multiplied with the prototype coordinates using homogeneous coordi-

nates, i.e. (x,y,z,1). This way even a projection might be modelled by the transformation matrix.

Fig. 13: UML diagram of ImplicitGeometries. Prefixes are used to indicate XML namespaces associated with model elements. Element

names without a prefix are defined within the CityGML Core module.

The reason for using the concept of implicit geometries in CityGML is space efficiency. Since the shape of, for

example, trees of the same species can be treated as identical, it would be inefficient to model the detailed

geometry of each of the large number of trees explicitly. The concept of implicit geometries is similar to the well

known concept of primitive instancing used for the representation of scene graphs in the field of computer

graphics (Foley et al. 1995).

The term implicit geometry refers to the principle that a geometry object with a complex shape can be simply

represented by a base point and a transformation, implicitly unfolding the objectôs shape at a specific location in

the world coordinate system.

The shape of an ImplicitGeometry can be represented in an external file with a proprietary format, e.g. a VRML

file, a DXF file, or a 3D Studio MAX file. The reference to the implicit geometry can be specified by an URI

pointing to a local or remote file, or even to an appropriate web service. Alternatively, the shape can be defined

by a GML3 geometry object. This has the advantage that it can be stored or exchanged inline within the

CityGML dataset. Typically, the shape of the geometry is defined in a local coordinate system where the origin

lies within or near to the objectôs extent. If the shape is referenced by an URI, also the MIME type of the denoted

object has to be specified (e.g. ñmodel/vrmlò for VRML models or ñmodel/x3d+xmlò for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the explicit modelling,

which represents the objects using absolute world coordinates. It is more space-efficient, and thus more exten-

sive scenes can be stored or handled by a system. The visualisation is accelerated since 3D graphics cards sup-

port the scene graph concept. Furthermore, the usage of different shape versions of objects is facilitated, e.g.

different seasons, since only the library objects have to be exchanged (see example in Fig. 65).

XML namespace

The XML namespace of the CityGML Core module defining the concept of implicit geometries is identified by

the Uniform Resource Identifier (URI) http://www.opengis.net/citygml/2.0. Within the XML Schema definition

of the core module, this URI is also used to identify the default namespace.

ImplicitGeometryType, ImplicitRepresentationPropertyType

<xs:complexType name="ImplicitGeometryType">
 <xs:complexContent>

 <xs:extension base="gml:AbstractGMLType">

 <xs:sequence>
 <xs:element name="mimeType" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="transformationMatrix" type="TransformationMatrix4x4Type" minOccurs="0"/>

+mimeType : gml::CodeType

+transformationMatrix : TransformationMatrix4x4Type

+libraryObject : xs::anyURI

<<Object>>

ImplicitGeometry

<<Geometry>>

gml::_Geometry

<<Geometry>>

gml::Point

+gml::doubleList[16]

<<PrimitiveType>>

TransformationMatrix4x4Type

0..1*

1*

referencePoint

relativeGMLGeometry

Visual Paradigm for UML Standard Edition(Technical University Berlin)

30 Copyright © 2012 Open Geospatial Consortium.

 <xs:element name="libraryObject" type="xs:anyURI" minOccurs="0"/>

 <xs:element name="relativeGMLGeometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="referencePoint" type="gml:PointPropertyType"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="ImplicitGeometry" type="ImplicitGeometryType" substitutionGroup="gml:_GML"/>
<!-- == -->

<xs:complexType name="ImplicitRepresentationPropertyType">

 <xs:sequence minOccurs="0">
 <xs:element ref="ImplicitGeometry"/>

 </xs:sequence>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>
</xs:complexType>

8.3.1 Code lists

The mimeType attribute of ImplicitGeometry is specified as gml:CodeType. The values of this property can be

enumerated in a code list. A proposal for this code list can be found in annex C.6.

8.3.2 Example CityGML da tasets

An example for an implicit geometry is given by the following city furniture object (cf. chapter 10.9), which is

represented by a geometry in LOD2:

<frn:CityFurniture>

 <!-- class ñtrafficò; as specified in the code list proposed by the SIG 3D (cf. annex C.4) -->

 <frn:class codeSpace="http://www.sig3d.org/codelists/standard/cityfurniture/2.0/CityFurniture_class.xml">1000</frn:class>
 <!-- function ñtraffic lightò; as specified in the code list proposed by the SIG 3D (cf. annex C.4) -->

 <frn:function codeSpace="http://www.sig3d.org/codelists/standard/cityfurniture/2.0/CityFurniture_function.xml">1080</frn:function>

 <frn:lod2ImplicitRepresentation>
 <core:ImplicitGeometry>

 <core:mimeType>model/vrml</core:mimeType>

 <core:libraryObject>
 http://www.some-3d-library.com/3D/furnitures/TrafficLight434.wrl

 </core:libraryObject>

 <core:referencePoint>
 <gml:Point srsName="urn:ogc:def:crs,crs:EPSG:6.12:31467,crs:EPSG:6.12:5783">

 <gml:pos srsDimension="3">5793898.77 3603845.54 44.8</gml:pos>

 </gml:Point>
 </core:referencePoint>

 </core:ImplicitGeometry>

 </frn:lod2ImplicitRepresentation>
</frn:CityFurniture>

The shape of the geometry of the traffic light (city furniture with class ñ1000ò and function ñ1080ò according to

the code lists proposed in annex C.4) is defined by a VRML file which is specified by a URL. This library

object, which is defined in a local coordinate system, is transformed to its actual location by adding the coordi-

nates of the reference point.

The following clip of a CityGML file provides a more complex example for an implicit geometry:

<frn:CityFurniture>

 <!-- class ñtrafficò; as specified in the code list proposed by the SIG 3D (cf. annex C.4) -->

 <frn:class>1000</frn:class>
 <!-- function ñtraffic lightò; as specified in the code list proposed by the SIG 3D (cf. annex C.4) -->

 <frn:function>1080</frn:function>

 <frn:lod2ImplicitRepresentation>
 <core:ImplicitGeometry>

 <core:mimeType>model/vrml</core:mimeType>

 <core:transformationMatrix>
 0.866025 -0.5 0 0.7

 0.5 0.866025 0 0.8

 0 0 1 0
 0 0 0 1

 </core:transformationMatrix>

 <core:libraryObject>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 31

 http://www.some-3d-library.com/3D/furnitures/TrafficLight434.wrl

 </core:libraryObject>

 <core:referencePoint>
 <gml:Point srsName="urn:ogc:def:crs,crs:EPSG:6.12:31467,crs:EPSG:6.12:5783">

 <gml:pos srsDimension="3">5793898.77 3603845.54 44.8</gml:pos>

 </gml:Point>
 </core:referencePoint>

 </core:ImplicitGeometry>

 </frn:lod2ImplicitRepresentation>
</frn:CityFurniture>

In addition to the first example, a transformation matrix is specified. It is a homogeneous matrix, serialized in a

row major fashion, i.e. the first four entries in the list denote the first row of the matrix, etc. The matrix combines

a translation by the vector (0.7, 0.8, 0) ï the origin of the local reference system is not the center of the object ï

and a rotation around the z-axis by 30 degrees (cos(30) = 0.866025 and sin(30) = 0.5). This rotation is necessary

to align the traffic light with respect to a road. The actual position of the traffic light is computed as follows:

1. each point of the VRML file (with homogeneous coordinates) is multiplied by the transformation

matrix;

2. for each resulting point, the reference point (5793898.77, 3603845.54, 44.8, 1)
T
 is added, yielding the

actual geometry of the city furniture.

8.3.3 Conformance requirements

Base requirements

1. In order to geometrically represent a feature using the concept of implicit geometries, the corresponding

thematic class of the feature shall define a spatial property of the type ImplicitRepresentationProperty-

Type. Thus, for all CityGML extension modules only the type ImplicitRepresentationPropertyType

shall be used for spatial properties providing implicit geometries.

2. If the shape of an implicit geometry is referenced by an URI using the libraryObject property (type:

xs:anyURI) of the element ImplicitGeometry, also the MIME type of the denoted object must be speci-

fied.

Referential integrity

3. The type ImplicitRepresentationPropertyType may contain an ImplicitGeometry element inline or an

XLink reference to a remote ImplicitGeometry element using the XLink concept of GML 3.1.1. In the

latter case, the xlink:href attribute of the corresponding property of type ImplicitRepresentationProper-

tyType may only point to a remote ImplicitGeometry element (where remote ImplicitGeometry elements

are located in another document or elsewhere in the same document). Either the contained element or

the reference must be given, but neither both nor none.

32 Copyright © 2012 Open Geospatial Consortium.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 33

9 Appearance model

In addition to spatial properties, CityGML features have appearances ï observable properties of the featureôs

surface. Appearances are not limited to visual data but represent arbitrary categories called themes such as

infrared radiation, noise pollution, or earthquake-induced structural stress. Each LOD can have an individual

appearance for a specific theme. An appearance is composed of data for each surface geometry object, i.e.

surface data. A single surface geometry object may have surface data for multiple themes. Similarly, surface

data can be shared by multiple surface geometry objects (e.g. road paving). Finally, surface data values can

either be constant across a surface or depend on the exact location within the surface.

CityGMLôs appearance model is defined within the extension module Appearance (cf. chapter 7). The UML

diagram of the appearance model is illustrated in Fig. 14, for the XML Schema definition see annex A.2.

Fig. 14: UML diagram of CityGMLôs appearance model. Prefixes are used to indicate XML namespaces associated with model elements.

Element names without a prefix are defined within the CityGML Appearance module.

In CityGMLôs appearance model, themes are represented by an identifier only. The appearance of a city model

for a given theme is defined by a set of Appearance objects referencing this theme. Thus, the Appearance objects

34 Copyright © 2012 Open Geospatial Consortium.

belonging to the same theme compose a virtual group. They may be included in different places within a

CityGML dataset. Furthermore a single CityGML dataset may contain several themes. An Appearance object

collects surface data relevant for a specific theme either for individual features or the whole city model in any

LOD. Surface data is represented by objects of class _SurfaceData and its descendents with each covering the

whole area of a surface geometry object. The relation between surface data and surface geometry objects is

expressed by an URI (Uniform Resource Identifier) link from a _SurfaceData object to an object of type

gml:AbstractSurfaceType or type gml:MultiSurface.

A constant surface property is modelled as material. A surface property, which depends on the location within

the surface, is modelled as texture. Each surface geometry object can have both a material and a texture per

theme and side. This allows for providing both a constant approximation and a complex measurement of a

surfaceôs property simultaneously. An application is responsible for choosing the appropriate property represen-

tation for its task (e.g. analysis or rendering). A specific mixing is not defined since this is beyond the scope of

CityGML. If a surface geometry object is to receive multiple textures or materials, each texture or material

requires a separate theme. The mixing of themes or their usage is not defined within CityGML and left to the

application.

XML namespace

The XML namespace of the CityGML Appearance module is identified by the Uniform Resource Identifier

(URI) http://www.opengis.net/citygml/appearance/2.0. Within the XML Schema definition of the Appearance

module, this URI is also used to identify the default namespace.

9.1 Relation between appearances, features and geometry

Despite the close relation between surface data and surface, surface data is stored separately in the feature to

preserve the original GML geometry model. Instead of surface data being an attribute of the respective target

surface geometry object, each surface data object maintains a set of URIs specifying the gml:ids of the target

surface geometry objects (of type gml:AbstractSurfaceType or gml:MultiSurface). In case of a composite or

aggregate target surface, the surface data object is assigned to all contained surfaces. Other target types such as

features, solids, or gml:AbstractSurfacePatchType (which includes gml:Triangle) are invalid, even though the

XML schema language cannot formally express constrains on URI target types. For the exact mapping function

of surface data values to a surface patch refer to the respective surface data type description.

The limitation of valid target types to gml:AbstractSurfaceType and gml:MultiSurface excluding gml:Abstract-

SurfacePatchType is based on the GML geometry model and its use in CityGML. In general, GML surfaces are

represented using subclasses of gml:AbstractSurfaceType. Such surfaces are required to be continuous. A

gml:MultiSurface does not need to fulfill this requirement and consequently is no gml:AbstractSurfaceType (cf.

8.1). Since captured real-world surfaces often cannot be guaranteed to be continuous, CityGML allows for

gml:MultiSurface to represent a featureôs boundary in various places as an alternative to a continuous surface. To

treat such surfaces similarly to a gml:CompositeSurface, surface data objects are allowed to link to gml:Multi-

Surface objects. gml:AbstractSurfacePatchType is no valid target type since it is not derived from

gml:AbstractGMLType. Thus, a gml:AbstractSurfacePatchType (which includes gml:Triangle and

gml:Rectangle) cannot receive a gml:id and cannot be referenced.

Each surface geometry object can have per theme at most one active front-facing material, one active back-

facing material, one active front-facing texture, and one active back-facing texture. If multiple surface data

objects of the same category and theme are assigned to a surface geometry object, one is chosen to become

active. Multiple indirect assignments due to nested surface definitions are resolved by overwriting, e.g. the front-

facing material of a gml:Polygon becomes active by overwriting the front-facing material of the parental

gml:CompositeSurface. Multiple direct assignments, i.e. a surface geometry objectôs gml:id is referenced multi-

ple times within a theme, are not allowed and are resolved implementation-dependently by choosing exactly one

of the conflicting surface data objects. Thus, multiple direct assignments within a theme need to be avoided.

Each _CityObject feature can store surface data. Thus, surface data is arranged in the feature hierarchy of a

CityGML dataset. Surface data then links to its target surface using URIs. Even though the linking mechanism

permits arbitrary links across the feature hierarchy to another featureôs surface, it is recommended to follow the

principle of locality: Surface data should be stored such that the linked surfaces only belong to the containing

_CityObject feature and its children. ñGlobalò surface data should be stored with the city model. Adhering to the

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 35

locality principle also ensures that CityObjects retrieved from a WFS will contain the respective appearance

information.

The locality principle allows for the following algorithm to find all relevant _SurfaceData objects referring to a

given surface geometry object (of type gml:AbstractSurfaceType or gml:MultiSurface) in a given _CityObject:

function findSurfaceData

in: gmlSurface, cityObject

out: frontMaterial, frontTexture, backMaterial, backTexture

1: frontMaterial := empty

2: frontTexture := empty

3: backMaterial := empty

4: backTexture := empty

5: flip := false

6:

7: while (gmlSurface) { // traverse the geometry hierarchy from inner to outer

8: cObj := cityObject // start from the innermost cityobject

9:

10: while (cObj) { // traverse the cityobject hierarchy for the current geometry object

11: // search all surfaceData objects in all appearance containers

12: foreach (appearance in cObj) {

13: foreach (surfaceData in appearance) {

14: if (surfaceData refers to gmlSurface) { // if a surfaceData object refers to the geometry object, check its category

15: if (flip) { // consider flipping

16: // only pick the first surfaceData for a particular category

17: if (surfaceData is frontside material AND backMaterial is empty) {

18: backMaterial := surfaceData

19: }

20: if (surfaceData is frontside texture AND backTexture is empty) {

21: backTexture := surfaceData

22: }

23: if (surfaceData is backside material AND frontMaterial is empty) {

24: frontMaterial := surfaceData

25: }

26: if (surfaceData is backside texture AND frontTexture is empty) {

27: frontTexture := surfaceData

28: }

29: } else {

30: // only pick the first surfaceData for a particular category

31: if (surfaceData is frontside material AND frontMaterial is empty) {

32: frontMaterial := surfaceData

33: }

34: if (surfaceData is frontside texture AND frontTexture is empty) {

35: frontTexture := surfaceData

36: }

37: if (surfaceData is backside material AND backMaterial is empty) {

38: backMaterial := surfaceData

39: }

40: if (surfaceData is backside texture AND backTexture is empty) {

41: backTexture := surfaceData

42: }

43: }

44:

45: // shortcut: could stop here if all 4 categories have been found

46: }

47: }

48: }

49: cObj := cObj.parent // this also includes the global CityModel

50: }

51: gmlSurface := gmlSurface.parent // this also includes a root gml:MultiSurface

52: if (gmlSurface isA gml:OrientableSurface AND gmlSurface.orientation is negative) {

53: negate flip

54: }

55: }

Listing 1: Algorithm to find all relevant _SurfaceData objects referring to a given surface geometry object (of type gml:AbstractSurfaceType

or gml:MultiSurface) in a given _CityObject.

36 Copyright © 2012 Open Geospatial Consortium.

The evaluation of the isFront property of a _SurfaceData object needs to take gml:OrientableSurfaces into

account, as those can flip the orientation of a surface. Assume a gml:OrientableSurface os, which flips its base

surface bs. A front side texture t targeting bs will appear on the actual front side of bs. If t targets os, it will

appear on the back side of bs. If t targets both os and bs, it appears on both sides of bs since it becomes the front

and back side texture.

XLinks influence the hierarchy traversal in the pseudocode. In general, the separation of surface data and geome-

try objects requires the reevaluation of the surface data assignment for each occurrence of a geometry object in

the context of the respective _CityObject. Stepping up the (geometry or _CityObject) hierarchy in the algorithm

takes XLinks into account, i.e., for the purpose of this algorithm, referenced objects are conceptually copied to

the location of the referring XLink. In particular, this applies to ImplicitGeometry objects. If an ImplicitGeome-

try object contains GML geometry (in the relativeGMLGeometry property), the surface data assignment needs to

be reevaluated in the context of each referring _CityObject. Thus, the appearance (but not the relative geometry)

of a given ImplicitGeometry can differ between its occurrences. A consistent appearance results if all required

surface data objects are placed in Appearance objects and the latter are stored either

1. in the _CityObject containing the original ImplicitGeometry with XLinks referencing the same Appear-

ance objects in all _CityObjects that refer to the ImplicitGeometry or

2. in the global CityModel.

9.2 Appearance and SurfaceData

The feature class Appearance defines a container for surface data objects. It provides the theme that all contained

surface data objects are related to. All appearance objects with the same theme in a CityGML file are considered

a group. Surface data objects are stored in the surfaceDataMember property. They can be used in multiple

themes simultaneously as remote properties.

The feature class _SurfaceData is the base class for materials and textures. Its only element is the boolean flag

isFront, which determines the side a surface data object applies to. Please note, that all classes of the appearance

model support CityGMLôs ADE mechanism (cf. chapters 6.12 and 10.13). The hooks for application specific

extensions are realized by the elements ñ_GenericApplicationPropertyOféò.

AppearanceType, Appearance, AppearancePropertyType

<xs:complexType name="AppearanceType">

 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">

 <xs:sequence>

 <xs:element name="theme" type="xs:string" minOccurs="0"/>
 <xs:element name="surfaceDataMember" type="SurfaceDataPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfAppearance" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="Appearance" type="AppearanceType" substitutionGroup="gml:_Feature"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfAppearance" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:complexType name="AppearancePropertyType">
 <xs:sequence minOccurs="0">

 <xs:element ref="Appearance"/>

 </xs:sequence>
 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

</xs:complexType>

appearanceMember, appearance

<xs:element name="appearanceMember" type="gml:FeaturePropertyType" substitutionGroup="gml:featureMember"/>
<!-- === -->

<xs:element name="appearance" type="AppearancePropertyType" substitutionGroup="core:_GenericApplicationPropertyOfCityObject"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 37

The definition of appearanceMember allows for an arbitrary or even mixed sequence of _CityObject features

and Appearance features within a CityModel feature collection (cf. chapter 10.1).

In order to store appearance information within a single _CityObject feature, the corresponding abstract class

_CityObject of the core module is augmented by the property element appearance. The additional property

appearance is injected into _CityObject using CityGMLôs Application Domain Extension mechanism (cf.

chapter 10.13). By this means, each thematic subclass of _CityObject inherits this property. Thus, the Appear-

ance module has a deliberate impact on each extension module defining thematic subclasses of _CityObject.

AbstractSurfaceDataType, _SurfaceData, SurfaceDataPropertyType

<xs:complexType name="AbstractSurfaceDataType" abstract="true">

 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">

 <xs:sequence>

 <xs:element name="isFront" type="xs:boolean" default="true" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfSurfaceData" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="_SurfaceData" type="AbstractSurfaceDataType" abstract="true" substitutionGroup="gml:_Feature"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfSurfaceData" type="xs:anyType" abstract="true"/>
<!-- === -->

<xs:complexType name="SurfaceDataPropertyType">
 <xs:sequence minOccurs="0">

 <xs:element ref="_SurfaceData" minOccurs="0"/>

 </xs:sequence>
 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

</xs:complexType>

9.3 Material

Materials define light reflection properties being constant for a whole surface geometry object. The definition of

the class X3DMaterial is adopted from the X3D and COLLADA specification (cf. X3D, COLLADA specifica-

tion). diffuseColor defines the color of diffusely reflected light. specularColor defines the color of a directed

reflection. emissiveColor is the color of light generated by the surface. All colors use RGB values with red,

green, and blue between 0 and 1. Transparency is defined separately using the transparency element where 0

stands for fully opaque and 1 for fully transparent. ambientIntensity defines the minimum percentage of dif-

fuseColor that is visible regardless of light sources. shininess controls the sharpness of the specular highlight. 0

produces a soft glow while 1 results in a sharp highlight. isSmooth gives a hint for normal interpolation. If this

boolean flag is set to true, vertex normals should be used for shading (Gouraud shading). Otherwise, normals

should be constant for a surface patch (flat shading).

Target surfaces are specified using target elements. Each element contains the URI of one target surface geome-

try object (of type gml:AbstractSurfaceType or gml:MultiSurface).

X3DMaterialType, X3DMaterial

<xs:complexType name="X3DMaterialType">

 <xs:complexContent>

 <xs:extension base="AbstractSurfaceDataType">

 <xs:sequence>
 <xs:element name="ambientIntensity" type="core:doubleBetween0and1" default="0.2" minOccurs="0"/>

 <xs:element name="diffuseColor" type="Color" default="0.8 0.8 0.8" minOccurs="0"/>

 <xs:element name="emissiveColor" type="Color" default="0.0 0.0 0.0" minOccurs="0"/>
 <xs:element name="specularColor" type="Color" default="1.0 1.0 1.0" minOccurs="0"/>

 <xs:element name="shininess" type="core:doubleBetween0and1" default="0.2" minOccurs="0"/>

 <xs:element name="transparency" type="core:doubleBetween0and1" default="0.0" minOccurs="0"/>
 <xs:element name="isSmooth" type="xs:boolean" default="false" minOccurs="0"/>

 <xs:element name="target" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfX3DMaterial" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

38 Copyright © 2012 Open Geospatial Consortium.

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="X3DMaterial" type="X3DMaterialType" substitutionGroup="_SurfaceData"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfX3DMaterial" type="xs:anyType" abstract="true"/>

9.4 Texture and texture mapping

The abstract base class for textures is _Texture. Textures in CityGML are always raster-based 2D textures. The

raster image is specified by imageURI using a URI and can be an arbitrary image data resource, even a prefor-

matted request for a web service. The image data format can be defined using standard MIME types in the

mimeType element.

Textures can be qualified by the attribute textureType. The textureType differentiates between textures, which

are specific for a certain object (specific) and prototypic textures being typical for that object surface (typical).

Textures may also be classified as unknown.

The specification of texture wrapping is adopted from the COLLADA standard. Texture wrapping is required

when accessing a texture outside the underlying image raster. wrapMode can have one of five values (Fig. 15

illustrates the effect of these wrap modes):

1. none ï the resulting color is fully transparent

2. wrap ï the texture is repeated

3. mirror ï the texture is repeated and mirrored

4. clamp ï the texture is clamped to its edges

5. border ï the resulting color is specified by the borderColor element (RGBA)

In wrap mode mirror, the texture image is repeated both in horizontal and in vertical direction to fill the texture

space similar to wrap mode wrap. Unlike wrap, each repetition results from flipping the previous texture part

along the repetition direction. This behaviour removes the edge correspondence constraint for wrapped textures

and always results in a seamless texture.

Fig. 15: A texture (a) applied to a facade using different wrap modes: (b) none, (c) wrap, (d) mirror, (e) clamp and (f) border. The border
color is red. The numbers denote texture coordinates (image: Hasso-Plattner-Institute).

AbstractTextureType, _Texture, WrapModeType, TextureTypeType

<xs:complexType name="AbstractTextureType" abstract="true">

 <xs:complexContent>

 <xs:extension base="AbstractSurfaceDataType">
 <xs:sequence>

 <xs:element name="imageURI" type="xs:anyURI"/>

 <xs:element name="mimeType" type="gml:CodeType" minOccurs="0"/>
 <xs:element name="textureType" type="TextureTypeType" minOccurs="0"/>

 <xs:element name="wrapMode" type="WrapModeType" minOccurs="0"/>

 <xs:element name="borderColor" type="ColorPlusOpacity" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfTexture" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="_Texture" type="AbstractTextureType" abstract="true" substitutionGroup="_SurfaceData"/>

<!-- === -->

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 39

<xs:element name="_GenericApplicationPropertyOfTexture" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:simpleType name="WrapModeType">

 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>

 <xs:enumeration value="wrap"/>

 <xs:enumeration value="mirror"/>
 <xs:enumeration value="clamp"/>

 <xs:enumeration value="border"/>

 </xs:restriction>
</xs:simpleType>

<!-- === -->

<xs:simpleType name="TextureTypeType">
 <xs:restriction base="xs:string">

 <xs:enumeration value="specific"/>
 <xs:enumeration value="typical"/>

 <xs:enumeration value="unknown"/>

 </xs:restriction>
</xs:simpleType>

_Texture is further specialised according to the texture parameterisation, i.e. the mapping function from a loca-

tion on the surface to a location in the texture image. CityGML uses the notion of texture space, where the

texture image always occupies the region [0,1]² regardless of the actual image size or aspect ratio. The lower left

image corner is located at the origin (some graphics APIs may use other conventions and require texture coordi-

nate conversion). The mapping function must be known for each surface geometry object to receive texture.

Fig. 16: A georeferenced texture applied to ground and roof surfaces (source: Senate of Berlin, Hasso-Plattner-Institute).

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Consequently, it does not

make sense to texture vertical surfaces using a GeoreferencedTexture. Such a texture has a unique mapping

function which is usually provided with the image file (e.g. georeferenced TIFF) or as a separate ESRI world

file
1
. The search order for an external georeference is determined by the boolean flag preferWorldFile. If this

flag is set to true (its default value), a world file is looked for first and only if it is not found the georeference

from the image data is used. If preferWorldFile is false, the world file is used only if no georeference from the

image data is available.

Alternatively, CityGML allows for inline specification of a georeference similar to a world file. This internal

georeference specification always takes precedence over any external georeference. referencePoint defines the

location of the center of the upper left image pixel in world space and corresponds to values 5 and 6 in an ESRI

world file. Since GeoreferencedTexture uses a planimetric projection, referencePoint is two-dimensional. orien-

tation defines the rotation and scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major

order corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation is identical to

1 Further information about the ESRI world file format is provided at http://en.wikipedia.org/wiki/World_file.

http://en.wikipedia.org/wiki/World_file

40 Copyright © 2012 Open Geospatial Consortium.

the referencePointôs CRS. A planimetric point ()Tyx, in that CRS is transformed to a point ()Tts, in texture

space using the formula:

öö
÷

õ
ææ
ç

å
+ö
ö

÷

õ

æ
æ

ç

å
-öö
÷

õ
ææ
ç

å
ÖÖöö

÷

õ
ææ
ç

å

-
=öö
÷

õ
ææ
ç

å -

1

0

10

01
1

RP
y

x
M

h

w

t

s

with M denoting orientation, PR denoting referencePoint., w the imageôs width in pixels, and h the imageôs

height in pixels. This transformation compensates for the difference between the image coordinate system used

in ESRI world files (origin in upper left corner, positive x-axis rightwards, and positive y-axis downwards) and

texture space in CityGML (origin in lower left corner, positive x-axis rightwards, and positive y-axis upwards).

If neither an internal nor an external georeference is given the GeoreferencedTexture is invalid. Each target

surface geometry object is specified by an URI in a target element. All target surface geometry objects share the

mapping function defined by the georeference. No other mapping function is allowed. Please note, that the

gml:boundedBy property inherited from gml:AbstractFeatureType could be set to the bounding box of valid

image data to allow for spatial queries. Fig. 16 shows a georeferenced texture applied to the ground and all roof

surfaces.

GeoreferencedTextureType, GeoreferencedTexture

<xs:complexType name="GeoreferencedTextureType">

 <xs:complexContent>

 <xs:extension base="AbstractTextureType">
 <xs:sequence>

 <xs:element name="preferWorldFile" type="xs:boolean" default="true" minOccurs="0"/>

 <xs:element name="referencePoint" type="gml:PointPropertyType" minOccurs="0"/>
 <xs:element name="orientation" type="core:TransformationMatrix2x2Type" minOccurs="0"/>

 <xs:element name="target" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfGeoreferencedTexture" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="GeoreferencedTexture" type="GeoreferencedTextureType" substitutionGroup="_Texture"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfGeoreferencedTexture" type="xs:anyType" abstract="true"/>

The class ParameterizedTexture describes a texture with target-dependent mapping function. The mapping is

defined by subclasses of class _TextureParameterization as a property of the link to the target surface geometry

object. Each target surface geometry object is specified as URI in the uri attribute of a separate target element.

Since target implements gml:AssociationAttributeGroup, it allows referencing to a remote

_TextureParameterization object (using the xlink:href attribute), e.g. for sharing a mapping function between

targets or textures in different themes. The mapping function can either use the concept of texture coordinates

(through class TexCoordList) or a transformation matrix from world space to texture space (through class Tex-

CoordGen).

Fig. 17: Positioning of textures using texture coordinates (image: IGG Uni Bonn).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 41

Texture coordinates are applicable only to polygonal surfaces, whose boundaries are described by

gml:LinearRing (e.g., gml:Triangle, gml:Polygon, or a gml:MultiSurface consisting of gml:Polygons). They

define an explicit mapping of a surfaceôs vertices to points in texture space, i.e. each vertex including interior

ring vertices must receive a corresponding coordinate pair in texture space (for the notion of coordinates, refer to

ISO 19111). These coordinates are not restricted to the [0,1] interval. Texture coordinates for interior surface

points are planarly interpolated from the verticesô texture coordinates. Fig. 16 shows an example.

Texture coordinates for a target surface geometry object are specified using class TexCoordList as a texture

parameterization object in the textureôs target property. Each exterior and interior gml:LinearRing composing

the boundary of the target surface geometry object (which also might be a gml:CompositeSurface,

gml:MultiSurface, or gml:TriangulatedSurface) requires its own set of texture coordinates. A set of texture

coordinates is specified using the textureCoordinates element of class TexCoordList. Thus, a TexCoordList

contains as many textureCoordinate elements as the target surface geometry object contains gml:LinearRings.

textureCoordinateôs mandatory attribute ring provides the gml:id of the respective ring. The content is an or-

dered list of double values where each two values define a ()Tts, texture coordinate pair with s denoting the

horizontal and t the vertical texture axis. The list contains one pair per ring point with the pairsô order corre-

sponding to the ring pointsô order in the CityGML document (regardless of a possibly flipped surface orienta-

tion). If any ring point of a target surface geometry object has no texture coordinates assigned, the mapping is

incomplete and the respective surface cannot be textured. In case of aggregated target geometry objects, mapping

completeness is determined only for leaf geometry objects.

a. b.

Fig. 18: Projecting a photograph (a) onto multiple facades (b) using the worldToTexture transformation. The photograph does not cover the
left facade completely. Thus, the texture appears to be clipped. Texture wrapping is set to ñnoneò (source: Senate of Berlin, Hasso-Plattner-

Institute).

Alternatively, the mapping function can comprise a 3x4 transformation matrix specified by class TexCoordGen.

The transformation matrix, specified by the worldToTexture element, defines a linear transformation from a

spatial location in homogeneous coordinates to texture space. The use of homogeneous coordinates facilitates

perspective projections as transformation, e.g. for projecting a photograph into a city model (cf. Fig. 18). Texture

coordinates ()Tts, are calculated from a space location ()Tzyx ,, as () ()TT
qtqsts ¡¡¡¡= ,, with

() ()TT
zyxMqts 1,,,,, Ö=¡¡¡ . M denotes the 3x4 transformation matrix. Compared to a general 4x4 transfor-

mation, the resulting z component is ignored. Thus, the respective matrix row is omitted. Additionally, the

worldToTexture element uses the gml:SRSReferenceGroup attributes to define its CRS. A location in world

space has to be first transformed into this CRS before the transformation matrix can be applied.

The following construction results in a worldToTexture transformation that mimics the process of taking a

photograph by projecting a location in world space (in the city model) to a location in texture space:

))) ())) '&))) ())) '&
)))) ()))) '&)) ()) '&

locationCamera

z

y

x

norientatioCamera

zyx

zyx

zyx

projectionePerspectiv
spacetexture

toAdjustment

P

P

P

ddd

uuu

rrr

hf

wf

M

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

-

-

-

Ö

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

Ö
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

Ö
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=

1000

100

010

001

1000

0

0

0

0

0

0

1

0

0

0

2

0

0

0

2

100

5.05.00

5.005.0

42 Copyright © 2012 Open Geospatial Consortium.

In this formula, f denotes the focal length; w and h represent the image sensorôs physical dimensions; r
C

, u
C

, and

d
C
define the cameraôs frame of reference as right, up and directional unit vectors expressed in world coordinates;

and P stands for the cameraôs location in world space. Fig. 19 sketches this setting.

Fig. 19: Projective texture mapping. All points on a ray R starting from the projection center P are mapped to the same point T in texture
space (image: Hasso-Plattner-Institute, IGG TU Berlin).

Alternatively, if the 3x4 camera matrix MP is known (e.g. through a calibration and registration process), it can

easily be adopted for use in worldToTexture. MP is derived from intrinsic and extrinsic camera parameters

(interior and exterior orientation) and transforms a location in world space to a pixel location in the image.

Assuming the upper left image corner has pixel coordinates (0,0), the complete transformation to texture space

coordinates can be written as (widthimage and heightimage denote the image size in pixels):

Pimage

image

Mheight

width

M Ö
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

-=

100

110

001

Please note, that worldToTexture cannot compensate for radial or other non-linear distortions introduced by a

real camera lens.

Another use of worldToTexture is texturing a facade with complex geometry without specifying texture coordi-

nates for each gml:LinearRing. Instead, only the facadeôs aggregated surface becomes the texture target using a

TexCoordGen as parameterization. Then, worldToTexture effectively encodes an orthographic projection of

world space into texture space. For the special case of a vertical facade this transformation is given by:

))) ())) '&))) ())) '&
))))) ())))) '&

locationFacade

z

y

x

norientatioFacade

yx

xy

spacetexturetoScaling

f

f

F

F

F

nn

nn

height

width

M

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

-

-

-

Ö

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å-

Ö
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=

1000

100

010

001

1000

00

0100

00

1

0

0

0

0

0

0

1

0

0

0

1

This equation assumes n
C

 denoting the facadeôs overall normal vector (normalized, pointing outward, and being

parallel to the ground), F denoting the facadeôs lower left point, and widthf and heightf specifying the facadeôs

dimensions in world units. For the general case of an arbitrary normal vector the facade orientation matrix

assumes a form similar to the camera orientation matrix:

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

-

-

-

Ö

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

Ö
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

=

1000

100

010

001

1000

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

z

y

x

zyx

zyx

zyx

f

f

F

F

F

nnn

uuu

rrr

height

width

M with

()
()

rnu

n

n
r

T

T

CCC

C

C
C

³=

³

³
=

100

100

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 43

ParameterizedTextureType, ParameterizedTexture, TextureAssociationType

<xs:complexType name="ParameterizedTextureType">

 <xs:complexContent>
 <xs:extension base="AbstractTextureType">

 <xs:sequence>

 <xs:element name="target" type="TextureAssociationType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfParameterizedTexture" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="ParameterizedTexture" type="ParameterizedTextureType" substitutionGroup="_Texture"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfParameterizedTexture" type="xs:anyType" abstract="true"/>
<!-- === -->

<xs:complexType name="TextureAssociationType">

 <xs:sequence minOccurs="0">
 <xs:element ref="_TextureParameterization"/>

 </xs:sequence>

 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

</xs:complexType>

AbstractTextureParameterizationType, TexCoordListType, TexCoordGenType

<xs:complexType name="AbstractTextureParameterizationType" abstract="true">
 <xs:complexContent>

 <xs:extension base="gml:AbstractGMLType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfTextureParameterization" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="_TextureParameterization" type="AbstractTextureParameterizationType" abstract="true"

 substitutionGroup="gml:_GML"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfTextureParameterization" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:complexType name="TexCoordListType">
 <xs:complexContent>

 <xs:extension base="AbstractTextureParameterizationType">

 <xs:sequence>
 <xs:element name="textureCoordinates" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>
 <xs:extension base="gml:doubleList">

 <xs:attribute name="ring" type="xs:anyURI" use="required"/>

 </xs:extension>
 </xs:simpleContent>

 </xs:complexType>

 </xs:element>
 <xs:element ref="_GenericApplicationPropertyOfTexCoordList" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="TexCoordList" type="TexCoordListType" substitutionGroup="_TextureParameterization"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfTexCoordList" type="xs:anyType" abstract="true"/>
<!-- === -->

<xs:complexType name="TexCoordGenType">
 <xs:complexContent>

 <xs:extension base="AbstractTextureParameterizationType">

 <xs:sequence>
 <xs:element name="worldToTexture">

 <xs:complexType>

 <xs:simpleContent>
 <xs:extension base="core:TransformationMatrix3x4Type">

44 Copyright © 2012 Open Geospatial Consortium.

 <xs:attributeGroup ref="gml:SRSReferenceGroup"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>
 </xs:element>

 <xs:element ref="_GenericApplicationPropertyOfTexCoordGen" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="TexCoordGen" type="TexCoordGenType" substitutionGroup="_TextureParameterization"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfTexCoordGen" type="xs:anyType" abstract="true"/>

9.5 Related concepts

The notion of appearance clearly relates to the generic coverage approach (cf. ISO 19123 and OGC Abstract

specification, Topic 6). Surface data can be described as discrete or continuous coverage over a surface as two-

dimensional domain with a specific mapping function. Such an implementation requires the extension of GML

coverages (as of version 3.1) by suitable mapping functions and specialisation for valid domain and range sets.

For reasons of simplicity and comprehensibility both in implementation and usage, CityGML does not follow

this approach, but relies on textures and materials as well-known surface property descriptions from the field of

computer graphics (cf. X3D, COLLADA specification, Foley et al.). Textures and materials store data as color

using an appropriate mapping. If such a mapping is impractical, data storage can be customised using ADEs. A

review of coverages for appearance modelling is considered for CityGML beyond version 2.0.0.

Appearance is also related to portrayal. Portrayal describes the composition and symbolisation of a digital

modelôs image, i.e. presentation, while appearance encodes observations of the real objectôs surface, i.e. data.

Even though being based on graphical terms such as textures and materials, surface data is not limited to being

input for portrayal, but similarly serves as input or output for analyses on a featureôs surface. Consequently,

CityGML does not define mixing or composition of themes for portrayal purposes. Portrayal is left to viewer

applications or styling specification languages such as OGC Styled Layer Descriptors (SLD) or OGC Symbolo-

gy Encoding (SE).

9.6 Code lists

The mimeType attribute of the feature _Texture is specified as gml:CodeType. The values of this property can be

enumerated in a code list. A proposal for this code list can be found in annex C.6.

9.7 Conformance requirements

Base requirements

1. A surface geometry object may be the target of at most two textures and two materials (one for front

and back respectively) per theme.

2. The referencePoint property (type: gml:PointPropertyType) of the element GeoreferencedTexture may

only contain or reference a point geometry object with 2D coordinate values.

3. Texture coordinates given by the textureCoordinates property of the element TexCoordList define an

explicit mapping of a surfaceôs boundary points to points in texture space. Each boundary point of the

surface must receive a corresponding coordinate pair in texture space. The coordinate pair in texture

space shall be given as two doubles per boundary point. The order of the coordinate pairs must follow

the order of the boundary points in the CityGML document (regardless of a possibly flipped surface

orientation). Each gml:LinearRing composing the boundary of the target surface geometry object re-

quires its own set of texture coordinates.

4. A GeoreferencedTexture element must provide either internal or external georeference, otherwise it is

invalid. Internal georeference shall be declared by the referencePoint property (type:

gml:PointPropertyType) and the orientation property (type: core:TransformationMatrix2x2Type) of the

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 45

element GeoreferencedTexture. External georeference may be provided by the texture image file itself

(e.g. GeoTIFF) or by an accompanying world file.

Referential integrity

5. The appearanceMember element (type: AppearancePropertyType) may contain an Appearance element

inline or an XLink reference to a remote Appearance element using the XLink concept of GML 3.1.1.

In the latter case, the xlink:href attribute of the appearanceMember element may only point to a remote

Appearance element (where remote Appearance elements are located in another document or elsewhere

in the same document). Either the contained element or the reference must be given, but neither both

nor none.

6. The appearance property (type: AppearancePropertyType) of the element core:_CityObject may con-

tain an Appearance element inline or an XLink reference to a remote Appearance element using the

XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the appearance property may

only point to a remote Appearance element (where remote Appearance elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

7. The surfaceDataMember property (type: SurfaceDataPropertyType) of the element Appearance may

contain a _SurfaceData element inline or an XLink reference to a remote _SurfaceData element using

the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the surfaceDataMember

property may only point to a remote _SurfaceData element (where remote _SurfaceData elements are

located in another document or elsewhere in the same document). Either the contained element or the

reference must be given, but neither both nor none.

8. The target property (type: TextureAssociationType) of the element ParameterizedTexture may contain a

_TextureParameterization element inline or an XLink reference to a remote _ TextureParameterization

element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the target

property may only point to a remote _ TextureParameterization element (where remote _ TexturePa-

rameterization elements are located in another document or elsewhere in the same document). Either

the contained element or the reference must be given, but neither both nor none.

9. The target property (type xs:anyURI) of the element GeoreferencedTexture shall specify the gml:id of

the target surface geometry object which may only be of type gml:AbstractSurfaceType or

gml:MultiSurface.

10. The uri attribute of the complex type TextureAssociationType shall specify the gml:id of the target sur-

face geometry object which may only be of type gml:AbstractSurfaceType or gml:MultiSurface.

11. The ring attribute of the textureCoordinates property of the element TexCoordList shall specify the

gml:id of the target surface geometry object which may only be of type gml:LinearRing.

12. The target property (type xs:anyURI) of the element X3DMaterial shall specify the gml:id of the target

surface geometry object which may only be of type gml:AbstractSurfaceType or gml:MultiSurface.

46 Copyright © 2012 Open Geospatial Consortium.

9.8 Material model of previous CityGML versions [deprecated]

Since GML3 has no built-in concept for the representation of surface materials, previous versions of CityGML

extend the GML3 geometry model by the class TexturedSurface, which allows for assigning appearance proper-

ties (colors, shininess, transparency) and textures to 3D surfaces. The definition of the appearance properties is

adopted from the X3D specification. This approach for appearance modelling has been deprecated due to inher-

ent limitations. However, in order to provide a certain degree of backwards compatibility for already existing

CityGML implementations, the approach has been incorporated into CityGML version 1.0 and version 2.0 as a

separate extension module called TexturedSurface. By this means, implementations may employ the old material

model by supporting this module. Please note, that appearance information modelled according to the Textured-

Surface module can be converted without information loss to the concepts provided by CityGMLôs Appearance

module that has been introduced in the previous clauses of this chapter. Thus, the use of the TexturedSurface

module is strongly discouraged and implementations should only stick to the Appearance module instead.

Moreover, the TexturedSurface module is expected to be removed in future versions of CityGML.

For the TexturedSurface module, each surface or composite surface can be specialized to a TexturedSurface,

which can be assigned Materials (colors, shininess, transparency) or SimpleTextures. Fig. 20 depicts the UML

diagram, for XML schema definition see annex A.14.

Fig. 20: UML diagram of CityGMLôs material model. Please note, that this approach for appearance modelling has been marked as deprecat-

ed and is expected to be removed in future CityGML versions. Prefixes are used to indicate XML namespaces associated with model

elements. Element names without a prefix are defined within the CityGML TexturedSurface module.

The concept of positioning textures on surfaces complies with the 3D computer graphics standard X3D (web 3D

2004), a successor of VRML97. CityGML adds the class TexturedSurface to the geometry model of GML3

because there has been no appropriate texturing concept in ISO 19107 and in GML3.

A texture is specified as a raster image referenced by an URI (Uniform Resource Identifier) and can be an arbi-

trary resource, even on the internet. Textures are positioned by employing the concept of texture coordinates, i.e.

each texture coordinate matches with exactly one 3D coordinate of the TexturedSurface (Fig. 17). The use of

texture coordinates allows an exact positioning and trimming of the texture on the surface geometry.

The color of a surface is defined by RGB values. These have to be in the range of 0 to 1. The frontOpacity and

the backOpacity define the level of transparency of each surface. Their values have also to be in the range of 0

to 1, where 1 means completely covering and 0 denotes a completely transparent surface. The colors can be

differentiated in diffuseColor (color when illuminated by a source of light), emissiveColor (color when self-

illuminating) and specularColor/shininess (color for shiny surfaces).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 47

Textures can be qualified by the attribute textureType. The textureType differentiates between textures which are

specific for a certain object (specific) and prototypic textures being typical for that object surface (typical).

Textures may also be classified as unknown.

_Appearance is derived from gml:AbstractGMLType to be referenced in an appearance property. The attribute

gml:id is inherited, whose value may be referenced by a XLink. _Appearance is the parent class of Material and

SimpleTexture.

XML namespace

The XML namespace of the CityGML TexturedSurface module is identified by the Uniform Resource Identifier

(URI) http://www.opengis.net/citygml/texturedsurface/2.0. Within the XML Schema definition of the Textured-

Surface module, this URI is also used to identify the default namespace.

9.8.1 Textured surfaces

TexturedSurfaceType, TexturedSurface, AppearancePropertyType

<xs:complexType name="TexturedSurfaceType">

 <xs:complexContent>

 <xs:extension base="gml:OrientableSurfaceType">
 <xs:sequence>

 <xs:element ref="appearance" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="TexturedSurface" type="TexturedSurfaceType" substitutionGroup="gml:OrientableSurface"/>

<!-- === -->
<xs:element name="appearance" type="AppearancePropertyType"/>

<!-- === -->

<xs:complexType name="AppearancePropertyType">
 <xs:sequence minOccurs="0">

 <xs:element ref="_Appearance"/>

 </xs:sequence>
 <xs:attribute name="orientation" type="gml:SignType" default="+"/>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

</xs:complexType>

TexturedSurface may have one or more appearance properties, which can either be a Material (Color,...) or a

SimpleTexture. The _Appearance element can either be represented inline as an element of this type or by an

XLink reference to a remote _Appearance element. Either the reference or the contained element must be given,

but neither both nor none. The side of the surface the _Appearance refers to is given by the orientation attribute

(type gml:SignType) of the appearance property element, which refers to the corresponding orientation attribute

of the orientable surface: + means the side with positive orientation and - the side with negative orientation.

AbstractAppearanceType, _Appearance

<xs:complexType name="AbstractAppearanceType" abstract="true">
 <xs:complexContent>

 <xs:extension base="gml:AbstractGMLType"/>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="_Appearance" type="AbstractAppearanceType" abstract="true" substitutionGroup="gml:_GML"/>

MaterialType, Material

<xs:complexType name="MaterialType">
 <xs:complexContent>

 <xs:extension base="AbstractAppearanceType">

 <xs:sequence>
 <xs:element name="shininess" type="core:doubleBetween0and1" minOccurs="0"/>

 <xs:element name="transparency" type="core:doubleBetween0and1" minOccurs="0"/>

48 Copyright © 2012 Open Geospatial Consortium.

 <xs:element name="ambientIntensity" type="core:doubleBetween0and1" minOccurs="0"/>

 <xs:element name="specularColor" type="Color" minOccurs="0"/>

 <xs:element name="diffuseColor" type="Color" minOccurs="0"/>

 <xs:element name="emissiveColor" type="Color" minOccurs="0"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="Material" type="MaterialType" substitutionGroup="_Appearance"/>

SimpleTextureType, SimpleTexture, TextureTypeType

<xs:complexType name="SimpleTextureType">

 <xs:complexContent>

 <xs:extension base="AbstractAppearanceType">
 <xs:sequence>

 <xs:element name="textureMap" type="xs:anyURI"/>

 <xs:element name="textureCoordinates" type="gml:doubleList"/>
 <xs:element name="textureType" type="TextureTypeType" minOccurs="0"/>

 <xs:element name="repeat" type="xs:boolean" minOccurs="0"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="SimpleTexture" type="SimpleTextureType" substitutionGroup="_Appearance"/>

<!-- === -->
<xs:simpleType name="TextureTypeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="specific"/>
 <xs:enumeration value="typical"/>

 <xs:enumeration value="unknown"/>

 </xs:restriction>
</xs:simpleType>

9.8.2 Conformance requirements

Referential integrity

¶ The appearance property (type: AppearancePropertyType) of the element TexturedSurface may contain

an _Appearance element inline or an XLink reference to a remote _Appearance element using the

XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the appearance property may

only point to a remote _Appearance element (where remote _Appearance elements are located in an-

other document or elsewhere in the same document). Either the contained element or the reference must

be given, but neither both nor none.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 49

10 Thematic model

The thematic model of CityGML consists of the class definitions for the most important types of objects within

virtual 3D city models. These classes have been identified to be either required or important in many different

application areas. Most thematic classes are (transitively) derived from the basic classes _Feature and

_FeatureCollection, the basic notions defined in ISO 19109 and GML3 for the representation of spatial objects

and their aggregations. Features contain spatial as well as non-spatial attributes which are mapped to GML3

feature properties with corresponding data types. Geometric properties are represented as associations to the

geometry classes described in chapter 8. The thematic model also comprises different types of interrelationships

between feature classes like aggregations, generalisations and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability between different appli-

cations. By specifying the thematic concepts and their semantics along with their mapping to UML and GML3

different applications can rely on a well-defined set of feature types, attributes and data types with a standardised

meaning or interpretation. In order to also allow for the exchange of objects and/or attributes that are not explic-

itly modelled in CityGML, the concepts of generic city objects and attributes as well as CityGMLôs Application

Domain Extension mechanism have been introduced (cf. chapter 10.12 and chapter 10.13).

Each field of CityGMLôs thematic model is covered by a separate CityGML extension module. Thus, the exten-

sion modules are derived by vertically slicing the overall thematic data model of CityGML. All extension mod-

ules are based on and are dependent from the CityGML core module. The core comprises the basic concepts and

components of the CityGML data model. Implementations may choose to combine CityGML extension modules

in conjunction with the core according to their specific information needs or application domain. As for version

2.0 of CityGML, the following thirteen thematic extension modules are defined: Appearance, Bridge, Building,

CityFurniture, CityObjectGroup, Generics, LandUse, Relief, Transportation, Tunnel, Vegetation, WaterBody,

and TexturedSurface [deprecated]. Valid combinations of CityGML modules are called CityGML profiles. By

this means, CityGML profiles explicitly allow for partial implementations of the overall CityGML data model

(cf. chapter 7).

The thematic fields covered by the CityGML data model are introduced within the sub clauses of this chapter.

Each sub clause is related to a specific CityGML module.

50 Copyright © 2012 Open Geospatial Consortium.

10.1 CityGML Core

The CityGML Core module defines the basic concepts and components of the overall CityGML data model. It

forms the universal lower bound of the CityGML data model and, thus, is a dependency of all extension mod-

ules. Consequently, the core module has to be implemented by any conformant system. Primarily, the core

module provides the abstract base classes from which thematic classes within extension modules are (transitive-

ly) derived. Besides abstract type definitions, the core also contains non-abstract content, for example basic data

types and thematic classes that may be used by more than one extension module. The UML diagram in Fig. 21

illustrates CityGMLôs core module, for the XML Schema definition see below and annex A.1.

Fig. 21: UML diagram of CityGMLôs core module. The bracketed numbers following the attribute names denote the attributeôs multiplicity:

the minimal and maximal number of occurrences of the attribute per object. For example, a name is optional (0) in the class _Feature or may
occur multiple times (star symbol), while a _CityObject has none or at most one creationDate. Prefixes are used to indicate XML namespac-

es associated with model elements. Element names without a prefix are defined within the CityGML Core module.

The base class of all thematic classes within CityGMLôs data model is the abstract class _CityObject.

_CityObject provides a creation and a termination date for the management of histories of features as well as the

possibility to model external references to the same object in other data sets. Furthermore, two qualitative attrib-

utes relativeToTerrain and relativeToWater are provided which enable to specify the featureôs location with

respect to the terrain and water surface. The possible topological relations are illustrated in Fig. 22. Both attrib-

utes facilitate simple and efficient queries like for the number of subsurface buildings (entirelyBelowTerrain)

without the need for an additional digital terrain model or a model of the water body.

a) b)

Fig. 22: Topological relations of a CityGML object with respect to a) the terrain and b) the water surface.

_CityObject is a subclass of the GML class _Feature, thus it inherits the metadata property (which can be e.g.

information about the lineage, quality aspects, accuracy, local CRS) and name property from the superclass

_GML. A _CityObject may have multiple names, which are optionally qualified by a codeSpace. This enables

the differentiation between, for example, an official name and a popular name or of names in different languages

+creationDate : xs::date [0..1]

+terminationDate : xs::date [0..1]

+relativeToTerrain : RelativeToTerrainType [0..1]

+relativeToWater : RelativeToWaterType [0..1]

<<Feature>>

_CityObject

+informationSystem : xs::anyURI [0..1]

<<DataType>>

ExternalReference

<<Feature>>

CityModel

+name : gml::CodeType [0..*]

<<Feature>>

gml::_Feature

+name : xs::string [1]

+uri : xs::anyURI [1]

<<Union>>

ExternalObjectReference

<<Feature>>

gml::_FeatureCollection <<Feature>>

Address

<<DataType>>

xAL::AddressDetails

<<Geometry>>

gml::MultiPoint

+mimeType : gml::CodeType

+transformationMatrix : TransformationMatrix4x4Type

+libraryObject : xs::anyURI

<<Object>>

ImplicitGeometry

<<Geometry>>

gml::_Geometry

<<Geometry>>

gml::Point

+name : xs::string[1]

+codeSpace : xs::anyURI[0..1]

<<DataType>>

gml::CodeType

+entirelyAboveTerrain

+substantiallyAboveTerrain

+substantiallyAboveAndBelowTerrain

+substantiallyBelowTerrain

+entirelyBelowTerrain

<<Enumeration>>

RelativeToTerrainType

+entirelyAboveWaterSurface

+substantiallyAboveWaterSurface

+substantiallyAboveAndBelowWaterSurface

+substantiallyBelowWaterSurface

+entirelyBelowWaterSurface

+temporarilyAboveAndBelowWaterSurface

<<Enumeration>>

RelativeToWaterType

+gml::doubleList [16]

<<PrimitiveType>>

TransformationMatrix4x4Type

*

*

cityObjectMember

1*

0..1*

*1

externalReference

0..1*

1

1

externalObject

1
1

*

*

generalizesTo

referencePoint

relativeGMLGeometry

xalAddress

multiPoint

Visual Paradigm for UML Standard Edition(Technical University Berlin)

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 51

(cf. the name property of GML objects, Cox et al. 2004). The generalisation property generalizesTo of

_CityObject may be used to relate features, which represent the same real-world object in different Levels-of-

Detail, i.e. a feature and its generalised counterpart(s). The direction of this relation is from the feature to the

corresponding generalised feature.

Thematic classes may have further subclasses with relations, attributes and geometry. Features of the specialized

subclasses of _CityObject may be aggregated to a single CityModel, which is a feature collection with optional

metadata. Generally, each feature has the attributes class, function, and usage, unless it is stated otherwise. The

class attribute can occur only once, while the attributes usage and function can be used multiple times. The class

attribute allows for the classification of features beyond the thematic class hierarchy of _CityObject. For exam-

ple, a building feature is represented by the thematic subclass bldg:Building of _CityObject in the first place (this

subclass is defined within CityGMLôs Building module, cf. chapter 10.3). A further classification, e.g. as resi-

dential or administration building, may then be modelled using the class attribute of the class bldg:Building. The

attribute function normally denotes the intended purpose or usage of the object, such as hotel or shopping centre

for a building, while the attribute usage normally defines its real or actual usage. Possible values for the attrib-

utes class, function, and usage can be specified in code lists which are recommended to be implemented as

simple dictionaries following the Simple Dictionary Profile of GML 3.1.1 (cf. chapter 6.6 and 10.14). Annex C

provides code lists proposed and maintained by the SIG 3D which contain feasible attribute values and which

may be extended or redefined by users.

In addition to thematic content, the core module also provides the concept of implicit geometries as an enhance-

ment of the geometry model of GML3. Since this concept is strongly related to the spatial model of CityGML it

has already been introduced in chapter 8.2.

The top level class hierarchy of the thematic model in CityGML is presented in Fig. 23. The subclasses of

_CityObject comprise the different thematic fields of a city model covered by separate CityGML extension

modules: the terrain, buildings, bridges, tunnels, the coverage by land use objects, water bodies, vegetation,

generic city objects, city furniture objects, city object groups, and transportation. To indicate the extension

module defining a respective subclass of _CityObject, the class names in Fig. 23 are preceded by prefixes. Each

prefix is associated with one CityGML extension module (see chapter 4.3 and chapter 7 for a list of CityGMLôs

extension modules and the corresponding prefixes).

Fig. 23: CityGMLôs top level class hierarchy. Prefixes are used to indicate XML namespaces associated with model elements. Element

names without a prefix are defined within the CityGML Core module.

+creationDate : xs::date [0..1]

+terminationDate : xs::date [0..1]

+relativeToTerrain : RelativeToTerrainType [0..1]

+relativeToWater : RelativeToWaterType [0..1]

<<Feature>>

_CityObject

<<Feature>>

CityModel

<<Feature>>

_Site

<<Feature>>

wtr::_WaterObject

<<Feature>>

frn::CityFurniture

<<Feature>>

luse::LandUse

<<Feature>>

bldg::_AbstractBuilding

<<Feature>>

veg::_VegetationObject

<<Feature>>

dem::ReliefFeature

<<Feature>>

tran::_TransportationObject

<<Feature>>

grp::CityObjectGroup

<<Feature>>

gen::GenericCityObject

+theme : xs::string [0..1]

<<Feature>>

app::Appearance

<<Feature>>

gml::_Feature

<<Feature>>

gml::_FeatureCollection

<<Geometry>>

gml::_Surface

+orientation : gml::SignType [0..1]

<<Geometry>>

gml::OrientableSurface

<<Geometry>>

tex::TexturedSurface

+name : xs::string [1]

<<DataType>>

gen::_genericAttribute

+value : xs::integer [1]

<<DataType>>

gen::intAttribute

+value : xs::string [1]

<<DataType>>

gen::stringAttribute

+value : xs::double [1]

<<DataType>>

gen::doubleAttribute

+value : xs::date [1]

<<DataType>>

gen::dateAttribute

+value : xs::anyURI [1]

<<DataType>>

gen::uriAttribute

+value : gml::MeasureType [1]

<<DataType>>

gen::measureAttribute

+codeSpace : xs:anyURI [0..1]

<<DataType>>

gen::genericAttributeSet

<<Feature>>

tun::_AbstractTunnel

<<Feature>>

brdg::_AbstractBridge

*

*

cityObjectMember

*

*

generalizesTo

*

*

app::appearanceMember

*

1

gen::_genericAttribute

0..2

1

baseSurface

1..*

0..1

gen::_genericAttribute

* *

app::appearance

Visual Paradigm for UML Standard Edition(Technical University Berlin)

52 Copyright © 2012 Open Geospatial Consortium.

The classes GenericCityObject and _genericAttribute defined within CityGMLôs Generics module (cf. chapters

6.11 and 10.12) allow for modelling and exchanging of 3D objects which are not covered by any other thematic

class or which require attributes not represented in CityGML. For example, in the future, sites derived from the

abstract class _Site of the core module may be completed by further subclasses like excavation, city wall or

embankment. At present, the class GenericCityObject should be used in order to represent and exchange these

features. However, the concept of generic city objects and attributes may only be used if appropriate thematic

classes or attributes are not provided by any other CityGML module.

If the Generics module is employed, each CityObject may be assigned an arbitrary number of generic attributes

in order to represent additional properties of features. For this purpose, the Generics module augments the

abstract base class _CityObject by the property element _genericAttribute. The additional property

_genericAttribute is injected into _CityObject using CityGMLôs Application Domain Extension mechanism (cf.

chapter 10.13). By this means, each thematic subclass of _CityObject inherits this property and, thus, the possi-

bility to contain generic attributes. Therefore, the Generics module has a deliberate impact on all CityGML

extension modules defining thematic subclasses of _CityObject.

Appearance information about a featureôs surfaces can be represented by the class Appearance provided by

CityGMLôs Appearance module (cf. chapter 9). In contrast to the other thematic extensions to the core, Appear-

ance is not derived from _CityObject but from the GML class _Feature. _CityObject features and Appearance

features may be embraced within a single CityModel feature collection in an arbitrary or even mixed sequence

using the cityObjectMember and appearanceMember elements, both being members of the substitution group

gml:featureMember (cf. chapter 9 and chapter 10.1.1). Furthermore, feature appearances may be stored inline the

_CityObject itself. In order to enable city objects to store appearance information, the Appearance module

augments the abstract base class _CityObject by the property element appearance using CityGMLôs Application

Domain Extension mechanism (cf. chapter 10.13). Consequently, the appearance property is only available for

_CityObject and its thematic subclasses if the Appearance module is supported. Therefore, like the Generics

module, the Appearance module has a deliberate impact on any other extension module.

For sake of completeness, the class TexturedSurface is also illustrated in Fig. 23. This approach of appearance

modelling of previous versions of CityGML has been deprecated and is expected to be removed in future

CityGML versions. Since the information covered by TexturedSurface can be losslessly converted to the Ap-

pearance module, the use of TexturedSurface is strongly discouraged.

XML namespace

The XML namespace of the CityGML Core module is identified by the Uniform Resource Identifier (URI)

http://www.opengis.net/citygml/2.0. Within the XML Schema definition of the core module, this URI is also

used to identify the default namespace.

10.1.1 Base elements

AbstractCityObjectType, _CityObject

<xs:complexType name="AbstractCityObjectType" abstract="true">

 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">

 <xs:sequence>

 <xs:element name="creationDate" type="xs:date" minOccurs="0"/>
 <xs:element name="terminationDate" type="xs:date" minOccurs="0"/>

 <xs:element name="externalReference" type="ExternalReferenceType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="generalizesTo" type="GeneralizationRelationType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="relativeToTerrain" type="RelativeToTerrainType" minOccurs="0"/>

 <xs:element name="relativeToWater" type="RelativeToWaterType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfCityObject" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="_CityObject" type="AbstractCityObjectType" abstract="true" substitutionGroup="gml:_Feature"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfCityObject" type="xs:anyType" abstract="true"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 53

CityModelType, CityModel

<xs:complexType name="CityModelType">
 <xs:complexContent>

 <xs:extension base="gml:AbstractFeatureCollectionType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfCityModel" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="CityModel" type="CityModelType" substitutionGroup="gml:_FeatureCollection"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfCityModel" type="xs:anyType" abstract="true"/>

cityObjectMember

<xs:element name="cityObjectMember" type="gml:FeaturePropertyType" substitutionGroup="gml:featureMember"/>

AbstractSiteType, _Site

<xs:complexType name="AbstractSiteType" abstract="true">

 <xs:complexContent>

 <xs:extension base="AbstractCityObjectType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfSite" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- == -->

<xs:element name="_Site" type="AbstractSiteType" abstract="true" substitutionGroup="_CityObject"/>

<!-- == -->
<xs:element name="_GenericApplicationPropertyOfSite" type="xs:anyType" abstract="true"/>

The abstract class _Site is intended to be the superclass for buildings, bridges, tunnels, facilities, etc. Future

extension of CityGML (e.g. excavations, city walls or embankments) would be modelled as subclasses of _Site.

As subclass of _CityObject, a _Site inherits all attributes and relations, in particular the id, names, external

references, and generalisation relations.

10.1.2 Generalisation relation, RelativeToTerrainType and RelativeToWaterType

GeneralizationRelationType

<xs:complexType name="GeneralizationRelationType">

 <xs:sequence minOccurs="0">
 <xs:element ref="_CityObject"/>

 </xs:sequence>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>
</xs:complexType>

RelativeToTerrainType, RelativeToWaterType

<xs:simpleType name="RelativeToTerrainType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="entirelyAboveTerrain"/>
 <xs:enumeration value="substantiallyAboveTerrain"/>

 <xs:enumeration value="substantiallyAboveAndBelowTerrain"/>

 <xs:enumeration value="substantiallyBelowTerrain"/>
 <xs:enumeration value="entirelyBelowTerrain"/>

 </xs:restriction>

</xs:simpleType>
<!-- === -->

<xs:simpleType name="RelativeToWaterType">

54 Copyright © 2012 Open Geospatial Consortium.

 <xs:restriction base="xs:string">

 <xs:enumeration value="entirelyAboveWaterSurface"/>

 <xs:enumeration value="substantiallyAboveWaterSurface"/>
 <xs:enumeration value="substantiallyAboveAndBelowWaterSurface"/>

 <xs:enumeration value="substantiallyBelowWaterSurface"/>

 <xs:enumeration value="entirelyBelowWaterSurface"/>
 <xs:enumeration value="temporarilyAboveAndBelowWaterSurface"/>

 </xs:restriction>

</xs:simpleType>

10.1.3 External references

An ExternalReference defines a hyperlink from a _CityObject to a corresponding object in another information

system, for example in the German cadastre (ALKIS), the German topographic information system (ATKIS), or

the OS MasterMap
®
. The reference consists of the name of the external information system, represented by an

URI, and the reference of the external object, given either by a string or by an URI. If the informationSystem

element is missing in the ExternalReference, the ExternalObjectReference must be an URI.

ExternalReferenceType, ExternalObjectReferenceType

<xs:complexType name="ExternalReferenceType">

 <xs:sequence>
 <xs:element name="informationSystem" type="xs:anyURI" minOccurs="0"/>

 <xs:element name="externalObject" type="ExternalObjectReferenceType"/>

 </xs:sequence>
</xs:complexType>

<!-- == -->

<xs:complexType name="ExternalObjectReferenceType">
 <xs:choice>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="uri" type="xs:anyURI"/>
 </xs:choice>

</xs:complexType>

10.1.4 Address information

The CityGML core module provides the means to represent address information of real-world features within

virtual city models. Since not every real-world feature is assigned an address, a correspondent address property

is not defined for the base class _CityObject, but has to be explicitly modelled for a thematic subclass. For

example, the building model declares address properties for its classes _AbstractBuilding and Door. Both classes

are referencing the corresponding data types of the core module to represent address information (cf. chapter

10.3).

Addresses are modelled as GML features having one xalAddress property and an optional multiPoint property.

For example, for a building feature the multiPoint property allows for the specification of the exact positions of

the building entrances that are associated with the corresponding address. The point coordinates can be 2D or

3D. Modelling addresses as features has the advantage that GML3ôs method of representing features by refer-

ence (using XLinks) can be applied. This means, that addresses might be bundled as an address FeatureCollec-

tion that is stored within an external file or that can be served by an external Web Feature Service. The address

property elements within the CityGML file then would not contain the address information inline but only

references to the corresponding external features.

The address information is specified using the xAL address standard issued by the OASIS consortium (OASIS

2003), which provides a generic schema for all kinds of international addresses. Therefore, child elements of the

xalAddress property of Address have to be structured according to the OASIS xAL schema.

AddressPropertyType, AddressType, Address

<xs:complexType name="AddressPropertyType">

 <xs:sequence minOccurs="0">

 <xs:element ref="Address"/>
 </xs:sequence>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 55

</xs:complexType>

<!-- == -->

<xs:complexType name="AddressType">
 <xs:complexContent>

 <xs:extension base="gml:AbstractFeatureType">

 <xs:sequence>
 <xs:element name="xalAddress" type="xalAddressPropertyType"/>

 <xs:element name="multiPoint" type="gml:MultiPointPropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfAddress" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="Address" type="AddressType" substitutionGroup="gml:_Feature"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfAddress" type="xs:anyType" abstract="true"/>

<!-- == -->
<xs:complexType name="xalAddressPropertyType">

 <xs:sequence>

 <xs:element ref="xAL:AddressDetails"/>
 </xs:sequence>

</xs:complexType>

The following two excerpts of a CityGML dataset contain examples for the representation of German and British

addresses in xAL. The address information is attached to building objects (bldg:Building) according to the

CityGML Building module (cf. chapter 10.3). Generally, if a CityGML instance document contains address

information, the namespace prefix ñxALò should be declared in the root element and must refer to

ñurn:oasis:names:tc:ciq:xsdschema:xAL:2.0ò. An example showing a complete CityGML dataset including a

building with an address element is provided in annex G.1.

<bldg:Building>
 é

 <bldg:address>

 <core:Address>
 <core:xalAddress>

 <!-- Bussardweg 7, 76356 Weingarten, Germany -->

 <xAL:AddressDetails>
 <xAL:Country>

 <xAL:CountryName>Germany</xAL:CountryName>

 <xAL:Locality Type="City">
 <xAL:LocalityName>Weingarten</xAL:LocalityName>

 <xAL:Thoroughfare Type="Street">

 <xAL:ThoroughfareNumber>7</xAL:ThoroughfareNumber>
 <xAL:ThoroughfareName>Bussardweg</xAL:ThoroughfareName>

 </xAL:Thoroughfare>

 <xAL:PostalCode>
 <xAL:PostalCodeNumber>76356</xAL:PostalCodeNumber>

 </xAL:PostalCode>
 </xAL:Locality>

 </xAL:Country>

 </xAL:AddressDetails>
 </core:xalAddress>

 </core:Address>

 </bldg:address>
</bldg:Building>

<bldg:Building>

 é

 <bldg:address>
 <core:Address>

 <core:xalAddress>
 <!-- 46 Brynmaer Road Battersea LONDON, SW11 4EW United Kingdom -->

 <!-- source: http://xml.coverpages.org/xnal.html -->

 <xAL:AddressDetails>
 <xAL:Country>

 <xAL:CountryName>United Kingdom</xAL:CountryName>

 <xAL:Locality Type="City">
 <xAL:LocalityName>LONDON</xAL:LocalityName>

 <xAL:DependentLocality Type="District">

56 Copyright © 2012 Open Geospatial Consortium.

 <xAL:DependentLocalityName>Battersea</xAL:DependentLocalityName>

 <xAL:Thoroughfare>

 <xAL:ThoroughfareNumber>46</xAL:ThoroughfareNumber>
 <xAL:ThoroughfareName>Brynmaer Road</xAL:ThoroughfareName>

 </xAL:Thoroughfare>

 </xAL:DependentLocality>
 <xAL:PostalCode>

 <xAL:PostalCodeNumber>SW11 4EW</xAL:PostalCodeNumber>

 </xAL:PostalCode>
 </xAL:Locality>

 </xAL:Country>

 </xAL:AddressDetails>
 </core:xalAddress>

 </core:Address>

 </bldg:address>
</bldg:Building>

10.1.5 Code lists

The mimeType attribute of ImplicitGeometry is specified as gml:CodeType. The values of this property can be

enumerated in a code list. A proposal for this code list can be found in annex C.6.

10.1.6 Conformance requirements

Base requirements

1. The CityModel element (type: CityModelType, substitutionGroup: gml:_FeatureCollection) shall only

contain cityObjectMember elements (type: gml:FeaturePropertyType), app:appearanceMember ele-

ments (type: app:AppearancePropertyType), and gml:featureMember elements (type:

gml:FeaturePropertyType) as feature members.

2. The type ExternalObjectReference introduces the two elements name (type: xs:string) and uri (type:

xs:anyURI). The external reference may be specified by either of them. However, if the informationSys-

tem property element (type: xs:anyURI) of the type ExternalReferenceType is not provided, the uri ele-

ment of ExternalObjectReference must be given.

3. In order to represent address information about a feature, the corresponding thematic class of the feature

shall define a property of the type AddressPropertyType. Thus, for all CityGML extension modules on-

ly the type AddressPropertyType shall be used for elements providing address information.

4. Since the concept of implicit geometries (cf. chapter 8.2) is part of the CityGML Core module, the con-

formance requirements introduced for implicit geometries (cf. chapter 8.3.3) are part of the conform-

ance requirements of the core.

Referential integrity

5. The cityObjectMember element (type: gml:FeaturePropertyType) may contain a _CityObject element,

which typically is an object from a derived subclass like bldg:Building, inline or an XLink reference to

a remote _CityObject element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href

attribute of the cityObjectMember element may only point to a remote _CityObject element (where re-

mote _CityObject elements are located in another document or elsewhere in the same document). Either

the contained element or the reference must be given, but neither both nor none.

6. The type AddressPropertyType may contain an Address element inline or an XLink reference to a re-

mote Address element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute

of the corresponding element of type AddressPropertyType may only point to a remote Address element

(where remote Address elements are located in another document or elsewhere in the same document).

Either the contained element or the reference must be given, but neither both nor none.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 57

10.2 Digital Terrain Model (DTM)

An essential part of a city model is the terrain. The Digital Terrain Model (DTM) of CityGML is provided by the

thematic extension module Relief (cf. chapter 7). In CityGML, the terrain is represented by the class ReliefFea-

ture in LOD 0-4 (Fig. 24 depicts the UML diagram, for the XML schema definition see annex A.9). A Re-

liefFeature consists of one or more entities of the class ReliefComponent. Its validity may be restricted to a

certain area defined by an optional validity extent polygon. As ReliefFeature and ReliefComponent are deriva-

tives of _CityObject, the corresponding attributes and relations are inherited. The class ReliefFeature is associat-

ed with different concepts of terrain representations which can coexist. The terrain may be specified as a regular

raster or grid (RasterRelief), as a TIN (Triangulated Irregular Network, TINReflief), by break lines (BreaklineRe-

lief), or by mass points (MasspointRelief). The four types are implemented by the corresponding GML3 classes:

grids by gml:RectifiedGridCoverage, break lines by gml:MultiCurve, mass points by gml:MultiPoint and TINs

either by gml:TriangulatedSurface or by gml:Tin. In case of gml:TriangulatedSurfaces, the triangles are given

explicitly while in case of gml:Tin only 3D points are represented, where the triangulation can be reconstructed

by standard methods (Delaunay triangulation, cf. Okabe et al. 1992). Break lines are represented by 3D curves.

Mass points are simply a set of 3D points.

Fig. 24: UML diagram of the Digital Terrain Model in CityGML. Prefixes are used to indicate XML namespaces associated with model

elements. Element names without a prefix are defined within the CityGML Relief module.

In a CityGML dataset the four terrain types may be combined in different ways, yielding a high flexibility. First,

each type may be represented in different levels of detail, reflecting different accuracies or resolutions. Second, a

part of the terrain can be described by the combination of multiple types, for example by a raster and break lines,

or by a TIN and break lines. In this case, the break lines must share the geometry with the triangles. Third,

neighboring regions may be represented by different types of terrain models. To facilitate this combination, each

terrain object is provided with a spatial attribute denoting its extent of validity (Fig. 25). In most cases, the extent

of validity of a regular raster dataset corresponds to its bounding box. This validity extent is represented by a 2D

footprint polygon, which may have holes. This concept enables, for example, the modelling of a terrain by a

coarse grid, where some distinguished regions are represented by a detailed, high-accuracy TIN. The boundaries

between both types are given by the extent attributes of the corresponding terrain objects.

<<Feature>>

core::_CityObject

+lod : core::integerBetween0and4 [1]

<<Feature>>

ReliefFeature

+lod : core::integerBetween0and4 [1]

<<Feature>>

_ReliefComponent

<<Feature>>

TINRelief

<<Feature>>

MassPointRelief

<<Feature>>

BreaklineRelief

<<Feature>>

RasterRelief

<<Geometry>>

gml::TriangulatedSurface

<<Geometry>>

gml::MultiPoint

<<Geometry>>

gml::MultiCurve

<<Feature>>

gml::RectifiedGridCoverage

<<Geometry>>

gml::Polygon

+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]

+maxLength : gml::LengthType [1]

+controlPoint : gml::posList [1]

<<Geometry>>

gml::Tin

1

*

grid

1

*

tin

1..**

reliefComponent

0..1

*

breaklines

1

*

reliefPoints

0..1

*

ridgeOrValleyLines

0..1*

extent

Visual Paradigm for UML Standard Edition(Technical University Berlin)

58 Copyright © 2012 Open Geospatial Consortium.

Fig. 25: Nested DTMs in CityGML using validity extent polygons (graphic: IGG Uni Bonn).

Accuracy and resolution of the DTM are not necessarily dependent on features of other CityGML extenstion

modules such as building models. Hence, there is the possibility to integrate building models with higher LOD to

a DTM with lower accuracy or resolution.

This approach interacts with the concept of TerrainIntersectionCurves TIC (cf. chapter 6.5). The TIC can be

used like break lines to adjust the DTM to different features such as buildings, bridges, or city furnitures, and

hence to ensure a consistent representation of the DTM. If necessary, a retriangulation may have to be processed.

A TIC can also be derived by the individual intersection of the DTM and the corresponding feature.

ReliefFeature and its ReliefComponents both have an lod attribute denoting the corresponding level of detail. In

most cases, the LOD of a ReliefFeature matches the LOD of its ReliefComponents. However, it is also allowed

to specify a ReliefFeature with a high LOD which consists of ReliefComponents where some of them can have a

LOD lower than that of the aggregating ReliefFeature. The idea is that, for example, for a LOD3 scene it might

be sufficient to use a regular grid in LOD2 with certain higher precision areas defined by ReliefComponents in

LOD3. The LOD2 grid and the LOD3 components can easily be integrated using the concept of the validity

extent polygon. Therefore, although some of the ReliefComponents would have been classified to a lower LOD,

the whole ReliefFeature would be appropriate to use with other LOD3 models which is indicated by setting its

lod value to 3.

XML namespace

The XML namespace of the CityGML Relief module is identified by the Uniform Resource Identifier (URI)

http://www.opengis.net/citygml/relief/2.0. Within the XML Schema definition of the Relief module, this URI is

also used to identify the default namespace.

10.2.1 Relief feature and relief component

ReliefFeatureType, ReliefFeature

<xs:complexType name="ReliefFeatureType">

 <xs:complexContent>
 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="lod" type="core:integerBetween0and4"/>
 <xs:element name="reliefComponent" type="ReliefComponentPropertyType" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfReliefFeature" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="ReliefFeature" type="ReliefFeatureType" substitutionGroup="core:_CityObject"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfReliefFeature" type="xs:anyType" abstract="true"/>

<!-- === -->

<xs:complexType name="ReliefComponentPropertyType">

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 59

 <xs:sequence minOccurs="0">

 <xs:element ref="_ReliefComponent"/>

 </xs:sequence>
 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>

</xs:complexType>

AbstractReliefComponentType, _ReliefComponent

<xs:complexType name="AbstractReliefComponentType" abstract="true">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="lod" type="core:integerBetween0and4"/>

 <xs:element name="extent" type="gml:PolygonPropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfReliefComponent" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="_ReliefComponent" type="AbstractReliefComponentType" abstract="true" substitutionGroup="core:_CityObject"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfReliefComponent" type="xs:anyType" abstract="true"/>

10.2.2 TIN relief

TINReliefType, TINRelief

<xs:complexType name="TINReliefType">

 <xs:complexContent>

 <xs:extension base="AbstractReliefComponentType">
 <xs:sequence>

 <xs:element name="tin" type="tinPropertyType"/>

 <xs:element ref="_GenericApplicationPropertyOfTinRelief" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="TINRelief" type="TINReliefType" substitutionGroup="_ReliefComponent"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfTinRelief" type="xs:anyType" abstract="true"/>
<!-- === -->

<xs:complexType name="tinPropertyType">

 <xs:sequence minOccurs="0">
 <xs:element ref="gml:TriangulatedSurface"/>

 </xs:sequence>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>
</xs:complexType>

The geometry of a TINRelief is defined by the GML geometry class gml:TriangulatedSurface. This allows either

the explicit provision of a set of triangles (gml:TriangulatedSurface) or specifying of only the control points,

break and stop lines using the subclass gml:Tin of gml:TriangulatedSurface. In the latter case, an application that

processes an instance document containing a gml:Tin has to reconstruct the triangulated surface by the applica-

tion of a constrained Delaunay triangulation algorithm (cf. Okabe et al. 1992).

10.2.3 Raster relief

RasterReliefType, RasterRelief, Elevation

60 Copyright © 2012 Open Geospatial Consortium.

<xs:complexType name="RasterReliefType">

 <xs:complexContent>

 <xs:extension base="AbstractReliefComponentType">
 <xs:sequence>

 <xs:element name="grid" type="gridPropertyType"/>

 <xs:element ref="_GenericApplicationPropertyOfRasterRelief" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="RasterRelief" type="RasterReliefType" substitutionGroup="_ReliefComponent"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfRasterRelief" type="xs:anyType" abstract="true"/>

<!-- === -->
<!-- === -->

<xs:complexType name="gridPropertyType">

 <xs:sequence minOccurs="0">
 <xs:element ref="gml:RectifiedGridCoverage"/>

 </xs:sequence>

 <xs:attributeGroup ref="gml:AssociationAttributeGroup"/>
</xs:complexType>

<!-- === -->

<xs:element name="Elevation" type="gml:LengthType" substitutionGroup="gml:_Object"/>

10.2.4 Mass point relief

MassPointReliefType, MassPointRelief

<xs:complexType name="MassPointReliefType">
 <xs:complexContent>

 <xs:extension base="AbstractReliefComponentType">

 <xs:sequence>
 <xs:element name="reliefPoints" type="gml:MultiPointPropertyType"/>

 <xs:element ref="_GenericApplicationPropertyOfMassPointRelief" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="MassPointRelief" type="MassPointReliefType" substitutionGroup="_ReliefComponent"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfMassPointRelief" type="xs:anyType" abstract="true"/>

10.2.5 Breakline relief

BreaklineReliefType, BreaklineRelief

<xs:complexType name="BreaklineReliefType">
 <xs:complexContent>

 <xs:extension base="AbstractReliefComponentType">

 <xs:sequence>
 <xs:element name="ridgeOrValleyLines" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="breaklines" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfBreaklineRelief" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="BreaklineRelief" type="BreaklineReliefType" substitutionGroup="_ReliefComponent"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBreaklineRelief" type="xs:anyType" abstract="true"/>

The geometry of a BreaklineRelief can be composed of break lines and ridge/valley lines. Whereas break lines

indicate abrupt changes of terrain slope, ridge/valley lines in addition mark a change of the sign of the terrain

slope gradient. A BreaklineRelief must have at least one of the two properties.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 61

10.2.6 Conformance requirements

Base requirements

1. The gml:Polygon geometry element describing the extent of validity of a _ReliefComponent element us-

ing the extent property (type: gml:PolygonPropertyType) of _ReliefComponent shall be given as 2D

footprint polygon which may have inner holes.

Referential integrity

2. The reliefComponent property (type: ReliefComponentPropertyType) of the element ReliefFeature may

contain a _ReliefComponent element inline or an XLink reference to a remote _ReliefComponent ele-

ment using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the reliefCom-

ponent property may only point to a remote _ReliefComponent element (where remote

_ReliefComponent elements are located in another document or elsewhere in the same document). Ei-

ther the contained element or the reference must be given, but neither both nor none.

3. The tin property (type: tinPropertyType) of the element TINRelief may contain a

gml:TriangulatedSurface element inline or an XLink reference to a remote gml:TriangulatedSurface el-

ement using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the tin prop-

erty may only point to a remote gml:TriangulatedSurface element (where remote

gml:TriangulatedSurface elements are located in another document or elsewhere in the same docu-

ment). Either the contained element or the reference must be given, but neither both nor none.

4. The grid property (type: gridPropertyType) of the element RasterRelief may contain a

gml:RectifiedGridCoverage element inline or an XLink reference to a remote

gml:RectifiedGridCoverage element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the grid property may only point to a remote gml:RectifiedGridCoverage element

(where remote gml:RectifiedGridCoverage elements are located in another document or elsewhere in

the same document). Either the contained element or the reference must be given, but neither both nor

none.

62 Copyright © 2012 Open Geospatial Consortium.

10.3 Building model

The building model is one of the most detailed thematic concepts of CityGML. It allows for the representation of

thematic and spatial aspects of buildings and building parts in five levels of detail, LOD0 to LOD4. The building

model of CityGML is defined by the thematic extension module Building (cf. chapter 7). Fig. 26 provides

examples of 3D city and building models in LOD1 ï 4.

.

... ...

Fig. 26: Examples for city or building models in LOD1 (upper left), LOD2 (upper right), LOD3 (lower left), and LOD4 (lower
right) (source: District of Recklinghausen, m-g-h ingenieure+architekten GmbH).

The UML diagram of the building model is depicted in Fig. 27, for the XML schema definition see annex A.4

and below. The pivotal class of the model is _AbstractBuilding, which is a subclass of the thematic class _Site

(and transitively of the root class _CityObject). _AbstractBuilding is specialised either to a Building or to a

BuildingPart. Since an _AbstractBuilding consists of BuildingParts, which again are _AbstractBuildings, an

aggregation hierarchy of arbitrary depth may be realised. As subclass of the root class _CityObject, an

_AbstractBuilding inherits all properties from _CityObject like the GML3 standard feature properties (gml:name

etc.) and the CityGML specific properties like ExternalReferences (cf. chapter 6.7). Further properties not

explicitly covered by _AbstractBuilding may be modelled as generic attributes provided by the CityGML

Generics module (cf. chapter 10.12) or using the CityGML Application Domain Extension mechanism (cf.

chapter 10.13).

Building complexes, which consist of a number of distinct buildings like a factory site or hospital complex,

should be aggregated using the concept of CityObjectGroups (cf. chapter 6.8). The main building of the complex

can be denoted by providing ñmain buildingò as the role name of the corresponding group member.

Both classes Building and BuildingPart inherit the attributes of _AbstractBuilding: the class of the building, the

function (e.g. residential, public, or industry), the usage, the year of construction, the year of demolition, the roof

type, the measured height, and the number and individual heights of the storeys above and below ground. This

set of parameters is suited for roughly reconstructing the three-dimensional shape of a building and can be

provided by cadastral systems. Furthermore, Address features can be assigned to Buildings or BuildingParts.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 63

Fig. 27: UML diagram of CityGMLôs building model. Prefixes are used to indicate XML namespaces associated with model elements.

Element names without a prefix are defined within the CityGML Building module.

The geometric representation and semantic structure of an _AbstractBuilding is shown in Fig. 27. The model is

successively refined from LOD0 to LOD4. Therefore, not all components of a building model are represented

equally in each LOD and not all aggregation levels are allowed in each LOD. In CityGML, all object classes are

associated to the LODs with respect to the proposed minimum acquisition criteria for each LOD (cf. chapter

6.2). An object can be represented simultaneously in different LODs by providing distinct geometries for the

corresponding LODs.

In LOD0, the building can be represented by horizontal, 3-dimensional surfaces. These can represent the foot-

print of the building and, separately, the roof edge. This allows the easy integration of 2D data into the model. In

many countries these 2D geometries readily exist, for example in cadastral or topographic data holdings. Cadas-

tre data typically depicts the shape of the building on the ground (footprints) and topographic data is often a

mixture between footprints and geometries at roof level (roof edges), which are often photogrametrically extract-

ed from area/satellite images or derived from airborne laser data. The building model allows the inclusion of

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+yearOfConstruction : xs::gYear [0..1]

+yearOfDemolition : xs::gYear [0..1]

+roofType : gml:CodeType [0..1]

+measuredHeight : gml::LengthType [0..1]

+storeysAboveGround : xs::nonNegativeInteger [0..1]

+storeysBelowGround : xs::nonNegativeInteger [0..1]

+storeyHeightsAboveGround : gml::MeasureOrNullListType [0..1]

+storeyHeightsBelowGround : gml::MeasureOrNullListType [0..1]

<<Feature>>

_AbstractBuilding

<<Feature>>

_BoundarySurface

<<Feature>>

CeilingSurface

<<Feature>>

InteriorWallSurface

<<Feature>>

FloorSurface

<<Feature>>

RoofSurface

<<Feature>>

WallSurfacee

<<Feature>>

ClosureSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BuildingInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

IntBuildingInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

Room

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BuildingFurniture

<<Feature>>

_Opening

<<Feature>>

Window

<<Feature>>

Door

<<Feature>>

Building

<<Feature>>

BuildingPart

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiSurface

<<Feature>>

core::_Site

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Geometry

<<Object>>

core::ImplicitGeometry

<<Feature>>

GroundSurface

<<Feature>>

OuterCeilingSurface

<<Feature>>

OuterFloorSurface

<<Feature>>

core::Address

*

lod4MultiSurface

*

lod3MultiSurface

*

*

boundedBy

*

0..1

*

0..1

*

*

lod4TerrainIntersection

* *

lod3MultiSurface

*

lod2MultiSurface

*
lod4MultiSurface

*

lod4MultiCurve

*

0..1

interiorFurniture

*

*

address

0..1

*

0..1

* lod3MultiSurface

*

*

interiorRoom

0..1

*

lod2MultiSurface

*

lod4MultiSurface

*lod4Geometry

*

*

boundedBy

*

*

outerBuildingInstallation

*

lod3MultiCurve

*

0..1

*

lod3ImplicitRepresentation

0..1

*

lod4Geometry

*

*

lod4ImplicitRepresentation
0..1

*

0..1

*

lod0FootPrint

*

0..1

boundedBy

0..1

*

lod2MultiCurve

*

lod0RoofEdge

*

lod3TerrainIntersection

*

0..2

opening

0..1

*

lod1MultiSurface

*

*

boundedBy

*

0..1

roomInstallation

0..1

*

lod4MultiSurface

0..1

*

*lod3Geometry

*

*

consistsOfBuildingPart

*

*

interiorBuildingInstallation

0..1

*

lod4Geometry

*

*

*

address

0..1

*

lod1TerrainIntersection

0..1
*lod2Geometry

*

lod2TerrainIntersection

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

64 Copyright © 2012 Open Geospatial Consortium.

both. In this case large overhanging roofs can be modelled as a preliminary stage to more detailed LOD2 and

LOD3 depictions. The surface geometries require 3D coordinates, though it is mandated that the height values of

all vertices belonging to the same surface are identical. If 2D geometries are imported into any of these two

LOD0 geometries, an appropriate height value for all vertices needs to be chosen. The footprint is typically

located at the lowest elevation of the ground surface of the building whereas the roof edge representation should

be placed at roof level (e.g., eaves height).

In LOD1, a building model consists of a generalized geometric representation of the outer shell. Optionally, a

gml:MultiCurve representing the TerrainIntersectionCurve (cf. chapter 6.5) can be specified. This geometric

representation is refined in LOD2 by additional gml:MultiSurface and gml:MultiCurve geometries, used for

modelling architectural details like roof overhangs, columns, or antennas. In LOD2 and higher LODs the outer

facade of a building can also be differentiated semantically by the classes _BoundarySurface and BuildingInstal-

lation. A _BoundarySurface is a part of the buildingôs exterior shell with a special function like wall (WallSur-

face), roof (RoofSurface), ground plate (GroundSurface), outer floor (OuterFloorSurface), outer ceiling (Outer-

CeilingSurface) or ClosureSurface. The BuildingInstallation class is used for building elements like balconies,

chimneys, dormers or outer stairs, strongly affecting the outer appearance of a building. A BuildingInstallation

may have the attributes class, function, and usage (cf. Fig. 27).

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented as thematic ob-

jects. In LOD4, the highest level of resolution, also the interior of a building, composed of several rooms, is

represented in the building model by the class Room. This enlargement allows a virtual accessibility of buildings,

e.g. for visitor information in a museum (ñLocation Based Servicesñ), the examination of accommodation

standards or the presentation of daylight illumination of a building. The aggregation of rooms according to

arbitrary, user defined criteria (e.g. for defining the rooms corresponding to a certain storey) is achieved by

employing the general grouping concept provided by CityGML (cf. chapter 10.3.6). Interior installations of a

building, i.e. objects within a building which (in contrast to furniture) cannot be moved, are represented by the

class IntBuildingInstallation. If an installation is attached to a specific room (e.g. radiators or lamps), they are

associated with the Room class, otherwise (e.g. in case of rafters or pipes) with _AbstractBuilding. A Room may

have the attributes class, function and usage whose value can be defined in code lists (chapter 10.3.8 and annex

C.1). The class attribute allows a classification of rooms with respect to the stated function, e.g. commercial or

private rooms, and occurs only once. The function attribute is intended to express the main purpose of the room,

e.g. living room, kitchen. The attribute usage can be used if the way the object is actually used differs from the

function. Both attributes can occur multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface. Semantically, the surface

can be structured into specialised _BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSur-

face), and interior walls (InteriorWallSurface). Room furniture, like tables and chairs, can be represented in the

CityGML building model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,

function and usage. Annexes G.1 to G.6 provide example CityGML documents containing a single building

model which is subsequently refined from a coarse LOD0 representation up to a semantically rich and geomet-

ric-topologically sound LOD4 model including the building interior.

XML namespace

The XML namespace of the CityGML Building module is identified by the Uniform Resource Identifier (URI)

http://www.opengis.net/citygml/building/2.0. Within the XML Schema definition of the Building module, this

URI is also used to identify the default namespace.

10.3.1 Building and building part

BuildingType, Building

<xs:complexType name="BuildingType">
 <xs:complexContent>

 <xs:extension base="AbstractBuildingType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfBuilding" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 65

</xs:complexType>

<!-- === -->

<xs:element name="Building" type="BuildingType" substitutionGroup="_AbstractBuilding"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBuilding" type="xs:anyType" abstract="true"/>

The Building class is one of the two subclasses of _AbstractBuilding. If a building only consists of one (homo-

geneous) part, this class shall be used. A building composed of structural segments differing in, for example the

number of storeys or the roof type has to be separated into one Building having one or more additional Build-

ingPart (see Fig. 28). The geometry and non-spatial properties of the central part of the building should be

represented in the aggregating Building feature.

BuildingPartType, BuildingPart

<xs:complexType name="BuildingPartType">
 <xs:complexContent>

 <xs:extension base="AbstractBuildingType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfBuildingPart" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="BuildingPart" type="BuildingPartType" substitutionGroup="_AbstractBuilding"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBuildingPart" type="xs:anyType" abstract="true"/>

The class BuildingPart is derived from _AbstractBuilding. It is used to model a structural part of a building (see

Fig. 28). A BuildingPart object should be uniquely related to exactly one building or building part object.

Fig. 28: Examples of buildings consisting of one and two building parts (source: City of Coburg).

AbstractBuildingType, _AbstractBuilding

 <xs:complexType name="AbstractBuildingType" abstract="true">

 <xs:complexContent>

 <xs:extension base="core:AbstractSiteType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="yearOfConstruction" type="xs:gYear" minOccurs="0"/>

 <xs:element name="yearOfDemolition" type="xs:gYear" minOccurs="0"/>
 <xs:element name="roofType" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="measuredHeight" type="gml:LengthType" minOccurs="0"/>

 <xs:element name="storeysAboveGround" type="xs:nonNegativeInteger" minOccurs="0"/>
 <xs:element name="storeysBelowGround" type="xs:nonNegativeInteger" minOccurs="0"/>

 <xs:element name="storeyHeightsAboveGround" type="gml:MeasureOrNullListType" minOccurs="0"/>

Building with two

building parts

(represented as

one Building

feature and one

included Build-

ingPart feature)

Building consist-

ing of one part

(represented as

one Building

feature)

66 Copyright © 2012 Open Geospatial Consortium.

 <xs:element name="storeyHeightsBelowGround" type="gml:MeasureOrNullListType" minOccurs="0"/>

 <xs:element name="lod0FootPrint" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod0RoofEdge" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod1Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod1MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod1TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod2Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod2MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod2TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="outerBuildingInstallation" type="BuildingInstallationPropertyType" minOccurs="0"

 maxOccurs="unbounded"/>
 <xs:element name="interiorBuildingInstallation" type="IntBuildingInstallationPropertyType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="lod3Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod3TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod4MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod4TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="interiorRoom" type="InteriorRoomPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="consistsOfBuildingPart" type="BuildingPartPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="address" type="core:AddressPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfAbstractBuilding" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

 </xs:complexType>

 <!-- === -->
 <xs:element name="_AbstractBuilding" type="AbstractBuildingType" abstract="true" substitutionGroup="core:_Site"/>

 <!-- === -->

 <xs:element name="_GenericApplicationPropertyOfAbstractBuilding" type="xs:anyType" abstract="true"/>

The abstract class _AbstractBuilding contains properties for building attributes, purely geometric representations,

and geometric/semantic representations of the building or building part in different levels of detail. The attributes

describe:

a) The classification of the building or building part (class), the different intended usages (function), and the

different actual usages (usage). The permitted values for these attributes can be specified in code lists.

b) The year of construction (yearOfConstruction) and the year of demolition (yearOfDemolition) of the build-

ing or building part. These attributes can be used to describe the chronology of the building development

within a city model. The points of time refer to real world time.

c) The roof type of the building or building part (roofType). The permitted values for this attribute can be

specified in a code list.

d) The measured relative height (measuredHeight) of the building or building part.

e) The number of storeys above (storeyAboveGround) and below (storeyBelowGround) ground level.

f) The list of storey heights above (storeyHeightsAboveGround) and below (storeyHeightsBelowGround)

ground level. The first value in a list denotes the height of the nearest storey wrt. to the ground level and last

value the height of the farthest.

Spanning the different levels of detail, the building model differs in the complexity and granularity of the geo-

metric representation and the thematic structuring of the model into components with a special semantic mean-

ing. This is illustrated in Fig. 29 and Fig. 30, showing the same building in five different LODs. The class

_AbstractBuilding has a number of properties which are associated with certain LODs.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 67

 LOD0 FootPrint LOD0 RoofEdge
B

u
il
d

in
g

Fig. 29: The two possibilities of modeling a building in LOD0 using horizontal 3D surfaces. On the left, the building footprint

(lod0FootPrint) is shown (cyan) which denotes the shape of the building on the ground. The corresponding surface representation is located

at ground level. On the right, the lod0RoofEgde representation is illustrated (cyan) which results from a horizontal projection of the build-
ingôs roof and which is located at the eaves height (source: Karlsruhe Institute of Technology (KIT), courtesy of Franz-Josef Kaiser).

 LOD1 LOD2 LOD3 LOD4

B
u

il
d

in
g

B
u

il
d

in
g

In

te
ri
o

r

Fig. 30: Building model in LOD1 ï LOD4 (source: Karlsruhe Institute of Technology (KIT) , courtesy of Franz-Josef Kaiser).

Tab. 5 shows the correspondence of the different geometric and semantic themes of the building model to LODs.

In LOD1 ï 4, the volume of a building can be expressed by a gml:Solid geometry and/or a gml:MultiSurface

geometry. The definition of a 3D Terrain Intersection Curve (TIC), used to integrate buildings from different

sources with the Digital Terrain Model, is also possible in LOD1 ï 4. The TIC can ï but does not have to ï build

closed rings around the building or building parts.

In LOD0 (cf. Fig. 29) the building is represented by horizontal surfaces describing the footprint and the roof

edge.

In LOD1 (cf. Fig. 30), the different structural entities of a building are aggregated to a simple block and not

differentiated in detail. The volumetric and surface parts of the exterior building shell are identical and only one

of the corresponding properties (lod1Solid or lod1MultiSurface) must be used.

In LOD2 and higher levels of detail, the exterior shell of a building is not only represented geometrically as

gml:Solid geometry and/or a gml:MultiSurface geometry, but it can also be composed of semantic objects. The

base class for all objects semantically structuring the building shell is _BoundarySurface (cf. chapter 10.3.2),

which is associated with a gml:MultiSurface geometry. If in a building model there is both a geometric represen-

tation of the exterior shell as volume or surface model and a semantic representation by means of thematic

_BoundarySurfaces, the geometric representation must not explicitly define the geometry, but has to reference

the corresponding geometry components of the gml:MultiSurface of the _BoundarySurface elements.

68 Copyright © 2012 Open Geospatial Consortium.

Geometric / semantic theme Property type LOD0 LOD1 LOD2 LOD3 LOD4

Building footprint and roof edge gml:MultiSurfaceType Å

Volume part of the building shell gml:SolidType Å Å Å Å

Surface part of the building shell gml:MultiSurfaceType Å Å Å Å

Terrain intersection curve gml:MultiCurveType Å Å Å Å

Curve part of the building shell gml:MultiCurveType Å Å Å

Building parts BuildingPartType Å Å Å Å

Boundary surfaces (chapter 10.3.3) AbstractBoundarySurfaceType Å Å Å

Outer building installations (chapter

10.3.2)

BuildingInstallationType Å Å Å

Openings (chapter 10.3.4) AbstractOpeningType Å Å

Rooms (chapter 10.3.5) RoomType Å

Interior building installations (chapter

10.3.5)

IntBuildingInstallationType Å

Tab. 5: Semantic themes of the class _AbstractBuilding.

Apart from BuildingParts, smaller features of the building (ñouter building installationsò) can also strongly

affect the building characteristic. These features are modelled by the class BuildingInstallation (cf. chapter

10.3.2). Typical candidates for this class are chimneys (see. Fig. 30), dormers (see Fig. 28), balconies, outer

stairs, or antennas. BuildingInstallations may only be included in LOD2 models, if their extents exceed the

proposed minimum dimensions as specified in chapter 6.2. For the geometrical representation of the class Build-

ingInstallation, an arbitrary geometry object from the GML subset shown in Fig. 9 can be used.

The class _AbstractBuilding has no additional properties for LOD3. Besides the higher requirements on geomet-

ric precision and smaller minimum dimensions, the main difference of LOD2 and LOD3 buildings concerns the

class _BoundarySurface (cf. chapter 10.3.3). In LOD3, openings in a building corresponding with windows or

doors (see Fig. 30) are modelled by the abstract class _Opening and the derived subclasses Window and Door

(cf. chapter 10.3.4).

With respect to the exterior building shell, the LOD4 data model is identical to that of LOD3. But LOD4 pro-

vides the possibility to model the interior structure of a building with the classes IntBuildingInstallation and

Room (cf. chapter 10.3.5).

Each Building or BuildingPart feature may be assigned zero or more addresses using the address property. The

corresponding AddressPropertyType is defined within the CityGML core module (cf. chapter 10.1.4).

10.3.2 Outer building installations

BuildingInstallationType, BuildingInstallation

<xs:complexType name="BuildingInstallationType">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod2Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod3Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>
 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod2ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod3ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>
 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfBuildingInstallation" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 69

 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="BuildingInstallation" type="BuildingInstallationType" substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBuildingInstallation" type="xs:anyType" abstract="true"/>

A BuildingInstallation is an outer component of a building which has not the significance of a BuildingPart, but

which strongly affects the outer characteristic of the building. Examples are chimneys, stairs, antennas, balconies

or attached roofs above stairs and paths. A BuildingInstallation optionally has attributes class, function and

usage. The attribute class - which can only occur once - represents a general classification of the installation.

With the attributes function and usage, nominal and real functions of a building installation can be described. For

all three attributes the list of feasible values can be specified in a code list. For the geometrical representation of

a BuildingInstallation, an arbitrary geometry object from the GML subset shown in Fig. 9 can be used. Alterna-

tively, the geometry may be given as ImplicitGeometry object. Following the concept of ImplicitGeometry the

geometry of a prototype building installation is stored only once in a local coordinate system and referenced by

other building installation features (see chapter 8.2). The visible surfaces of a building installation can be seman-

tically classified using the concept of boundary surfaces (cf. 10.3.3). A BuildingInstallation object should be

uniquely related to exactly one building or building part object.

10.3.3 Boundary surfaces

AbstractBoundarySurfaceType, _BoundarySurface

<xs:complexType name="AbstractBoundarySurfaceType" abstract="true">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="opening" type="OpeningPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfBoundarySurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- == -->

<xs:element name="_BoundarySurface" type="AbstractBoundarySurfaceType" abstract="true" substitutionGroup="core:_CityObject"/>

<!-- == -->
<xs:element name="_GenericApplicationPropertyOfBoundarySurface" type="xs:anyType" abstract="true"/>

_BoundarySurface is the abstract base class for several thematic classes, structuring the exterior shell of a build-

ing as well as the visible surfaces of rooms and both outer and interior building installations. It is a subclass of

_CityObject and thus inherits all properties like the GML3 standard feature properties (gml:name etc.) and the

CityGML specific properties like ExternalReferences. From _BoundarySurface, the thematic classes RoofSur-

face, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface, ClosureSurface, FloorSurface,

InteriorWallSurface, and CeilingSurface are derived. The thematic classification of building surfaces is illustrat-

ed in Fig. 31 (outer building shell) and Fig. 32 (additional interior surfaces) and subsequently specified.

For each LOD between 2 and 4, the geometry of a _BoundarySurface may be defined by a different

gml:MultiSurface geometry.

In LOD3 and LOD4, a _BoundarySurface may contain _Openings (cf. chapter 10.3.4) like doors and windows.

If the geometric location of _Openings topologically lies within a surface component (e.g. gml:Polygon) of the

gml:MultiSurface geometry, these _Openings must be represented as holes within that surface. A hole is repre-

sented by an interior ring within the corresponding surface geometry object. According to GML3, the points

have to be specified in reverse order (exterior boundaries counter-clockwise and interior boundaries clockwise

when looking in opposite direction of the surfaceôs normal vector). If such an opening is sealed by a Door, a

Window, or a ClosureSurface, their outer boundary may consist of the same points as the inner ring (denoting the

hole) of the surrounding surface. The embrasure surfaces of an Opening belong to the relevant adjacent

_BoundarySurface. If, for example a door seals the Opening, the embrasure surface on the one side of the door

belongs to the InteriorWallSurface and on the other side to the WallSurface (Fig. 32 on the right).

70 Copyright © 2012 Open Geospatial Consortium.

Fig. 31: Examples of the classification of _BoundarySurfaces of the outer building shell (source: Karlsruhe Institute of Technology (KIT))

Fig. 32: Classification of BoundarySurfaces (left), in particular for Openings (right) (graphic: IGG Uni Bonn).

GroundSurfaceType, GroundSurface

<xs:complexType name="GroundSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfGroundSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="GroundSurface" type="GroundSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfGroundSurface" type="xs:anyType" abstract="true"/>

The ground plate of a building or building part is modelled by the class GroundSurface. The polygon defining

the ground plate is congruent with the buildingôs footprint. However, the surface normal of the ground plate is

pointing downwards.

OuterCeilingSurfaceType, OuterCeilingSurface

<xs:complexType name="OuterCeilingSurfaceType">

 <xs:complexContent>

InteriorWall
Surface

Wall
Surface

Opening

Door

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 71

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfOuterCeilingSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="OuterCeilingSurface" type="OuterCeilingSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfOuterCeilingSurface" type="xs:anyType" abstract="true"/>

A mostly horizontal surface belonging to the outer building shell and having the orientation pointing downwards

can be modeled as an OuterCeilingSurface. Examples are the visible part of the ceiling of a loggia or the ceiling

of a passage.

WallSurfaceType, WallSurface

<xs:complexType name="WallSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfWallSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="WallSurface" type="WallSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfWallSurface" type="xs:anyType" abstract="true"/>

All parts of the building facade belonging to the outer building shell can be modelled by the class WallSurface.

OuterFloorSurfaceType, OuterFloorSurface

<xs:complexType name="OuterFloorSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfOuterFloorSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- == -->

<xs:element name="OuterFloorSurface" type="OuterFloorSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->
<xs:element name="_GenericApplicationPropertyOfOuterFloorSurface" type="xs:anyType" abstract="true"/>

A mostly horizontal surface belonging to the outer building shell and with the orientation pointing upwards can

be modeled as an OuterFloorSurface. An example is the floor of a loggia.

RoofSurfaceType, RoofSurface

<xs:complexType name="RoofSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfRoofSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- == -->

<xs:element name="RoofSurface" type="RoofSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->
<xs:element name="_GenericApplicationPropertyOfRoofSurface" type="xs:anyType" abstract="true"/>

72 Copyright © 2012 Open Geospatial Consortium.

The major roof parts of a building or building part are expressed by the class RoofSurface. Secondary parts of a

roof with a specific semantic meaning like dormers or chimneys should be modelled as BuildingInstallation.

ClosureSurfaceType, ClosureSurface

<xs:complexType name="ClosureSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfClosureSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="ClosureSurface" type="ClosureSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfClosureSurface" type="xs:anyType" abstract="true"/>

An opening in a building not filled by a door or window can be sealed by a virtual surface called ClosureSurface

(cf. chapter 6.4). Hence, buildings with open sides like a barn or a hangar, can be virtually closed in order to be

able to compute their volume. ClosureSurfaces are also used in the interior building model. If two rooms with a

different function (e.g. kitchen and living room) are directly connected without a separating door, a ClosureSur-

face should be used to separate or connect the volumes of both rooms.

FloorSurfaceType, FloorSurface

<xs:complexType name="FloorSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfFloorSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="FloorSurface" type="FloorSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfFloorSurface" type="xs:anyType" abstract="true"/>

The class FloorSurface must only be used in the LOD4 interior building model for modelling the floor of a

room.

InteriorWallSurfaceType, InteriorWallSurface

<xs:complexType name="InteriorWallSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfInteriorWallSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="InteriorWallSurface" type="InteriorWallSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfInteriorWallSurface" type="xs:anyType" abstract="true"/>

The class InteriorWallSurface must only be used in the LOD4 interior building model for modelling the visible

surfaces of the room walls.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 73

CeilingSurfaceType, CeilingSurface

<xs:complexType name="CeilingSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfCeilingSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="CeilingSurface" type="CeilingSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfCeilingSurface" type="xs:anyType" abstract="true"/>

The class CeilingSurface must only be used in the LOD4 interior building model for modelling the ceiling of a

room.

10.3.4 Openings

AbstractOpeningType, _Opening

<xs:complexType name="AbstractOpeningType" abstract="true">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfOpening" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="_Opening" type="AbstractOpeningType" abstract="true" substitutionGroup="core:_CityObject"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfOpening" type="xs:anyType" abstract="true"/>

The class _Opening is the abstract base class for semantically describing openings like doors or windows in

outer or inner boundary surfaces like walls and roofs. Openings only exist in models of LOD3 or LOD4. Each

_Opening is associated with a gml:MultiSurface geometry. Alternatively, the geometry may be given as Implic-

itGeometry object. Following the concept of ImplicitGeometry the geometry of a prototype opening is stored

only once in a local coordinate system and referenced by other opening features (see chapter 8.2).

WindowType, Window

<xs:complexType name="WindowType">

 <xs:complexContent>
 <xs:extension base="AbstractOpeningType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfWindow" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="Window" type="WindowType" substitutionGroup="_Opening"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWindow" type="xs:anyType" abstract="true"/>

The class Window is used for modelling windows in the exterior shell of a building, or hatches between adjacent

rooms. The formal difference between the classes Window and Door is that ï in normal cases ï Windows are not

specifically intended for the transit of people or vehicles.

74 Copyright © 2012 Open Geospatial Consortium.

DoorType, Door

<xs:complexType name="DoorType">
 <xs:complexContent>

 <xs:extension base="AbstractOpeningType">

 <xs:sequence>
 <xs:element name="address" type="core:AddressPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfDoor" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="Door" type="DoorType" substitutionGroup="_Opening"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfDoor" type="xs:anyType" abstract="true"/>

The class Door is used for modelling doors in the exterior shell of a building, or between adjacent rooms. Doors

can be used by people to enter or leave a building or room. In contrast to a ClosureSurface a door may be closed,

blocking the transit of people. A Door may be assigned zero or more addresses. The corresponding Address-

PropertyType is defined within the CityGML core module (cf. chapter 10.1.4) .

10.3.5 Building interior

RoomType, Room

<xs:complexType name="RoomType">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="interiorFurniture" type="InteriorFurniturePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="roomInstallation" type="IntBuildingInstallationPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfRoom" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="Room" type="RoomType" substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfRoom" type="xs:anyType" abstract="true"/>

A Room is a semantic object for modelling the free space inside a building and should be uniquely related to

exactly one building or building part object. It should be closed (if necessary by using ClosureSurfaces) and the

geometry normally will be described by a solid (lod4Solid). However, if the topological correctness of the

boundary cannot be guaranteed, the geometry can alternatively be given as a MultiSurface (lod4MultiSurface).

The surface normals of the outer shell of a GML solid must point outwards. This is important to consider when

Room surfaces should be assigned Appearances. In this case, textures and colors must be placed on the backside

of the corresponding surfaces in order to be visible from the inside of the room.

In addition to the geometrical representation, different parts of the visible surface of a room can be modelled by

specialised BoundarySurfaces (FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface cf.

chapter 10.3.3).

A special task is the modelling of passages between adjacent rooms. The room solids are topologically connected

by the surfaces representing hatches, doors or closure surfaces that seal open doorways. Rooms are defined as

being adjacent, if they have common _Openings or ClosureSurfaces. The surface that represents the opening

geometrically is part of the boundaries of the solids of both rooms, or the opening is referenced by both rooms on

the semantic level. This adjacency implies an accessibility graph, which can be employed to determine the

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 75

spread of e.g. smoke or gas, but which can also be used to compute escape routes using classical shortest path

algorithms (see Fig. 33).

Fig. 33: Accessibility graph derived from topological adjacencies of room surfaces (graphic: IGG Uni Bonn).

BuildingFurnitureType, BuildingFurniture

<xs:complexType name="BuildingFurnitureType">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfBuildingFurniture" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->

<xs:element name="BuildingFurniture" type="BuildingFurnitureType" substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBuildingFurniture" type="xs:anyType" abstract="true"/>

Rooms may have BuildingFurnitures and IntBuildingInstallations. A BuildingFurniture is a movable part of a

room, such as a chair or furniture. A BuildingFurniture object should be uniquely related to exactly one room

object. Its geometry may be represented by an explicit geometry or an ImplicitGeometry object. Following the

concept of ImplicitGeometry the geometry of a prototype building furniture is stored only once in a local coordi-

nate system and referenced by other building furniture features (see chapter 8.2).

IntBuildingInstallationType, IntBuildingInstallation

<xs:complexType name="IntBuildingInstallationType">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>
 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfIntBuildingInstallation" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="IntBuildingInstallation" type="IntBuildingInstallationType" substitutionGroup="core:_CityObject"/>

76 Copyright © 2012 Open Geospatial Consortium.

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfIntBuildingInstallation" type="xs:anyType" abstract="true"/>

An IntBuildingInstallation is an object inside a building with a specialised function or semantic meaning. In

contrast to BuildingFurniture, IntBuildingInstallations are permanently attached to the building structure and

cannot be moved. Typical examples are interior stairs, railings, radiators or pipes. Objects of the class IntBuild-

ingInstallation can either be associated with a room (class Room), or with the complete building / building part

(class _AbstractBuilding, cf. chapter 10.3.1). However, they should be uniquely related to exactly one room or

one building / building part object. An IntBuildingInstallation optionally has attributes class, function and usage.

The attribute class, which can only occur once, represents a general classification of the internal building com-

ponent. With the attributes function and usage, nominal and real functions of a building installation can be

described. For all three attributes the list of feasible values can be specified in a code list. For the geometrical

representation of an IntBuildingInstallation, an arbitrary geometry object from the GML subset shown in Fig. 9

can be used. Alternatively, the geometry may be given as ImplicitGeometry object. Following the concept of

ImplicitGeometry the geometry of a prototype interior building installation is stored only once in a local coordi-

nate system and referenced by other interior building installation features (see chapter 8.2). The visible surfaces

of an interior building installation can be semantically classified using the concept of boundary surfaces (cf.

10.3.3).

10.3.6 Modelling building storeys using CityObjectGroups

CityGML does currently not provide a specific concept for the representation of storeys as it is available in the

AEC/FM standard IFC (IAI 2006). However, a storey can be represented as an explicit aggregation of all build-

ing features on a certain height level using CityGMLôs notion of CityObjectGroups (cf. chapter 10.11). This

would include Rooms, Doors, Windows, IntBuildingInstallations and BuildingFurniture. If thematic surfaces like

walls and interior walls should also be associated to a specific storey, this might require the vertical fragmenta-

tion of these surfaces (one per storey), as in virtual 3D city models they typically span the whole façade.

In order to model building storeys with CityGMLôs generic grouping concept, a nested hierarchy of CityObject-

Group objects has to be used. In a first step, all semantic objects belonging to a specific storey are grouped. The

attributes of the corresponding CityObjectGroup object are set as follows:

¶ The class attribute shall be assigned the value ñbuilding separationò.

¶ The function attribute shall be assigned the value ñlodXStoreyò with X between 1 and 4 in order to de-

note that this group represents a storey wrt. a specific LOD.

¶ The storey name or number can be stored in the gml:name property. The storey number attribute shall

be assigned the value ñstoreyNo_Xò with decimal number X in order to denote that this group repre-

sents a storey wrt. a specific number.

In a second step, the CityObjectGroup objects representing different storeys are grouped themselves. By using

the generic aggregation concept of CityObjectGroup, the ñstoreys groupò is associated with the corresponding

Building or BuildingPart object. The class attribute of the storeys group shall be assigned the value ñbuilding

storeysò.

10.3.7 Examples

The LOD1 model of the Campus North of the Karlruhe Institute of Technology (KIT) shown in Fig. 34 consists

of 596 buildings and 187 building parts. The footprint geometries of the buildings are taken from a cadastral

information system and extruded by a given height. Buildings with a unique identifier and a single height value

are modeled as one building (bldg:Building). Buildings having a unique identifier but different height values are

modeled as one building (bldg:Building) with one or more building parts (bldg:BuildingPart). Both buildings

and building parts have solid geometries and their height values are additionally represented as thematic attribute

(bldg:measuredHeight). Fig. 34 shows an aerial photograph of the KIT Campus North (left) and the CityGML

LOD1 model (right).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 77

Fig. 34: LOD1 model of the KIT Campus North (source: Karlsruhe Institute of Technology (KIT)).

An example for a fully textured LOD2 building model is given in Fig. 35 which shows the Bernhardus church

located in the city of Karlsruhe, Germany. On the left side of Fig. 35, a photograph of the church in real world is

shown whereas the CityGML building model of the church with photorealistic textures is illustrated on the right.

The model is bounded by a ground surface, several wall and roof surfaces. The railing above the church clock is

modeled as a building installation (BuildingInstallation).

Fig. 35: Textured LOD2 model of the Bernhardus church in Karlsruhe (source: Karlsruhe Institute of Technology (KIT), courtesy of City of
Karlsruhe).

The model shown in Fig. 36 was derived from a 3D CAD model generated during the planning phase of the

building. On the left side of Fig. 36, the building is shown whereas on the right side the LOD3 model is present-

ed. The building itself is bounded by wall surfaces, roof surfaces and a ground surface. Doors and windows are

modeled including reveals. According to the cadaster data, the car port next to the building is not part of the

building. Therefore the car port, the balcony and the chimney are modeled as building installations (BuildingIn-

stallation). The model also contains the terrain intersection curve (lod3TerrainIntersection) as planned by the

architect.

In order to determine the volume of the building, the geometries of all boundary surfaces, including doors and

windows, are referenced by the building solid (lod3Solid) using the XLink mechanism. Consequently, the roof

surfaces are split into surfaces representing the roof itself and surfaces representing the roof overhangs.

78 Copyright © 2012 Open Geospatial Consortium.

Fig. 36: Example of a building modeled in the Level of Detail 3. The chimney, the balcony and the car port are modeled as building installa-

tions (source: Karlsruhe Institute of Technology (KIT), courtesy of Franz-Josef Kaiser).

10.3.8 Code lists

The attributes class, function, usage, and roofType of the feature _AbstractBuilding as well as the attributes

class, function and usage of the features BuildingInstallation, Room, BuildingFurniture and IntBuildingInstalla-

tion are specified as gml:CodeType. The values of these properties can be enumerated in code lists. Proposals for

corresponding code lists can be found in annex C.1.

10.3.9 Conformance requirements

Base requirements

1. If a building only consists of one (homogeneous) part, it shall be represented by the element Building.

However, if a building is composed of individual structural segments, it shall be modelled as a Building

element having one or more additional BuildingPart elements. Only the geometry and non-spatial prop-

erties of the main part of the building should be represented within the aggregating Building element.

Usage restriction of building model components according to different LODs

2. The gml:MultiSurface geometries that are associated using the lod0FootPrint and lod0RoofEdge prop-

erties must have 3D coordinates. For each surface, the height values of the coordinate tuples belonging

to the same surface shall be identical.

3. The lodXSolid and lodXMultiSurface, X Í [1..4], properties (gml:SolidPropertyType resp.

gml:MultiSurfacePropertyType) of _AbstractBuilding may be used to geometricllay represent the exte-

rior shell of a building (as volume or surface model) within each LOD. For LOD1, either lod1Solid or

lod1MultiSurface must be used, but not both. Starting from LOD2, both properties may be modelled in-

dividually and complementary.

4. Starting from LOD2, the exterior shell of an _AbstractBuilding may be semantically decomposed into

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

_AbstractBuilding. Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloor-

Surface and ClosureSurface as subclasses of _BoundarySurface are allowed. The boundedBy property

(not to be confused with the gml:boundedBy property) shall not be used if the building is only repre-

sented in LOD1.

If the exterior shell is represented by _BoundarySurface elements, an additional geometric representa-

tion as volume or surface model using the lodXSolid and lodXMultiSurface, X Í [2..4], properties shall

not explicitly define the geometry, but has to reference the according components of the

gml:MultiSurface element of _BoundarySurface within each LOD using the XLink concept of GML

3.1.1.

5. Starting from LOD2, curve parts of the building shell may be represented using the lodXMultiCurve, X

Í [2..4], property of _AbstractBuilding. This property shall not be used if the building is only repre-

sented in LOD1.

6. Starting from LOD2, the outerBuildingInstallation property (type: BuildingInstallationPropertyType) of

_AbstractBuilding may be used to model BuildingInstallation elements. BuildingInstallation elements

shall only be used to represent outer characteristics of a building which do not have the significance of

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 79

building parts. The outerBuildingInstallation property shall not be used if the building is only repre-

sented in LOD1.

7. Starting from LOD2, the geometry of BuildingInstallation elements may be semantically classified by

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

BuildingInstallation. Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, Outer-

FloorSurface and ClosureSurface as subclasses of _BoundarySurface are allowed.

8. Starting from LOD3, openings of _BoundarySurface elements may be modelled using the opening

property (type: OpeningPropertyType) of _BoundarySurface. This property shall not be used for

_BoundarySurface elements only represented in LOD2. Accordingly, the surface geometry representing

a _BoundarySurface in LOD2 must be simply connected.

The opening property of _BoundarySurface may contain or reference _Opening elements. If the geo-

metric location of an _Opening element topologically lies within a surface component of the

_BoundarySurface, the opening must also be represented as inner hole of that surface. The embrasure

surface of an _Opening element shall belong to the relevant adjacent _BoundarySurface.

9. Starting from LOD4, the interiorRoom property (type: InteriorRoomPropertyType) of

_AbstractBuilding may be used to semantically model the free space inside the building by Room ele-

ments. This property shall not be used if the building is only represented in LOD 1 ï 3. The Room ele-

ment may be geometrically represented as a surface or volume model, using its lod4Solid or

lod4MultiSurface property (gml:SolidPropertyType resp. gml:MultiSurfacePropertyType).

In addition, different parts of the visible surface of a room may be modelled by thematic

_BoundarySurface elements. Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSur-

face as subclasses of _BoundarySurface are allowed. If the visible surface of a room is represented by

_BoundarySurface elements, an additional geometric representation as volume or surface model using

the lod4Solid and lod4MultiSurface property shall not explicitly define the geometry, but has to refer-

ence the according components of the gml:MultiSurface element of _BoundarySurface using the XLink

concept of GML 3.1.1.

10. Starting from LOD4, the interiorBuildingInstallation property (type: IntBuildingInstallationProperty-

Type) of _AbstractBuilding may be used to represent immovable objects inside the building that are

permamently attached to the building structure. The interiorBuildingInstallation property shall not be

used if the building is only represented in LOD 1 ï 3. Furthermore, the interiorBuildingInstallation

property shall only be used if the object cannot be associated with a Room element. In the latter case,

the roomInstallation property (type: IntBuildingInstallationPropertyType) of the corresponding Room

element shall be used to represent the object.

11. Starting from LOD4, the geometry of IntBuildingInstallation elements may be semantically classified

by _BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

IntBuildingInstallation. Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface

as subclasses of _BoundarySurface are allowed.

Referential integrity

12. The boundedBy property (type: BoundarySurfacePropertyType) of the element _AbstractBuilding may

contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface ele-

ment using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface and Clo-

sureSurface elements are allowed to be encapsulated or referenced by the boundedBy property of

_AbstractBuilding.

13. The outerBuildingInstallation property (type: BuildingInstallationPropertyType) of the element

_AbstractBuilding may contain a BuildingInstallation element inline or an XLink reference to a remote

BuildingInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href at-

tribute of the outerBuildingInstallation property may only point to a remote BuildingInstallation ele-

ment (where remote BuildingInstallation elements are located in another document or elsewhere in the

same document). Either the contained element or the reference must be given, but neither both nor

none.

80 Copyright © 2012 Open Geospatial Consortium.

14. The interiorBuildingInstallation property (type: IntBuildingInstallationPropertyType) of the element

_AbstractBuilding may contain an IntBuildingInstallation element inline or an XLink reference to a re-

mote IntBuildingInstallation element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the interiorBuildingInstallation property may only point to a remote

IntBuildingInstallation element (where remote IntBuildingInstallation elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

15. The interiorRoom property (type: InteriorRoomPropertyType) of the element _AbstractBuilding may

contain a Room element inline or an XLink reference to a remote Room element using the XLink con-

cept of GML 3.1.1. In the latter case, the xlink:href attribute of the interiorRoom property may only

point to a remote Room element (where remote Room elements are located in another document or

elsewhere in the same document). Either the contained element or the reference must be given, but nei-

ther both nor none.

16. The consistsOfBuildingPart property (type: BuildingPartPropertyType) of the element

_AbstractBuilding may contain a BuildingPart element inline or an XLink reference to a remote Build-

ingPart element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the

consistsOfBuildingPart property may only point to a remote BuildingPart element (where remote

BuildingPart elements are located in another document or elsewhere in the same document). Either the

contained element or the reference must be given, but neither both nor none.

17. The address property (type: core:AddressPropertyType) of the element _AbstractBuilding may contain

an core:Address element inline or an XLink reference to a remote core:Address element using the

XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the address property may on-

ly point to a remote core:Address element (where remote core:Address elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

18. The opening property (type: OpeningPropertyType) of the element _BoundarySurface may contain an

_Opening element inline or an XLink reference to a remote _Opening element using the XLink concept

of GML 3.1.1. In the latter case, the xlink:href attribute of the opening property may only point to a re-

mote _Opening element (where remote _Opening elements are located in another document or else-

where in the same document). Either the contained element or the reference must be given, but neither

both nor none.

19. The address property (type: core:AddressPropertyType) of the element Door may contain an

core:Address element inline or an XLink reference to a remote core:Address element using the XLink

concept of GML 3.1.1. In the latter case, the xlink:href attribute of the address property may only point

to a remote core:Address element (where remote core:Address elements are located in another docu-

ment or elsewhere in the same document). Either the contained element or the reference must be given,

but neither both nor none.

20. The boundedBy property (type: BoundarySurfacePropertyType) of the element BuildingInstallation

may contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface

element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the bound-

edBy property may only point to a remote _BoundarySurface element (where remote _BoundarySurface

elements are located in another document or elsewhere in the same document). Either the contained el-

ement or the reference must be given, but neither both nor none.

Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface and Clo-

sureSurface elements are allowed to be encapsulated or referenced by the boundedBy property of Build-

ingInstallation.

21. The boundedBy property (type: BoundarySurfacePropertyType) of the element IntBuildingInstallation

may contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface

element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the bound-

edBy property may only point to a remote _BoundarySurface element (where remote _BoundarySurface

elements are located in another document or elsewhere in the same document). Either the contained el-

ement or the reference must be given, but neither both nor none.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 81

Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface elements are allowed to

be encapsulated or referenced by the boundedBy property of IntBuildingInstallation.

22. The boundedBy property (type: BoundarySurfacePropertyType) of the element Room may contain a

_BoundarySurface element inline or an XLink reference to a remote _BoundarySurface element using

the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy property

may only point to a remote _BoundarySurface element (where remote _BoundarySurface elements are

located in another document or elsewhere in the same document). Either the contained element or the

reference must be given, but neither both nor none.

Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface elements are allowed to

be encapsulated or referenced by the boundedBy property of Room.

23. The interiorFurniture property (type: InteriorFurniturePropertyType) of the element Room may con-

tain an BuildingFurniture element inline or an XLink reference to a remote BuildingFurniture element

using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the interiorFurni-

ture property may only point to a remote BuildingFurniture element (where remote BuildingFurniture

elements are located in another document or elsewhere in the same document). Either the contained el-

ement or the reference must be given, but neither both nor none.

24. The roomInstallation property (type: IntBuildingInstallationPropertyType) of the element Room may

contain an IntBuildingInstallation element inline or an XLink reference to a remote IntBuildingInstalla-

tion element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the

roomInstallation property may only point to a remote IntBuildingInstallation element (where remote

IntBuildingInstallation elements are located in another document or elsewhere in the same document).

Either the contained element or the reference must be given, but neither both nor none.

25. The lodXImplicitRepresentation, X Í [2..4], property (type: core:ImplicitRepresentationPropertyType)

of the element BuildingInstallation may contain a core:ImplicitGeometry element inline or an XLink

reference to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the lat-

ter case, the xlink:href attribute of the lodXImplicitRepresentation, X Í [2..4], property may only point

to a remote core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located

in another document or elsewhere in the same document). Either the contained element or the reference

must be given, but neither both nor none.

26. The lod4ImplicitRepresentation property (type: core:ImplicitRepresentationPropertyType) of the ele-

ment IntBuildingInstallation may contain a core:ImplicitGeometry element inline or an XLink reference

to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case,

the xlink:href attribute of the lod4ImplicitRepresentation property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

27. The lodXImplicitRepresentation, X Í [3..4], property (type: core:ImplicitRepresentationPropertyType)

of the element _Opening may contain a core:ImplicitGeometry element inline or an XLink reference to

a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the lodXImplicitRepresentation, X Í [3..4], property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

28. The lod4ImplicitRepresentation property (type: core:ImplicitRepresentationPropertyType) of the ele-

ment BuildingFurniture may contain a core:ImplicitGeometry element inline or an XLink reference to a

remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the lod4ImplicitRepresentation property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

82 Copyright © 2012 Open Geospatial Consortium.

10.4 Tunnel model

The tunnel model is closely related to the building model. It supports the representation of thematic and spatial

aspects of tunnels and tunnel parts in four levels of detail, LOD1 to LOD4. The tunnel model of CityGML is

defined by the thematic extension module Tunnel (cf. chapter 7). Fig. 37 provides examples of tunnel models for

each LOD.

Fig. 37: Examples for tunnel models in LOD1 (upper left), LOD2 (upper right), LOD3 (lower left) and LOD4 (lower right) (source: Google

3D warehouse).

The UML diagram of the tunnel model is shown in Fig. 38. The XML schema definition is attached in annex

A.11. The pivotal class of the model is _AbstractTunnel, which is a subclass of the thematic class _Site (and

transitively of the root class _CityObject). _AbstractTunnel is specialized either to a Tunnel or to a TunnelPart.

Since an _AbstractTunnel consists of TunnelParts, which again are _AbstractTunnels, an aggregation hierarchy

of arbitrary depth may be realized. As subclass of the root class _CityObject, an _AbstractTunnel inherits all

properties from _CityObject like the GML3 standard feature properties (gml:name etc.) and the CityGML

specific properties like ExternalReferences (cf. chapter 6.7). Further properties not explicitly covered by

_AbstractTunnel may be modelled as generic attributes provided by the CityGML Generics module (cf. chapter

10.12) or using the CityGML Application Domain Extension mechanism (cf. chapter 10.13).

Both classes Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the tunnel, the func-

tion, the usage, the year of construction and the year of demolition. In contrast to _AbstractBuilding, Address

features cannot be assigned to _AbstractTunnel.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 83

Fig. 38: UML diagram of CityGMLôs tunnel model. Prefixes are used to indicate XML namespaces associated with model elements. Element

names without a prefix are defined within the CityGML Tunnel module.

The geometric representation and semantic structure of an _AbstractTunnel is shown in Fig. 38. The model is

successively refined from LOD1 to LOD4. Therefore, not all components of a tunnel model are represented

equally in each LOD and not all aggregation levels are allowed in each LOD. In CityGML, all object classes are

associated to the LODs with respect to the proposed minimum acquisition criteria for each LOD (cf. chapter

6.2). An object can be represented simultaneously in different LODs by providing distinct geometries for the

corresponding LODs.

Similar to the building and brigde models (cf. chapters 10.3 and 10.5), only the outer shell of a tunnel is repre-

sented in LOD1 ï 3, which is composed of the tunnelôs boundary surfaces to the surrounding earth, water, or

outdoor air. The interior of a tunnel may only be modeled in LOD4. Although the interior built environment is

especially relevant for subsurface objects like tunnels or underground buildings, CityGML employs a consistent

LOD concept for all thematic modules. If, in contrast, the representation of the interior of subsurface objects

would be possible in all LODs, the LOD concept for subsurface objects would have to substantially differ from

the LOD concept for aboveground objects. This would require the precise definition of a ñtransition surfaceò

which delimits the scope of both LOD concepts. Furthermore, features being partially above and below ground

would have to be split into an above-ground part (modeled according to the aboveground LOD concept) and a

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+yearOfConstruction : xs::gYear [0..1]

+yearOfDemolition : xs::gYear [0..1]

<<Feature>>

_AbstractTunnel

<<Feature>>

_BoundarySurface

<<Feature>>

CeilingSurface

<<Feature>>

InteriorWallSurface

<<Feature>>

FloorSurface

<<Feature>>

RoofSurface

<<Feature>>

WallSurfacee

<<Feature>>

ClosureSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

TunnelInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

IntTunnelInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

HollowSpace

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

TunnelFurniture

<<Feature>>

_Opening

<<Feature>>

Window

<<Feature>>

Door

<<Feature>>

Tunnel

<<Feature>>

TunnelPart

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiSurface

<<Feature>>

core::_Site

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Geometry

<<Object>>

core::ImplicitGeometry

<<Feature>>

GroundSurface

<<Feature>>

OuterCeilingSurface

<<Feature>>

OuterFloorSurface

0..1

*

lod4Geometry

0..1

*

lod2MultiCurve

*

0..2

opening

*

lod3MultiCurve

*

lod4TerrainIntersection

*

*

consistsOfTunnelPart

*

lod3MultiSurface

*

lod4ImplicitRepresentation

0..1

*

lod4MultiSurface

*

0..1

*

lod1MultiSurface

*

0..1

*

lod1TerrainIntersection

*

lod3TerrainIntersection

0..1

*

lod3ImplicitRepresentation

*

0..1

interiorFurniture

*
lod4MultiSurface

*

lod2MultiSurface

*

0..1

*

0..1

*

lod4Geometry

*

lod3MultiSurface

*

*

0..1

boundedBy

0..1

*

*

*

*

boundedBy

0..1
*lod2Geometry

0..1

* lod3MultiSurface

*

lod4MultiSurface

*

*

outerTunnelInstallation

*

lod4MultiCurve

*lod3Geometry

0..1

*

*lod4Geometry

*

lod2TerrainIntersection

0..1

*

*

0..1

hollowSpaceInstallation

*

*

boundedBy

0..1

*

lod2MultiSurface

0..1

*

*

*

interiorTunnelInstallation

*

*

interiorHollowSpace

*

lod4MultiSurface

*

*

boundedBy

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

84 Copyright © 2012 Open Geospatial Consortium.

subsurface part (modeled according to the subsurface LOD concept). However, such a splitting violates the

CityGML concept of unity of features and would not be feasible in many cases where the transition between

above and below ground is often not precisely known or depends on (the LOD of) the terrain model. Hence,

CityGML applies a single and consistent LOD concept to both aboveground and subsurface objects. As a conse-

quence, penetrations between a tunnel and objects inside this tunnel (e.g., roads and railways) may occur in

LOD1 ï 3.

In LOD1, a tunnel model consists of a geometric representation of the tunnel volume. Optionally, a MultiCurve

representing the TerrainIntersectionCurve (cf. chapter 6.5) can be specified. The geometric representation is

refined in LOD2 by additional MultiSurface and MultiCurve geometries.

In LOD2 and higher LODs the outer structure of a tunnel can also be differentiated semantically by the classes

_BoundarySurface and TunnelInstallation. A boundary surface is a part of the tunnelôs exterior shell with a

special function like wall (WallSurface), roof (RoofSurface), ground plate (GroundSurface), outer floor (Outer-

FloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface. The TunnelInstallation class is used for

tunnel elements like outer stairs, strongly affecting the outer appearance of a tunnel. A TunnelInstallation may

have the attributes class, function and usage (see Fig. 38).

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented as thematic ob-

jects.

In LOD4, the highest level of resolution, also the interior of a tunnel, composed of several hollow spaces, is

represented in the tunnel model by the class HollowSpace. This enlargement allows a virtual accessibility of

tunnels, e.g. for driving through a tunnel, for simulating disaster management or for presenting the light illumi-

nation within a tunnel. The aggregation of hollow spaces according to arbitrary, user defined criteria (e.g. for

defining the hollow spaces corresponding to horizontal or vertical sections) is achieved by employing the general

grouping concept provided by CityGML (cf. chapter 10.11). Interior installations of a tunnel, i.e. objects within a

tunnel which (in contrast to furniture) cannot be moved, are represented by the class IntTunnelInstallation. If an

installation is attached to a specific hollow space (e.g. lamps, ventilator), they are associated with the Hol-

lowSpace class, otherwise (e.g. pipes) with _AbstractTunnel. A HollowSpace may have the attributes class,

function and usage whose possible values can be enumerated in code lists (chapter 10.4.7, Annex C). The class

attribute allows a general classification of hollow spaces, e.g. commercial or private rooms, and occurs only

once. The function attribute is intended to express the main purpose of the hollow space, e.g. control area,

installation space, storage space. The attribute usage can be used if the way the object is actually used differs

from the function. Both attributes can occur multiple times.

The visible surface of a hollow space is represented geometrically as a Solid or MultiSurface. Semantically, the

surface can be structured into specialised _BoundarySurfaces, representing floor (FloorSurface), ceiling (Ceil-

ingSurface), and interior walls (InteriorWallSurface). Hollow space furniture, like movable equipment in control

areas, can be represented in the CityGML tunnel model with the class TunnelFurniture. A TunnelFurniture may

have the attributes class, function and usage.

XML namespace

The XML namespace of the CityGML Tunnel module is identified by the Uniform Resource Identifier (URI)

http://www.opengis.net/citygml/tunnel/2.0. Within the XML Schema definition of the Tunnel module, this URI

is also used to identify the default namespace.

10.4.1 Tunnel and tunnel part

TunnelType, Tunnel

<xs:complexType name="TunnelType">

 <xs:complexContent>
 <xs:extension base="AbstractTunnelType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfTunnel" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="Tunnel" type="TunnelType" substitutionGroup="_AbstractTunnel"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 85

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfTunnel" type="xs:anyType" abstract="true"/>

The Tunnel class is one of the two subclasses of _AbstractTunnel. If a tunnel only consists of one (homogene-

ous) part, this class shall be used. A tunnel composed of structural segments, for example tunnel entrance and

subway, has to be separated into one tunnel having one or more additional TunnelPart (see Fig. 39). The geome-

try and non-spatial properties of the central part of the tunnel should be represented in the aggregating Tunnel

feature.

TunnelPartType, TunnelPart

<xs:complexType name="TunnelPartType">

 <xs:complexContent>
 <xs:extension base="AbstractTunnelType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfTunnelPart" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="TunnelPart" type="TunnelPartType" substitutionGroup="_AbstractTunnel"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfTunnelPart" type="xs:anyType" abstract="true"/>

If sections of a tunnel differ in geometry and / or attributes, the tunnel can be separated into parts (see Fig. 39).

Like Tunnel, the class TunnelPart is derived from _AbstractTunnel and inherites all attributes of

_AbstractTunnel. A TunnelPart object should be uniquely related to exactly one tunnel or tunnel part object.

Fig. 39: Example of a tunnel modeled with two tunnel parts (source: Helmut Stracke).

AbstractTunnelType, _AbstractTunnel

 <xs:complexType name="AbstractTunnelType">

 <xs:complexContent>
 <xs:extension base="core:AbstractSiteType">

 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>
 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

Tunnel part 1 Tunnel part 2

Tunnel

86 Copyright © 2012 Open Geospatial Consortium.

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="yearOfConstruction" type="xs:gYear" minOccurs="0"/>

 <xs:element name="yearOfDemolition" type="xs:gYear" minOccurs="0"/>
 <xs:element name="lod1Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod1MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod1TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod2Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod2MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod2TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="outerTunnelInstallation" type="TunnelInstallationPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="interiorTunnelInstallation" type="IntTunnelInstallationPropertyType" minOccurs="0"
 maxOccurs="unbounded"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod3Solid" type="gml:SolidPropertyType" minOccurs="0"/>
 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod3TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod4TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="interiorHollowSpace" type="InteriorHollowSpacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="consistsOfTunnelPart" type="TunnelPartPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfAbstractTunnel" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

 </xs:complexType>
 <!-- == -->

 <xs:element name="_AbstractTunnel" type="AbstractTunnelType" abstract="true" substitutionGroup="core:_Site"/>

 <!-- == -->
 <xs:element name="_GenericApplicationPropertyOfAbstractTunnel" type="xs:anyType" abstract="true"/>

The abstract class _AbstractTunnel contains properties for tunnel attributes, purely geometric representations,

and geometric/semantic representations of the tunnel or tunnel part in different levels of detail. The attributes

describe:

a) The classification of the tunnel or tunnel part (class), the different functions (function), and the usage (us-

age). The type of these attributes is gml:CodeType and the values can be specified in separate code lists.

b) The year of construction (yearOfConstruction) and the year of demolition (yearOfDemolition) of the tunnel

or tunnel part. The yearOfConstruction is the year of completion of the tunnel. The yearOfDemolition is the

year when the demolition of the tunnel was completed. The date (year) refer to real world time (e.g. 2011).

Spanning the different levels of detail, the tunnel model differs in the complexity and granularity of the geomet-

ric representation and the thematic structuring of the model into components with a special semantic meaning.

This is illustrated in Fig. 40, showing the same tunnel in four different LODs. Some properties of the class

_AbstractTunnel are also associated with certain LODs.

 LOD1 LOD2 LOD3 LOD4

T
u

n
n

e
l

T
u

n
n

e
l
in

te
ri
o

r

Fig. 40: Tunnel model in LOD1 ï LOD4 (source: Karlsruhe Institute of Technology (KIT)).

Tab. 6 shows the correspondence of the different geometric and semantic themes of the tunnel model to LODs.

In each LOD, the volume of a tunnel can be expressed by a gml:Solid geometry and/or a gml:MultiSurface

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 87

geometry. The definition of a 3D Terrain Intersection Curve (TIC), used to integrate tunnels from different

sources with the Digital Terrain Model, is also possible in all LODs. The TIC can ï but does not have to ï build

closed rings around the tunnel or tunnel parts.

Geometric / semantic theme Property type LOD1 LOD2 LOD3 LOD4

Volume part of the tunnel shell gml:SolidType Å Å Å Å

Surface part of the tunnel shell gml:MultiSurfaceType Å Å Å Å

Terrain intersection curve gml:MultiCurveType Å Å Å Å

Curve part of the tunnel shell gml:MultiCurveType Å Å Å

Tunnel parts TunnelPartType Å Å Å Å

Boundary surfaces (chapter 10.4.3) AbstractBoundarySurfaceType Å Å Å

Outer tunnel installations (chapter 10.4.2) TunnelInstallationType Å Å Å

Openings AbstractOpeningType Å Å

Hollow spaces (chapter 10.4.5) HollowSpaceType Å

Interior tunnel installations IntTunnelInstallationType Å

Tab. 6: Semantic themes of the class _AbstractTunnel.

10.4.2 Outer tunnel installations

TunnelInstallationType, TunnelInstallation

A TunnelInstallation is an outer component of a tunnel which has not the significance of a TunnelPart, but

which strongly affects the outer characteristic of the tunnel, for examples stairs. A TunnelInstallation optionally

has attributes class, function and usage. The attribute class - which can only occur once - represents a general

classification of the installation. With the attributes function and usage, nominal and real functions of a tunnel

installation can be described. For all three attributes the list of feasible values can specified in a code list. For the

geometrical representation of a TunnelInstallation, an arbitrary geometry object from the GML subset shown in

Fig. 9 can be used. Alternatively, the geometry may be given as ImplicitGeometry object. Following the concept

of ImplicitGeometry the geometry of a prototype tunnel installation is stored only once in a local coordinate

system and referenced by other tunnel installation features (see chapter 8.2). The visible surfaces of a tunnel

installation can be semantically classified using the concept of boundary surfaces (cf. 10.3.3). A TunnelInstalla-

tion object should be uniquely related to exactly one tunnel or tunnel part object.

10.4.3 Boundary surfaces

<xs:complexType name="AbstractBoundarySurfaceType" abstract="true">

 <xs:complexContent>
 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="opening" type="OpeningPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfBoundarySurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="_BoundarySurface" type="AbstractBoundarySurfaceType" abstract="true" substitutionGroup="core:_CityObject"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfBoundarySurface" type="xs:anyType" abstract="true"/>

_BoundarySurface is the abstract base class for several thematic classes, structuring the exterior shell of a tunnel

as well as the visible surface of hollow spaces and both outer and interior tunnel installations. It is a subclass of

_CityObject and thus inherits all properties like the GML3 standard feature properties (gml:name etc.) and the

88 Copyright © 2012 Open Geospatial Consortium.

CityGML specific properties like ExternalReferences. From _BoundarySurface, the thematic classes RoofSur-

face, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface, ClosureSurface, FloorSurface,

InteriorWallSurface, and CeilingSurface are derived. The thematic classification of tunnel surfaces is illustrated

in Fig. 41 for different types of tunnel cross sections and are specified below.

Fig. 41: Examples for the use of boundary surfaces for tunnels with different cross sections. WallSurface, RoofSurface, GroundSurface,

OuterCeilingSurface and OuterFloorSurface are available in LOD2 ï 4, whereas InteriorWallSurface, FloorSurface and CeilingSurface may

only be used in LOD4 to model the interior boundary surfaces of a hollow space.

For each LOD between 2 and 4, the geometry of a _BoundarySurface may be defined by a different

gml:MultiSurface geometry. Starting from LOD3, a _BoundarySurface may contain _Openings (cf. chapter

10.4.4) like doors and windows. If the geometric location of openings topologically lies within a surface compo-

nent (e.g. gml:Polygon) of the gml:MultiSurface geometry, these openings must be represented as holes within

that surface. A hole is represented by an interior ring within the corresponding surface geometry object. Accord-

ing to GML3, the points have to be specified in reverse order (exterior boundaries counter-clockwise and interior

boundaries clockwise when looking in opposite direction of the surfaceôs normal vector). If such an opening is

sealed by a Door or a Window, their outer boundary may consist of the same points as the inner ring (denoting

the hole) of the surrounding surface. The embrasure surfaces of an opening belong to the relevant adjacent

_BoundarySurface. If, for example a door seals the opening, the embrasure surface on the one side of the door

belongs to the InteriorWallSurface and on the other side to the WallSurface (cf. right part of Fig. 32 for the same

situation in a building model).

GroundSurfaceType, GroundSurface

<xs:complexType name="GroundSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfGroundSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 89

<xs:element name="GroundSurface" type="GroundSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfGroundSurface" type="xs:anyType" abstract="true"/>

The ground plate of a tunnel or tunnel part is modelled by the class GroundSurface. Usually a GroundSurface is

a boundary surface between the tunnel and the surrounding earth (soil, rock etc.) or water.

OuterCeilingSurfaceType, OuterCeilingSurface

<xs:complexType name="OuterCeilingSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfOuterCeilingSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="OuterCeilingSurface" type="OuterCeilingSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfOuterCeilingSurface" type="xs:anyType" abstract="true"/>

A mostly horizontal surface belonging to the outer tunnel shell and with the orientation pointing downwards can

be modeled as an OuterCeilingSurface. Examples are the visible part of an avalanche protector or the boundary

surface between the tunnel and the surrounding earth or water.

WallSurfaceType, WallSurface

<xs:complexType name="WallSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfWallSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="WallSurface" type="WallSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfWallSurface" type="xs:anyType" abstract="true"/>

All parts of the tunnel facade belonging to the outer tunnel shell can be modelled by the class WallSurface.

Usually a WallSurface is a boundary surface between the tunnel and the surrounding earth (soil, rock etc.) or

water.

OuterFloorSurfaceType, OuterFloorSurface

<xs:complexType name="OuterFloorSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfOuterFloorSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="OuterFloorSurface" type="OuterFloorSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfOuterFloorSurface" type="xs:anyType" abstract="true"/>

A mostly horizontal surface belonging to the outer tunnel shell and with the orientation pointing upwards can be

modeled as an OuterFloorSurface.

90 Copyright © 2012 Open Geospatial Consortium.

RoofSurfaceType, RoofSurface

<xs:complexType name="RoofSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfRoofSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="RoofSurface" type="RoofSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfRoofSurface" type="xs:anyType" abstract="true"/>

Boundary surfaces belonging to the outer tunnel shell and with the main purpose to protect the tunnel from

above are expressed by the class RoofSurface. The orientation of these boundaries is mainly pointing upwards.

ClosureSurfaceType, ClosureSurface

<xs:complexType name="ClosureSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfClosureSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="ClosureSurface" type="ClosureSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfClosureSurface" type="xs:anyType" abstract="true"/>

Openings in tunnels or hollow spaces not filled by a door or a window can be sealed by a virtual surface called

ClosureSurface (cf. chapter 6.4). For example, the doorways of tunnels can be modelled as ClosureSurface.

FloorSurfaceType, FloorSurface

<xs:complexType name="FloorSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfFloorSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="FloorSurface" type="FloorSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->
<xs:element name="_GenericApplicationPropertyOfFloorSurface" type="xs:anyType" abstract="true"/>

The class FloorSurface must only be used in the LOD4 interior tunnel model for modelling the floor of hollow

spaces.

Interio rWallSurfaceType, InteriorWallSurface

<xs:complexType name="InteriorWallSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfInteriorWallSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 91

<!-- == -->

<xs:element name="InteriorWallSurface" type="InteriorWallSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->
<xs:element name="_GenericApplicationPropertyOfInteriorWallSurface" type="xs:anyType" abstract="true"/>

The class InteriorWallSurface is only allowed to be used in the LOD4 interior tunnel model for modelling the

visible wall surfaces of hollow spaces.

CeilingSurfaceType, CeilingSurface

<xs:complexType name="CeilingSurfaceType">

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfCeilingSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="CeilingSurface" type="CeilingSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfCeilingSurface" type="xs:anyType" abstract="true"/>

The class CeilingSurface is only allowed to be used in the LOD4 interior tunnel model for modelling the ceiling

of hollow spaces.

10.4.4 Openings

AbstractOpeningType, _Opening

<xs:complexType name="AbstractOpeningType" abstract="true">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfOpening" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="_Opening" type="AbstractOpeningType" abstract="true" substitutionGroup="core:_CityObject"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfOpening" type="xs:anyType" abstract="true"/>

The class _Opening is the abstract base class for semantically describing openings like doors or windows in

outer and inner boundary surfaces. Openings only exist in models of LOD3 or LOD4. Each _Opening is associ-

ated with a gml:MultiSurface geometry. Alternatively, the geometry may be given as ImplicitGeometry object.

Following the concept of ImplicitGeometry the geometry of a prototype opening is stored only once in a local

coordinate system and referenced by other opening features (see chapter 8.2).

WindowType, Window

<xs:complexType name="WindowType">

 <xs:complexContent>

 <xs:extension base="AbstractOpeningType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfWindow" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="Window" type="WindowType" substitutionGroup="_Opening"/>

92 Copyright © 2012 Open Geospatial Consortium.

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWindow" type="xs:anyType" abstract="true"/>

The class Window is used for modelling windows in the in the exterior shell of a tunnel and in hollow spaces, or

hatches between adjacent hollow spaces. The formal difference between the classes Window and Door is that ï

in normal cases ï Windows are not specifically intended for the transit of people or vehicles.

DoorType, Door

<xs:complexType name="DoorType">

 <xs:complexContent>

 <xs:extension base="AbstractOpeningType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfDoor" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="Door" type="DoorType" substitutionGroup="_Opening"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfDoor" type="xs:anyType" abstract="true"/>

The class Door is used for modelling doors in the exterior shell of a tunnel, or between adjacent hollow spaces.

Doors can be used by people to enter or leave a tunnel or ahollow space. In contrast to a ClosureSurface a door

may be closed, blocking the transit of people or vehicles.

10.4.5 Tunnel interior

HollowSpaceType, HollowSpace

<xs:complexType name="HollowSpaceType">

 <xs:complexContent>
 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>
 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="interiorFurniture" type="InteriorFurniturePropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="hollowSpaceInstallation" type="IntTunnelInstallationPropertyType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfHollowSpace" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="HollowSpace" type="HollowSpaceType" substitutionGroup="core:_CityObject"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfHollowSpace" type="xs:anyType" abstract="true"/>

A HollowSpace is a semantic object for modelling the free space inside a tunnel and should be uniquely related

to exactly one tunnel or tunnel part object. It should be closed (if necessary by using ClosureSurface) and the

geometry normally will be described by a solid (lod4Solid). However, if the topological correctness of the

boundary cannot be guaranteed, the geometry can alternatively be given as a MultiSurface (lod4MultiSurface).

The surface normals of the outer shell of a GML solid must point outwards. This is important if appearences

should be assigned to HollowSpace surfaces. In this case, textures and colors must be placed on the backside of

the corresponding surfaces in order to be visible from the inside of the hollow space.

In addition to the geometrical representation, different parts of the visible surface of a hollow space can be

modelled by specialised boundary surfaces (FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSur-

face, cf. chapter 10.4.3).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 93

TunnelFurnitureType, TunnelFurniture

<xs:complexType name="TunnelFurnitureType">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfTunnelFurniture" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="TunnelFurniture" type="TunnelFurnitureType" substitutionGroup="core:_CityObject"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfTunnelFurniture" type="xs:anyType" abstract="true"/>

Hollow spaces may have TunnelFurniture. A TunnelFurniture is a movable part of a hollow space. A Tunnel-

Furniture object should be uniquely related to exactly one hollow space. Its geometry may be represented by an

explicit geometry or an ImplicitGeometry object. Following the concept of ImplicitGeometry the geometry of a

prototype tunnel furniture is stored only once in a local coordinate system and referenced by other tunnel furni-

ture features (see chapter 8.2).

IntTunnelInstallationType, IntTunnelInstallation

<xs:complexType name="IntTunnelInstallationType">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>
 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfIntTunnelInstallation" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="IntTunnelInstallation" type="IntTunnelInstallationType" substitutionGroup="core:_CityObject"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfIntTunnelInstallation" type="xs:anyType" abstract="true"/>

An IntTunnelInstallation is an object inside a tunnel with a specialized function or semantic meaning. In contrast

to TunnelFurniture, objects of the class IntTunnelInstallation are permanently attached to the tunnel structure

and cannot be moved. Typical examples are interior stairs, railings, radiators or pipes. Objects of the class

IntTunnelInstallation can either be associated with a hollow space (class HollowSpace), or with the complete

tunnel or tunnel part (class _AbstractTunnel, see chapter 10.4.1). However, they should be uniquely related to

exactly one hollow space or one tunnel / tunnel part object. An IntTunnelInstallation optionally has the attributes

class, function and usage. The attribute class, which can only occur once, represents a general classification of

the internal tunnel component. With the attributes function and usage, nominal and real functions of a tunnel

installation can be described. For all three attributes the list of feasible values can be specified in a code list. For

the geometrical representation of an IntTunnelInstallation, an arbitrary geometry object from the GML subset

shown in Fig. 9 can be used. Alternatively, the geometry may be given as ImplicitGeometry object. Following

the concept of ImplicitGeometry the geometry of a prototype interior tunnel installation is stored only once in a

local coordinate system and referenced by other interior tunnel installation features (see chapter 8.2). The visible

surfaces of an interior tunnel installation can be semantically classified using the concept of boundary surfaces

(cf. 10.4.3).

94 Copyright © 2012 Open Geospatial Consortium.

10.4.6 Examples

The example in Fig. 42 shows a pedestrian underpass in the city centre of Karlsruhe, Germany. On the left side

of Fig. 42, a photo illustrates the real world situation. Both entrances of the underpass are marked in the photo by

dashed rectangles. On the right side of the figure, the CityGML tunnel model is shown. The terrain surrounding

the tunnel has been virtually cut out of model in order to visualize the entire tunnel with its subsurface body. The

same underpass is illustrated in Fig. 43 from a different perspective. The camera is positioned in front of the left

entrance (black dashed rectangle in Fig. 42) and pointing in the direction of the right entrance (white dashed

rectangle in Fig. 42). On the right side of Fig. 43, the tunnel model is shown from the same perspective. Again

holes are cut in the terrain surface in order to make the subsurface part of the tunnel visible. An LOD1 represen-

tation of the nearby buildings is shown in the background of the model.

Fig. 42: Example of a tunnel modeled in LOD3 (real situation on the left side; CityGML model on the right side) (source: Karlsruhe Institute

of Technology (KIT), courtesy of City of Karlsruhe).

Fig. 43: The same LOD3 tunnel shown from a different perspective. The camera is positioned in front of the left entrance and pointing in the

direction of the right entrance. (real situation on the left side; CityGML model on the right side). The model on the right also includes an

LOD1 representation of the nearby buildings in the background (painted in light brown) (source: Karlsruhe Institute of Technology (KIT),

courtesy of City of Karlsruhe).

The model is subdivided into one Tunnel (the actual underpass) and two TunnelParts (both entrances). The

tunnel and tunnel parts are bounded by GroundSurface, WallSurface, RoofSurface. ClosureSurface objects are

used to virtually seal the tunnel entrances. For safety reasons each of the two entrances has railings which are

modeled as TunnelInstallation. Due to the high geometrical accuracy and the semantic richness, the model is

classified as LOD3.

10.4.7 Code lists

The attributes class, function, and usage of the features _AbstractTunnel, TunnelInstallation, HollowSpace,

TunnelFurniture and IntTunnelInstallation are specified as gml:CodeType. The values of these properties can be

enumerated in code lists. Proposals for corresponding code lists can be found in annex C.2.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 95

10.4.8 Conformance requirements

Base requirements

1. If a tunnel only consists of one (homogeneous) part, it shall be represented by the element Tunnel.

However, if a tunnel is composed of individual structural segments, it shall be modelled as a Tunnel el-

ement having one or more additional TunnelPart elements. Only the geometry and non-spatial proper-

ties of the main part of the tunnel should be represented within the aggregating Tunnel element.

Usage restriction of tunnel model components according to different LODs

2. The lodXSolid and lodXMultiSurface, X Í [1..4], properties (gml:SolidPropertyType resp.

gml:MultiSurfacePropertyType) of _AbstractTunnel may be used to geometrically represent the exterior

shell of a tunnel (as volume or surface model) within each LOD. For LOD1, either lod1Solid or

lod1MultiSurface must be used, but not both. Starting from LOD2, both properties may be modelled in-

dividually and complementary.

3. Starting from LOD2, the exterior shell of an _AbstractTunnel may be semantically decomposed into

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

_AbstractTunnel. Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloor-

Surface and ClosureSurface as subclasses of _BoundarySurface are allowed. The boundedBy property

(not to be confused with the gml:boundedBy property) shall not be used if the tunnel is only represented

in LOD1.

If the exterior shell is represented by _BoundarySurface elements, an additional geometric representa-

tion as volume or surface model using the lodXSolid and lodXMultiSurface, X Í [2..4], properties shall

not explicitly define the geometry, but has to reference the according components of the

gml:MultiSurface element of _BoundarySurface within each LOD using the XLink concept of GML

3.1.1.

4. Starting from LOD2, curve parts of the tunnel shell may be represented using the lodXMultiCurve, X Í

[2..4], property of _AbstractTunnel. This property shall not be used if the tunnel is only represented in

LOD1.

5. Starting from LOD2, the outerTunnelInstallation property (type: TunnelInstallationPropertyType) of

_AbstractTunnel may be used to model TunnelInstallation elements. TunnelInstallation elements shall

only be used to represent outer characteristics of a tunnel which do not have the significance of tunnel

parts. The outerTunnelInstallation property shall not be used if the tunnel is only represented in LOD1.

6. Starting from LOD2, the geometry of TunnelInstallation elements may be semantically classified by

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

TunnelInstallation. Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloor-

Surface and ClosureSurface as subclasses of _BoundarySurface are allowed.

7. Starting from LOD3, openings of _BoundarySurface elements may be modelled using the opening

property (type: OpeningPropertyType) of _BoundarySurface. This property shall not be used for

_BoundarySurface elements only represented in LOD2. Accordingly, the surface geometry representing

a _BoundarySurface in LOD2 must be simply connected.

The opening property of _BoundarySurface may contain or reference _Opening elements. If the geo-

metric location of an _Opening element topologically lies within a surface component of the

_BoundarySurface, the opening must also be represented as inner hole of that surface. The embrasure

surface of an _Opening element shall belong to the relevant adjacent _BoundarySurface.

8. Starting from LOD4, the interiorHollowSpace property (type: InteriorHollowSpacePropertyType) of

_AbstractTunnel may be used to semantically model the free space inside the tunnel by HollowSpace

elements. This property shall not be used if the tunnel is only represented in LOD 1 ï 3. The Hol-

lowSpace element may be geometrically represented as a surface or volume model, using its lod4Solid

or lod4MultiSurface property (gml:SolidPropertyType resp. gml:MultiSurfacePropertyType).

In addition, different parts of the visible surface of a hollow space may be modelled by thematic

_BoundarySurface elements. Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSur-

face as subclasses of _BoundarySurface are allowed. If the visible surface of a hollow space is repre-

96 Copyright © 2012 Open Geospatial Consortium.

sented by _BoundarySurface elements, an additional geometric representation as volume or surface

model using the lod4Solid and lod4MultiSurface property shall not explicitly define the geometry, but

has to reference the according components of the gml:MultiSurface element of _BoundarySurface using

the XLink concept of GML 3.1.1.

9. Starting from LOD4, the interiorTunnelInstallation property (type: IntTunnelInstallationPropertyType)

of _AbstractTunnel may be used to represent immovable objects inside the tunnel that are permanently

attached to the tunnel structure. The interiorTunnelInstallation property shall not be used if the tunnel is

only represented in LOD 1 ï 3. Furthermore, the interiorTunnelInstallation property shall only be used

if the object cannot be associated with a HollowSpace element. In the latter case, the hollowSpaceInstal-

lation property (type: IntTunnelInstallationPropertyType) of the corresponding HollowSpace element

shall be used to represent the object.

10. Starting from LOD4, the geometry of IntTunnelInstallation elements may be semantically classified by

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

IntTunnelInstallation. Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface as

subclasses of _BoundarySurface are allowed.

Referential integrity

11. The boundedBy property (type: BoundarySurfacePropertyType) of the element _AbstractTunnel may

contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface ele-

ment using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface and Clo-

sureSurface elements are allowed to be encapsulated or referenced by the boundedBy property of

_AbstractTunnel.

12. The outerTunnelInstallation property (type: TunnelInstallationPropertyType) of the element

_AbstractTunnel may contain a TunnelInstallation element inline or an XLink reference to a remote

TunnelInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href at-

tribute of the outerTunnelInstallation property may only point to a remote TunnelInstallation element

(where remote TunnelInstallation elements are located in another document or elsewhere in the same

document). Either the contained element or the reference must be given, but neither both nor none.

13. The interiorTunnelInstallation property (type: IntTunnelInstallationPropertyType) of the element

_AbstractTunnel may contain an IntTunnelInstallation element inline or an XLink reference to a remote

IntTunnelInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href

attribute of the interiorTunnelInstallation property may only point to a remote IntTunnelInstallation el-

ement (where remote IntTunnelInstallation elements are located in another document or elsewhere in

the same document). Either the contained element or the reference must be given, but neither both nor

none.

14. The interiorHollowSpace property (type: InteriorHollowSpacePropertyType) of the element

_AbstractTunnel may contain a HollowSpace element inline or an XLink reference to a remote Hol-

lowSpace element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of

the interiorHollowSpace property may only point to a remote HollowSpace element (where remote Hol-

lowSpace elements are located in another document or elsewhere in the same document). Either the

contained element or the reference must be given, but neither both nor none.

15. The consistsOfTunnelPart property (type: TunnelPartPropertyType) of the element _AbstractTunnel

may contain a TunnelPart element inline or an XLink reference to a remote TunnelPart element using

the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the consistsOfTunnelPart

property may only point to a remote TunnelPart element (where remote TunnelPart elements are locat-

ed in another document or elsewhere in the same document). Either the contained element or the refer-

ence must be given, but neither both nor none.

16. The opening property (type: OpeningPropertyType) of the element _BoundarySurface may contain an

_Opening element inline or an XLink reference to a remote _Opening element using the XLink concept

of GML 3.1.1. In the latter case, the xlink:href attribute of the opening property may only point to a re-

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 97

mote _Opening element (where remote _Opening elements are located in another document or else-

where in the same document). Either the contained element or the reference must be given, but neither

both nor none.

17. The boundedBy property (type: BoundarySurfacePropertyType) of the element TunnelInstallation may

contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface ele-

ment using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface and Clo-

sureSurface elements are allowed to be encapsulated or referenced by the boundedBy property of Tun-

nelInstallation.

18. The boundedBy property (type: BoundarySurfacePropertyType) of the element IntTunnelInstallation

may contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface

element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the bound-

edBy property may only point to a remote _BoundarySurface element (where remote _BoundarySurface

elements are located in another document or elsewhere in the same document). Either the contained el-

ement or the reference must be given, but neither both nor none.

Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface elements are allowed to

be encapsulated or referenced by the boundedBy property of IntTunnelInstallation.

19. The boundedBy property (type: BoundarySurfacePropertyType) of the element HollowSpace may con-

tain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface element

using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface elements are allowed to

be encapsulated or referenced by the boundedBy property of HollowSpace.

20. The interiorFurniture property (type: InteriorFurniturePropertyType) of the element HollowSpace may

contain an TunnelFurniture element inline or an XLink reference to a remote TunnelFurniture element

using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the interiorFurni-

ture property may only point to a remote TunnelFurniture element (where remote TunnelFurniture el-

ements are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

21. The hollowSpaceInstallation property (type: IntTunnelInstallationPropertyType) of the element Hol-

lowSpace may contain an IntTunnelInstallation element inline or an XLink reference to a remote

IntTunnelInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href

attribute of the hollowSpaceInstallation property may only point to a remote IntTunnelInstallation ele-

ment (where remote IntTunnelInstallation elements are located in another document or elsewhere in the

same document). Either the contained element or the reference must be given, but neither both nor

none.

22. The lodXImplicitRepresentation, X Í [2..4], property (type: core:ImplicitRepresentationPropertyType)

of the element TunnelInstallation may contain a core:ImplicitGeometry element inline or an XLink ref-

erence to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter

case, the xlink:href attribute of the lodXImplicitRepresentation, X Í [2..4], property may only point to a

remote core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in

another document or elsewhere in the same document). Either the contained element or the reference

must be given, but neither both nor none.

23. The lod4ImplicitRepresentation property (type: core:ImplicitRepresentationPropertyType) of the ele-

ment IntTunnelInstallation may contain a core:ImplicitGeometry element inline or an XLink reference

to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case,

the xlink:href attribute of the lod4ImplicitRepresentation property may only point to a remote

98 Copyright © 2012 Open Geospatial Consortium.

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

24. The lodXImplicitRepresentation, X Í [3..4], property (type: core:ImplicitRepresentationPropertyType)

of the element _Opening may contain a core:ImplicitGeometry element inline or an XLink reference to

a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the lodXImplicitRepresentation, X Í [3..4], property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

25. The lod4ImplicitRepresentation property (type: core:ImplicitRepresentationPropertyType) of the ele-

ment TunnelFurniture may contain a core:ImplicitGeometry element inline or an XLink reference to a

remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the lod4ImplicitRepresentation property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 99

10.5 Bridge model

The bridge model allows for the representation of the thematic, spatial and visual aspects of bridges and bridge

parts in four levels of detail, LOD 1 ï 4. The bridge model of CityGML is defined by the thematic extension

module Bridge (cf. chapter 7). Fig. 44 illustrates examples of bridge models in all LODs.

Fig. 44: Examples for bridge models in LOD1 (upper left), LOD2 (upper right), LOD3 (lower left) and LOD4 (lower right) (source: Google

3D warehouse)

The bridge model was developed in analogy to the building model (cf. chapter 10.3) with regard to structure and

attributes. The UML diagram of the bridge model is depicted in Fig. 45, and the XML schema definition is

presented in annex A.3.

100 Copyright © 2012 Open Geospatial Consortium.

Fig. 45: UML diagram of the bridge model, part one.

A (movable or unmovable) bridge is represented by an object of the class Bridge. This class inherits its attributes

and relations from the abstract base class _AbstractBridge. The spatial properties are defined by a solid for each

of the four LODs (relations lod1Solid to lod4Solid). In analogy to the building model, the semantical as well as

the geometrical richness increases from LOD1 (blocks model) to LOD3 (architectural model). Simple examples

of bridges in each of those LODs are depicted in Fig. 46. Interior structures like rooms are dedicated to LOD4.

To cover the case of bridge models where the topology does not satisfy the properties of a solid (essentially

water tightness), a multi surface representation is allowed (lod1MultiSurface to lod4MultiSurface). The line

where the bridge touches the terrain surface is represented by a terrain intersection curve, which is provided for

each LOD (relations lod1TerrainIntersection to lod4TerrainIntersection). In addition to the solid representation

of a bridge, linear characteristics like ropes or antennas can be specified geometrically by the lod1MultiCurve to

lod4MultiCurve relations. If those characteristics shall be represented semantically, the features BridgeInstalla-

tion or BridgeConstructionElement can be used (see section 10.5.2). All relations to semantic objects and geo-

metric properties are listed in Tab. 7.

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+yearOfConstruction : xs::gYear [0..1]

+yearOfDemolition : xs::gYear [0..1]

+isMovable : xs:boolean [0..1]

<<Feature>>

_AbstractBridge

<<Feature>>

_BoundarySurface

<<Feature>>

CeilingSurface

<<Feature>>

InteriorWallSurface

<<Feature>>

FloorSurface

<<Feature>>

RoofSurface

<<Feature>>

WallSurfacee

<<Feature>>

ClosureSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BridgeInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

IntBridgeInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BridgeRoom

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BridgeFurniture

<<Feature>>

_Opening

<<Feature>>

Window

<<Feature>>

Door

<<Feature>>

Bridge

<<Feature>>

BridgePart

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiSurface

<<Feature>>

core::_Site

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Geometry

<<Object>>

core::ImplicitGeometry

<<Feature>>

GroundSurface

<<Feature>>

OuterCeilingSurface

<<Feature>>

OuterFloorSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BridgeConstructionElement

<<Feature>>

core::Address

*

lod2ImplicitRepresentation

*

lod3Geometry

0..1

*

*lod3Geometry

*

lod3MultiSurface

0..1

*

*

lod4Geometry

*

0..1

boundedBy

*lod2Geometry

*

lod4MultiSurface

*lod4Geometry

*

lod4ImplicitRepresentation

*

*

*

outerBridgeConstruction

*

0..1

bridgeRoomInstallation

*

*

*

lod4ImplicitRepresentation

0..1

*

lod1MultiSurface

*

*

outerBridgeInstallation

0..1

*

lod2MultiSurface

0..1

*

0..1

*

lod2MultiCurve

*

*

boundedBy

*
*

interiorBridgeInstallation

*

0..1

interiorFurniture

0..1

*

lod2Geometry

*

lod3ImplicitRepresentation

*

*

address

*

*

boundedBy

*

*

address

*

*

interiorBridgeRoom

0..1

* lod3MultiSurface

*

lod2MultiSurface

0..1

*

lod1TerrainIntersection

*

lod3MultiCurve

*

lod4MultiCurve

*

lod4MultiSurface

*

lod2TerrainIntersection

0..1

*

lod4Geometry

0..1

*lod1Geometry

0..1

*

lod1ImplicitRepresentation

*

*

boundedBy

*

0..2

opening

*

lod3MultiSurface

*

0..1

*

lod4Geometry

*

*

consistsOfBridgePart

*

*
lod4MultiSurface

* *

lod4TerrainIntersection

*

lod3TerrainIntersection

0..1

*

0..1

*

lod3ImplicitRepresentation

*

*

*

boundedBy

*

0..1

*

0..1

*

0..1

*

lod4MultiSurface

lod4TerrainIntersection

lod3TerrainIntersection

lod2TerrainIntersection

lod1TerrainIntersection

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 101

 LOD1 LOD2 LOD3 LOD4
B

ri
d

g
e

B
ri
d

g
e

 i
n

te
ri
o

r

Fig. 46: Bridge model in LOD1 ï LOD4. (source: Karlsruhe Institute of Technology (KIT))

The semantic attributes of an _AbstractBridge are class, function, usage and is_movable. The attribute class is

used to classify bridges, e.g. to distinguish different construction types (cf. Fig. 48). The attribute function allows

representing the utilization of the bridge independently of the construction. Possible values may be railway

bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The option to denote a usage which is divergent to one

of the primary functions of the bridge (function) is given by the attribute usage. The type of these attributes is

gml:CodeType, the values of which can be defined in code lists. The name of the bridge can be represented by

the gml:name attribute, which is inherited from the base class gml:_GML via the classes gml:_Feature,

_CityObject, and _Site. Each Bridge or BridgePart feature may be assigned zero or more addresses using the

address property. The corresponding AddressPropertyType is defined within the CityGML core module (cf.

chapter 10.1.4).

Geometric / semantic theme Property type LOD1 LOD2 LOD3 LOD4

Volume part of the bridge shell gml:SolidType Å Å Å Å

Surface part of the bridge shell gml:MultiSurfaceType Å Å Å Å

Terrain intersection curve gml:MultiCurveType Å Å Å Å

Curve part of the bridge shell gml:MultiCurveType Å Å Å

Bridge parts (chapter 10.5.1) BridgePartType Å Å Å Å

Boundary surfaces (chapter 10.5.3) AbstractBoundarySurfaceType Å Å Å

Outer bridge installations (chapter 10.5.2) BridgeInstallationType Å Å Å

Bridge construction elements (chapter

10.5.2)

BridgeConstruction-

ElementType

Å Å Å Å

Openings (chapter 10.5.4) AbstractOpeningType Å Å

Bridge rooms (chapter 10.5.5) BridgeRoomType Å

Interior bridge installations IntBridgeInstallationType Å

Tab. 7: Semantic themes of the class _AbstractBridge.

102 Copyright © 2012 Open Geospatial Consortium.

The boolean attribute is_movable is defined to specify whether a bridge is movable or not. The modeling of the

geometric aspects of the movement is delayed to later versions of this standard. Some types of movable bridges

are depicted in Fig. 47.

Fig. 47: Examples for movable bridges (source: ISO 6707).

arced bridge cable-stayed bridge

deck bridge
cable-stayed overpass

truss bridge pontoon bridge

suspension bridge

Fig. 48: Examples for different types of bridges.

XML namespace

The XML namespace of the CityGML Bridge module is identified by the Uniform Resource Identifier (URI)

http://www.opengis.net/citygml/bridge/2.0. Within the XML Schema definition of the Bridge module, this URI

is also used to identify the default namespace.

10.5.1 Bridge and bridge part

BridgeType, Bridge

<xs:complexType name="BridgeType">

 <xs:complexContent>
 <xs:extension base="AbstractBridgeType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfBridge" minOccurs="0" maxOccurs="unbounded"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 103

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="Bridge" type="BridgeType" substitutionGroup="_AbstractBridge"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBridge" type="xs:anyType" abstract="true"/>

BridgePartType, BridgePart

<xs:complexType name="BridgePartType">
 <xs:complexContent>

 <xs:extension base="AbstractBridgeType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfBridgePart" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="BridgePart" type="BridgePartType" substitutionGroup="_AbstractBridge"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBridgePart" type="xs:anyType" abstract="true"/>

If some parts of a bridge differ from the remaining bridge with regard to attribute values or if parts like ramps

can be identified as objects of their own, those parts can be represented as BridgePart. A bridge can consist of

multiple BridgeParts. Like Bridge, BridgePart is a subclass of _AbstractBridge and hence, has the same attrib-

utes and relations. The relation consistOfBridgePart represents the aggregation hierarchy between a Bridge (or a

BridgePart) and itôs BridgeParts. By this means, an aggregation hierarchy of arbitrary depth can be modeled.

Each BridgePart belongs to exactly one Bridge (or BridgePart). Similar to the building model, the aggregation

structure of a bridge forms a tree. A simple example for a bridge with parts is a twin bridge. Another example is

presented in chapter 10.5.6.

AbstractBridgeType, _AbstractBridge

<xs:complexType name="AbstractBridgeType" abstract="true">

 <xs:complexContent>
 <xs:extension base="core:AbstractSiteType">

 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>
 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="yearOfConstruction" type="xs:gYear" minOccurs="0"/>
 <xs:element name="yearOfDemolition" type="xs:gYear" minOccurs="0"/>

 <xs:element name="isMovable" type="xs:boolean" default="false" minOccurs="0"/>

 <xs:element name="lod1Solid" type="gml:SolidPropertyType" minOccurs="0"/>
 <xs:element name="lod1MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod1TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod2Solid" type="gml:SolidPropertyType" minOccurs="0"/>
 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod2MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod2TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="outerBridgeConstruction" type="BridgeConstructionElementPropertyType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="outerBridgeInstallation" type="BridgeInstallationPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="interiorBridgeInstallation" type="IntBridgeInstallationPropertyType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="lod3Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod3TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod4MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod4TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="interiorBridgeRoom" type="InteriorBridgeRoomPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="consistsOfBridgePart" type="BridgePartPropertyType" minOccurs="0" maxOccurs="unbounded"/>

104 Copyright © 2012 Open Geospatial Consortium.

 <xs:element name="address" type="core:AddressPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfAbstractBridge" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="_AbstractBridge" type="AbstractBridgeType" abstract="true" substitutionGroup="core:_Site"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfAbstractBridge" type="xs:anyType" abstract="true"/>

The abstract class _AbstractBridge is the base class of Bridges and BridgeParts. It contains properties for bridge

attributes, purely geometric representations, and geometric/semantic representations of the bridge or bridge part

in different levels of detail. The attributes describe:

a) The classification of the bridge or bridge part (class), the different intended usages (function), and the

different actual usages (usage). The permitted values for these property types can be specified in code lists.

b) The year of construction (yearOfConstruction) and the year of demolition (yearOfDemolition) of the bridge

or bridge part. These attributes can be used to describe the chronology of the bridge development within a

city model. The points of time refer to real world time.

c) Wether the bridge is movable is specified by the Boolean attribute isMovable.

10.5.2 Bridge construction elements and bridge installations

BridgeConstructionElementType, BridgeConstructionElement

<xs:complexType name="BridgeConstructionElementType">

 <xs:complexContent>
 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>
 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod1Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>
 <xs:element name="lod2Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod3Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod1TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod2TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod3TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod4TerrainIntersection" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod1ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod2ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>
 <xs:element name="lod3ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="_GenericApplicationPropertyOfBridgeConstructionElement" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="BridgeConstructionElement" type="BridgeConstructionElementType" substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBridgeConstructionElement" type="xs:anyType"/>

BridgeInstallationType, BridgeInstallation

<xs:complexType name="BridgeInstallationType">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod2Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod3Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>
 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 105

 <xs:element name="lod2ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod3ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>
 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfBridgeInstallation" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="BridgeInstallation" type="BridgeInstallationType" substitutionGroup="core:_CityObject"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfBridgeInstallation" type="xs:anyType" abstract="true"/>

Bridge elements which do not have the size, significance or meaning of a BridgePart can be modelled either as

BridgeConstructionElement or as BridgeInstallation. Elements which are essential from a structural point of

view are modelled as BridgeConstructionElement, for example structural elements like pylons, anchorages etc.

(cf. Fig. 49). A general classification as well as the intended and actual function of the construction element are

represented by the attributes class, function, and usage. The geometry of a BridgeConstructionElement, which

may be present in LOD1 to LOD4, is gml:_Geometry. Alternatively, the geometry may be given as ImplicitGe-

ometry object. Following the concept of ImplicitGeometry the geometry of a prototype bridge construction

element is stored only once in a local coordinate system and referenced by other bridge construction element

features (cf. chapter 8.2). The visible surfaces of a bridge construction element can be semantically classified

using the concept of boundary surfaces (cf. chapter 10.5.3).

Whereas a BridgeConstructionElement has structural relevance, a BridgeInstallation represents an element of the

bridge which can be eliminated without collapsing of the bridge (e.g. stairway, antenna, railing). BridgeInstalla-

tions occur in LOD 2 to 4 only and are geometrically representated as gml:_Geometry. Again, the concept of

ImplicitGeometry can be applied to BridgeInstallations alternatively, and their visible surfaces can be semanti-

cally classified using the concept of boundary surfaces (cf. chapter 10.5.3). The class BridgeInstallation contains

the semantic attributes class, function and usage. The attribute class gives a classification of installations of a

bridge. With the attributes function and usage, nominal and real functions of the bridge installation can be

described. The type of all attributes is gml:CodeType and their values can be defined in code lists.

Fig. 49: BridgeConstructionElements of a suspension bridge.

fundaments

abutment abutment

pylon

lane of traffic

ropes / cablel

dropper

106 Copyright © 2012 Open Geospatial Consortium.

10.5.3 Boundary surfaces

AbstractBoundarySurfaceType, _BoundarySurface

<xs:complexType name="AbstractBoundarySurfaceType" abstract="true">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="opening" type="OpeningPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfBoundarySurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- == -->
<xs:element name="_BoundarySurface" type="AbstractBoundarySurfaceType" abstract="true" substitutionGroup="core:_CityObject"/>

<!-- == -->

<xs:element name="_GenericApplicationPropertyOfBoundarySurface" type="xs:anyType" abstract="true"/>

The thematic boundary surfaces of a bridge are defined in analogy to the building module. _BoundarySurface is

the abstract base class for several thematic classes, structuring the exterior shell of a bridge as well as the visible

surfaces of rooms, bridge construction elements and both outer and interior bridge installations. It is a subclass of

_CityObject and thus inherits all properties like the GML3 standard feature properties (gml:name etc.) and the

CityGML specific properties like ExternalReferences. From _BoundarySurface, the thematic classes RoofSur-

face, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface, ClosureSurface, FloorSurface,

InteriorWallSurface, and CeilingSurface are derived.

For each LOD between 2 and 4, the geometry of a _BoundarySurface may be defined by a different

gml:MultiSurface geometry.

In LOD3 and LOD4, a _BoundarySurface may contain _Openings (cf. chapter 10.5.4) like doors and windows.

If the geometric location of _Openings topologically lies within a surface component (e.g. gml:Polygon) of the

gml:MultiSurface geometry, these _Openings must be represented as holes within that surface. A hole is repre-

sented by an interior ring within the corresponding surface geometry object. According to GML3, the points

have to be specified in reverse order (exterior boundaries counter-clockwise and interior boundaries clockwise

when looking in opposite direction of the surfaceôs normal vector). If such an opening is sealed by a Door, a

Window, or a ClosureSurface, their outer boundary may consist of the same points as the inner ring (denoting the

hole) of the surrounding surface. The embrasure surfaces of an Opening belong to the relevant adjacent

_BoundarySurface. If, for example a door seals the Opening, the embrasure surface on the one side of the door

belongs to the InteriorWallSurface and on the other side to the WallSurface.

Fig. 50 depicts a bridge with RoofSurfaces, WallSurfaces, OuterFloorSurfaces and OuterCeilingSurfaces.

Besides Bridges and BridgeParts, BridgeConstructionElements, BridgeInstallations as well as IntBridgeInstalla-

tions can be related to _BoundarySurface. _BoundarySurfaces occur in LOD2 to LOD4. In LOD3 and LOD4,

such a surface may contain _Openings (see chapter 10.3.4) like doors and windows.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 107

Fig. 50: Different BoundarySurfaces of a bridge.

GroundSurfaceType, GroundSurface

<xs:complexType name="GroundSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfGroundSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="GroundSurface" type="GroundSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfGroundSurface" type="xs:anyType" abstract="true"/>

The ground plate of a bridge or bridge part is modelled by the class GroundSurface. The polygon defining the

ground plate is congruent with the bridgeôs footprint. However, the surface normal of the ground plate is point-

ing downwards.

OuterCeilingSurfaceType, OuterCeilingSurface

<xs:complexType name="OuterCeilingSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfOuterCeilingSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="OuterCeilingSurface" type="OuterCeilingSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfOuterCeilingSurface" type="xs:anyType" abstract="true"/>

A mostly horizontal surface belonging to the outer bridge shell and having the orientation pointing downwards

can be modeled as an OuterCeilingSurface.

WallSurfaceType, WallSurface

<xs:complexType name="WallSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfWallSurface" minOccurs="0" maxOccurs="unbounded"/>

WallSurface

RoofSurface

Window

OuterFloorSurface

OuterCeilingSurface

108 Copyright © 2012 Open Geospatial Consortium.

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="WallSurface" type="WallSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWallSurface" type="xs:anyType" abstract="true"/>

All parts of the bridge facade belonging to the outer bridge shell can be modelled by the class WallSurface.

OuterFloorSurfaceType, OuterFloorSurface

<xs:complexType name="OuterFloorSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfOuterFloorSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="OuterFloorSurface" type="OuterFloorSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfOuterFloorSurface" type="xs:anyType" abstract="true"/>

A mostly horizontal surface belonging to the outer bridge shell and with the orientation pointing upwards can be

modeled as an OuterFloorSurface.

RoofSurfaceType, RoofSurface

<xs:complexType name="RoofSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfRoofSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- == -->

<xs:element name="RoofSurface" type="RoofSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- == -->

<xs:element name="_GenericApplicationPropertyOfRoofSurface" type="xs:anyType" abstract="true"/>

The major roof parts of a bridge or bridge part are expressed by the class RoofSurface.

ClosureSurfaceType, ClosureSurface

<xs:complexType name="ClosureSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfClosureSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="ClosureSurface" type="ClosureSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfClosureSurface" type="xs:anyType" abstract="true"/>

An opening in a bridge not filled by a door or window can be sealed by a virtual surface called ClosureSurface

(cf. chapter 6.4). Hence, bridge with open sides can be virtually closed in order to be able to compute their

volume. ClosureSurfaces are also used in the interior bridge model. If two rooms with a different are directly

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 109

connected without a separating door, a ClosureSurface should be used to separate or connect the volumes of both

rooms.

FloorSurfaceType, FloorSurface

<xs:complexType name="FloorSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfFloorSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="FloorSurface" type="FloorSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfFloorSurface" type="xs:anyType" abstract="true"/>

The class FloorSurface must only be used in the LOD4 interior bridge model for modelling the floor of a bridge

room.

InteriorWallSurfaceType, InteriorWallSurface

<xs:complexType name="InteriorWallSurfaceType">

 <xs:complexContent>
 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfInteriorWallSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="InteriorWallSurface" type="InteriorWallSurfaceType" substitutionGroup="_BoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfInteriorWallSurface" type="xs:anyType" abstract="true"/>

The class InteriorWallSurface must only be used in the LOD4 interior bridge model for modelling the visible

surfaces of the bridge room walls.

CeilingSurfaceType, CeilingSurface

<xs:complexType name="CeilingSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfCeilingSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="CeilingSurface" type="CeilingSurfaceType" substitutionGroup="_BoundarySurface"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfCeilingSurface" type="xs:anyType" abstract="true"/>

The class CeilingSurface must only be used in the LOD4 interior bridge model for modelling the ceiling of a

bridge room.

10.5.4 Openings

AbstractOpeningType, _Opening

<xs:complexType name="AbstractOpeningType" abstract="true">
 <xs:complexContent>

110 Copyright © 2012 Open Geospatial Consortium.

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfOpening" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="_Opening" type="AbstractOpeningType" abstract="true" substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfOpening" type="xs:anyType" abstract="true"/>

The class _Opening is the abstract base class for semantically describing openings like doors or windows in

outer or inner boundary surfaces like walls and roofs. Openings only exist in models of LOD3 or LOD4. Each

_Opening is associated with a gml:MultiSurface geometry. Alternatively, the geometry may be given as Implic-

itGeometry object. Following the concept of ImplicitGeometry the geometry of a prototype opening is stored

only once in a local coordinate system and referenced by other opening features (see chapter 8.2).

WindowType, Window

<xs:complexType name="WindowType">

 <xs:complexContent>

 <xs:extension base="AbstractOpeningType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfWindow" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="Window" type="WindowType" substitutionGroup="_Opening"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfWindow" type="xs:anyType" abstract="true"/>

The class Window is used for modelling windows in the exterior shell of a bridge, or hatches between adjacent

rooms. The formal difference between the classes Window and Door is that ï in normal cases ï Windows are not

specifically intended for the transit of people or vehicles.

DoorType, Door

<xs:complexType name="DoorType">

 <xs:complexContent>

 <xs:extension base="AbstractOpeningType">
 <xs:sequence>

 <xs:element name="address" type="core:AddressPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfDoor" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="Door" type="DoorType" substitutionGroup="_Opening"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfDoor" type="xs:anyType" abstract="true"/>

The class Door is used for modelling doors in the exterior shell of a bridge, or between adjacent rooms. Doors

can be used by people to enter or leave a bridge or room. In contrast to a ClosureSurface a door may be closed,

blocking the transit of people. A Door may be assigned zero or more addresses. The corresponding Address-

PropertyType is defined within the CityGML core module (cf. chapter 10.1.4).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 111

10.5.5 Bridge interior

The classes BridgeRoom, IntBridgeInstallation and BridgeFurniture allow for the representation of the bridge

interior. They are designed in analogy to the classes Room, IntBuildingInstallation and BuildingFurniture of the

building module and share the same meaning. The bridge interior can only be modeled in LOD4.

BridgeRoomType, BridgeRoom

<xs:complexType name="BridgeRoomType">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="interiorFurniture" type="InteriorFurniturePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="bridgeRoomInstallation" type="IntBridgeInstallationPropertyType" minOccurs="0"
 maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfBridgeRoom" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="BridgeRoom" type="BridgeRoomType" substitutionGroup="core:_CityObject"/>

<!-- === -->
<xs:element name="_GenericApplicationPropertyOfBridgeRoom" type="xs:anyType" abstract="true"/>

A BridgeRoom is a semantic object for modelling the free space inside a bridge and should be uniquely related to

exactly one bridge or bridge part object. It should be closed (if necessary by using ClosureSurfaces) and the

geometry normally will be described by a solid (lod4Solid). However, if the topological correctness of the

boundary cannot be guaranteed, the geometry can alternatively be given as a MultiSurface (lod4MultiSurface).

The surface normals of the outer shell of a GML solid must point outwards. This is important to consider when

BridgeRoom surfaces should be assigned Appearances. In this case, textures and colors must be placed on the

backside of the corresponding surfaces in order to be visible from the inside of the room.

In addition to the geometrical representation, different parts of the visible surface of a room can be modelled by

specialised BoundarySurfaces (FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface; cf.

chapter 10.5.3).

BridgeFurnitureType, BridgeFurniture

<xs:complexType name="BridgeFurnitureType">
 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>
 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>

 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfBridgeFurniture" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="BridgeFurniture" type="BridgeFurnitureType" substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfBridgeFurniture" type="xs:anyType" abstract="true"/>

BridgeRooms may have BridgeFurnitures and IntBridgeInstallations. A BridgeFurniture is a movable part of a

room, such as a chair or furniture. A BridgeFurniture object should be uniquely related to exactly one room

112 Copyright © 2012 Open Geospatial Consortium.

object. Its geometry may be represented by an explicit geometry or an ImplicitGeometry object. Following the

concept of ImplicitGeometry the geometry of a prototype bridge furniture is stored only once in a local coordi-

nate system and referenced by other bridge furniture features (see chapter 8.2).

IntBridgeInstallationType, IntBridgeInstallation

 <xs:complexType name="IntBridgeInstallationType">

 <xs:complexContent>
 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>
 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod4Geometry" type="gml:GeometryPropertyType" minOccurs="0"/>
 <xs:element name="lod4ImplicitRepresentation" type="core:ImplicitRepresentationPropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundarySurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfIntBridgeInstallation" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <!-- === -->

 <xs:element name="IntBridgeInstallation" type="IntBridgeInstallationType" substitutionGroup="core:_CityObject"/>
 <!-- === -->

 <xs:element name="_GenericApplicationPropertyOfIntBridgeInstallation" type="xs:anyType" abstract="true"/>

An IntBridgeInstallation is an object inside a bridge with a specialised function or semantic meaning. In contrast

to BridgeFurniture, IntBridgeInstallations are permanently attached to the bridge structure and cannot be moved.

Examples for IntBridgeInstallations are stairways, railings and heaters. Objects of the class IntBridgeInstallation

can either be associated with a room (class BridgeRoom), or with the complete bridge / bridge part (class

_AbstractBridge, cf. chapter 10.5.1). However, they should be uniquely related to exactly one room or one

bridge / bridge part object. An IntBridgeInstallation optionally has attributes class, function and usage. The

attribute class, which can only occur once, represents a general classification of the internal bridge component.

With the attributes function and usage, nominal and real functions of a bridge installation can be described. For

all three attributes the list of feasible values can be specified in a code list. For the geometrical representation of

an IntBridgeInstallation, an arbitrary geometry object from the GML subset shown in Fig. 9 can be used. Alter-

natively, the geometry may be given as ImplicitGeometry object. Following the concept of ImplicitGeometry the

geometry of a prototype interior bridge installation is stored only once in a local coordinate system and refer-

enced by other interior bridge installation features (see chapter 8.2). The visible surfaces of an interior bridge

installation can be semantically classified using the concept of boundary surfaces (cf. 10.5.3).

10.5.6 Examples

The bridge of Rees crossing the Rhine in Germany has three bridge parts which are separated by pylons. Fig. 51

(left) depicts the Rees bridge model containing one Bridge feature which consists of three BridgePart features.

The pylons, which are structurally essential, are represented by BridgeConstructionElements. On the top of the

pylons, four lamps are located which are modeled as BridgeInstallation features (cf. right part of Fig. 51).

Fig. 51: The bridge of Rees, consisting of a Bridge feature and three BridgePart features (left). The bridge contains
BridgeConstructionElement and BridgeInstallation features (right).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 113

In the following Fig. 52, the main part of the bridge of Rees is shown as photograph on the left side (source:

Harald Halfpapp), and the corresponding part of the LOD2 bridge model is depicted on the the right side (source:

District of Recklinghausen / KIT).

Fig. 52: The bridge of Rees (left photo (source: Harald Halfpapp); right LOD2 model (source: District of Recklinghausen / KIT)).

There are two bridges crossing the river Rhine at Karlsruhe, Germany. The first one is a two track railway bridge

constructed as a truss bridge (cf. Fig. 53 front). The second one is a four lane highway bridge constructed as a

cable-stayed bridge (cf. Fig. 53 background).

Fig. 53: Bridge over the river Rhine at Karlsruhe (left a photo, right the 3D CityGML model) (source: Karlsruhe Institute of Technology

(KIT), courtesy of City of Karlsruhe).

In CityGML both bridges are modeled as single Bridge object with BridgeConstructionElements and BridgeIn-

stallations. The construction elements of the cable stayed bridge are the footings on both river sides and in the

middle of the river, as well as the cables and the pylon. The construction elements of the truss bridge are the

footings and the truss itself. Both bridges have several railings which are modeled as BridgeInstallation.

The bridge ñOberbaumbr¿ckeò shown in Fig. 54 is located in the centre of Berlin crossing the river Spree and

serves as example for bridges having interior rooms. The real-world bridge is depicted in the left part of Fig. 54,

whereas the corresponding CityGML model is shown on the right. The outer geometry of the bridge is modeled

as gml:MultiSurface element (lod4MultiSurface property) and is assigned photorealistic textures. Additionally,

the interior rooms located in both bridge towers are represented as BridgeRoom objects with solid geometries

(gml:Solid assigned through the lod4Solid property). Due to its high geometric accuracy and the representation

of the interior structures of both bridge towers, the model is classified as LOD4.

114 Copyright © 2012 Open Geospatial Consortium.

Fig. 54: The bridgeñOberbaumbrückeò in Berlin represented as bridge model in LOD4 (left a photo, right the 3D CityGML model) (source:

Berlin Senate of Business, Technology and Women; Business Location Center, Berlin; Technische Universität Berlin; Karlsruhe Institute of

Technology (KIT)).

10.5.7 Code lists

The attributes class, function, and usage of the features _AbstractBridge, BridgeConstructionElement, BridgeIn-

stallation, BridgeRoom, BridgeFurniture and IntBridgeInstallation are specified as gml:CodeType. The values of

these properties can be enumerated in code lists. Proposals for corresponding code lists can be found in annex

C.3.

10.5.8 Conformance requirements

Base requirements

1. If a bridge only consists of one (homogeneous) part, it shall be represented by the element Bridge.

However, if a bridge is composed of individual structural segments, it shall be modelled as a Bridge el-

ement having one or more additional BridgePart elements. Only the geometry and non-spatial proper-

ties of the main part of the bridge should be represented within the aggregating Bridge element.

Usage restriction of bridge model components according to different LODs

2. The lodXSolid and lodXMultiSurface, X Í [1..4], properties (gml:SolidPropertyType resp.

gml:MultiSurfacePropertyType) of _AbstractBridge may be used to geometrically represent the exte-

rior shell of a bridge (as volume or surface model) within each LOD. For LOD1, either lod1Solid or

lod1MultiSurface must be used, but not both. Starting from LOD2, both properties may be modelled in-

dividually and complementary.

3. Starting from LOD2, the exterior shell of an _AbstractBridge may be semantically decomposed into

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

_AbstractBridge. Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloor-

Surface and ClosureSurface as subclasses of _BoundarySurface are allowed. The boundedBy property

(not to be confused with the gml:boundedBy property) shall not be used if the bridge is only represented

in LOD1.

If the exterior shell is represented by _BoundarySurface elements, an additional geometric representa-

tion as volume or surface model using the lodXSolid and lodXMultiSurface, X Í [2..4], properties shall

not explicitly define the geometry, but has to reference the according components of the

gml:MultiSurface element of _BoundarySurface within each LOD using the XLink concept of GML

3.1.1.

4. Starting from LOD2, curve parts of the bridge shell may be represented using the lodXMultiCurve, X Í

[2..4], property of _AbstractBridge. This property shall not be used if the bridge is only represented in

LOD1.

5. Starting from LOD1, the outerBridgeConstruction property (type: BridgeConstructionElementProper-

tyType) of _AbstractBridge may be used to model BridgeConstructionElement elements. BridgeCon-

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 115

structionElement elements shall only be used to represent outer characteristics of a bridge which do not

have the significance of bridge parts and are essential from a structural point of view.

6. Starting from LOD2, the geometry of BridgeConstructionElement elements may be semantically classi-

fied by _BoundarySurface elements using the boundedBy property (type: BoundarySurfaceProperty-

Type) of BridgeConstructionElement. The boundedBy property (not to be confused with the

gml:boundedBy property) shall not be used if the bridge construction element is only represented in

LOD1.

7. Starting from LOD2, the outerBridgeInstallation property (type: BridgeInstallationPropertyType) of

_AbstractBridge may be used to model BridgeInstallation elements. BridgeInstallation elements shall

only be used to represent outer characteristics of a bridge which do not have the significance of bridge

parts and are not essential from a structural point of view.

8. Starting from LOD2, the geometry of BridgeInstallation elements may be semantically classified by

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

BridgeInstallation. Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloor-

Surface and ClosureSurface as subclasses of _BoundarySurface are allowed.

9. Starting from LOD3, openings of _BoundarySurface elements may be modelled using the opening

property (type: OpeningPropertyType) of _BoundarySurface. This property shall not be used for

_BoundarySurface elements only represented in LOD2. Accordingly, the surface geometry representing

a _BoundarySurface in LOD2 must be simply connected.

The opening property of _BoundarySurface may contain or reference _Opening elements. If the geo-

metric location of an _Opening element topologically lies within a surface component of the

_BoundarySurface, the opening must also be represented as inner hole of that surface. The embrasure

surface of an _Opening element shall belong to the relevant adjacent _BoundarySurface.

10. Starting from LOD4, the interiorBridgeRoom property (type: InteriorBridgeRoomPropertyType) of

_AbstractBridge may be used to semantically model the free space inside the bridge by BridgeRoom el-

ements. This property shall not be used if the bridge is only represented in LOD 1 ï 3. The BridgeRoom

element may be geometrically represented as a surface or volume model, using its lod4Solid or

lod4MultiSurface property (gml:SolidPropertyType resp. gml:MultiSurfacePropertyType).

In addition, different parts of the visible surface of a bridge room may be modelled by thematic

_BoundarySurface elements. Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSur-

face as subclasses of _BoundarySurface are allowed. If the visible surface of a room is represented by

_BoundarySurface elements, an additional geometric representation as volume or surface model using

the lod4Solid and lod4MultiSurface property shall not explicitly define the geometry, but has to refer-

ence the according components of the gml:MultiSurface element of _BoundarySurface using the XLink

concept of GML 3.1.1.

11. Starting from LOD4, the interiorBridgeInstallation property (type: IntBridgeInstallationPropertyType)

of _AbstractBridge may be used to represent immovable objects inside the bridge that are permamently

attached to the bridge structure. The interiorBridgeInstallation property shall not be used if the bridge is

only represented in LOD 1 ï 3. Furthermore, the interiorBridgeInstallation property shall only be used

if the object cannot be associated with a BridgeRoom element. In the latter case, the bridgeRoomInstal-

lation property (type: IntBridgeInstallationPropertyType) of the corresponding BridgeRoom element

shall be used to represent the object.

12. Starting from LOD4, the geometry of IntBridgeInstallation elements may be semantically classified by

_BoundarySurface elements using the boundedBy property (type: BoundarySurfacePropertyType) of

IntBridgeInstallation. Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface as

subclasses of _BoundarySurface are allowed.

Referential integrity

13. The boundedBy property (type: BoundarySurfacePropertyType) of the element _AbstractBridge may

contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface ele-

ment using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

116 Copyright © 2012 Open Geospatial Consortium.

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface and Clo-

sureSurface elements are allowed to be encapsulated or referenced by the boundedBy property of

_AbstractBridge.

14. The outerBridgeConstruction property (type: BridgeConstructionElementPropertyType) of the element

_AbstractBridge may contain a BridgeConstructionElement element inline or an XLink reference to a

remote BridgeConstructionElement element using the XLink concept of GML 3.1.1. In the latter case,

the xlink:href attribute of the outerBridgeConstruction property may only point to a remote BridgeCon-

structionElement element (where remote BridgeConstructionElement elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

15. The outerBridgeInstallation property (type: BridgeInstallationPropertyType) of the element

_AbstractBridge may contain a BridgeInstallation element inline or an XLink reference to a remote

BridgeInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href at-

tribute of the outerBridgeInstallation property may only point to a remote BridgeInstallation element

(where remote BridgeInstallation elements are located in another document or elsewhere in the same

document). Either the contained element or the reference must be given, but neither both nor none.

16. The interiorBridgeInstallation property (type: IntBridgeInstallationPropertyType) of the element

_AbstractBridge may contain an IntBridgeInstallation element inline or an XLink reference to a remote

IntBridgeInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href

attribute of the interiorBridgeInstallation property may only point to a remote IntBridgeInstallation el-

ement (where remote IntBridgeInstallation elements are located in another document or elsewhere in

the same document). Either the contained element or the reference must be given, but neither both nor

none.

17. The interiorBridgeRoom property (type: InteriorBridgeRoomPropertyType) of the element

_AbstractBridge may contain a BridgeRoom element inline or an XLink reference to a remote

BridgeRoom element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute

of the interiorBridgeRoom property may only point to a remote BridgeRoom element (where remote

BridgeRoom elements are located in another document or elsewhere in the same document). Either the

contained element or the reference must be given, but neither both nor none.

18. The consistsOfBridgePart property (type: BridgePartPropertyType) of the element _AbstractBridge

may contain a BridgePart element inline or an XLink reference to a remote BridgePart element using

the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the consistsOfBridgePart

property may only point to a remote BridgePart element (where remote BridgePart elements are locat-

ed in another document or elsewhere in the same document). Either the contained element or the refer-

ence must be given, but neither both nor none.

19. The address property (type: core:AddressPropertyType) of the element _AbstractBridge may contain an

core:Address element inline or an XLink reference to a remote core:Address element using the XLink

concept of GML 3.1.1. In the latter case, the xlink:href attribute of the address property may only point

to a remote core:Address element (where remote core:Address elements are located in another docu-

ment or elsewhere in the same document). Either the contained element or the reference must be given,

but neither both nor none.

20. The opening property (type: OpeningPropertyType) of the element _BoundarySurface may contain an

_Opening element inline or an XLink reference to a remote _Opening element using the XLink concept

of GML 3.1.1. In the latter case, the xlink:href attribute of the opening property may only point to a re-

mote _Opening element (where remote _Opening elements are located in another document or else-

where in the same document). Either the contained element or the reference must be given, but neither

both nor none.

21. The address property (type: core:AddressPropertyType) of the element Door may contain an

core:Address element inline or an XLink reference to a remote core:Address element using the XLink

concept of GML 3.1.1. In the latter case, the xlink:href attribute of the address property may only point

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 117

to a remote core:Address element (where remote core:Address elements are located in another docu-

ment or elsewhere in the same document). Either the contained element or the reference must be given,

but neither both nor none.

22. The boundedBy property (type: BoundarySurfacePropertyType) of the element BridgeConstruc-

tionElement may contain a _BoundarySurface element inline or an XLink reference to a remote

_BoundarySurface element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href at-

tribute of the boundedBy property may only point to a remote _BoundarySurface element (where re-

mote _BoundarySurface elements are located in another document or elsewhere in the same document).

Either the contained element or the reference must be given, but neither both nor none.

23. The boundedBy property (type: BoundarySurfacePropertyType) of the element BridgeInstallation may

contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface ele-

ment using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface and Clo-

sureSurface elements are allowed to be encapsulated or referenced by the boundedBy property of

BridgeInstallation.

24. The boundedBy property (type: BoundarySurfacePropertyType) of the element IntBridgeInstallation

may contain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface

element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the bound-

edBy property may only point to a remote _BoundarySurface element (where remote _BoundarySurface

elements are located in another document or elsewhere in the same document). Either the contained el-

ement or the reference must be given, but neither both nor none.

Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface elements are allowed to

be encapsulated or referenced by the boundedBy property of IntBridgeInstallation.

25. The boundedBy property (type: BoundarySurfacePropertyType) of the element BridgeRoom may con-

tain a _BoundarySurface element inline or an XLink reference to a remote _BoundarySurface element

using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the boundedBy

property may only point to a remote _BoundarySurface element (where remote _BoundarySurface ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

Only FloorSurface, CeilingSurface, InteriorWallSurface, and ClosureSurface elements are allowed to

be encapsulated or referenced by the boundedBy property of BridgeRoom.

26. The interiorFurniture property (type: InteriorFurniturePropertyType) of the element BridgeRoom may

contain an BridgeFurniture element inline or an XLink reference to a remote BridgeFurniture element

using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the interiorFurni-

ture property may only point to a remote BridgeFurniture element (where remote BridgeFurniture ele-

ments are located in another document or elsewhere in the same document). Either the contained ele-

ment or the reference must be given, but neither both nor none.

27. The bridgeRoomInstallation property (type: IntBridgeInstallationPropertyType) of the element

BridgeRoom may contain an IntBridgeInstallation element inline or an XLink reference to a remote

IntBridgeInstallation element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href

attribute of the bridgeRoomInstallation property may only point to a remote IntBridgeInstallation ele-

ment (where remote IntBridgeInstallation elements are located in another document or elsewhere in the

same document). Either the contained element or the reference must be given, but neither both nor

none.

28. The lodXImplicitRepresentation, X Í [1..4], property (type: core:ImplicitRepresentationPropertyType)

of the element BridgeConstructionElement may contain a core:ImplicitGeometry element inline or an

XLink reference to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In

the latter case, the xlink:href attribute of the lodXImplicitRepresentation, X Í [1..4], property may only

118 Copyright © 2012 Open Geospatial Consortium.

point to a remote core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are

located in another document or elsewhere in the same document). Either the contained element or the

reference must be given, but neither both nor none.

29. The lodXImplicitRepresentation, X Í [2..4], property (type: core:ImplicitRepresentationPropertyType)

of the element BridgeInstallation may contain a core:ImplicitGeometry element inline or an XLink ref-

erence to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter

case, the xlink:href attribute of the lodXImplicitRepresentation, X Í [2..4], property may only point to a

remote core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in

another document or elsewhere in the same document). Either the contained element or the reference

must be given, but neither both nor none.

30. The lodXImplicitRepresentation, X Í [3..4], property (type: core:ImplicitRepresentationPropertyType)

of the element _Opening may contain a core:ImplicitGeometry element inline or an XLink reference to

a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the lodXImplicitRepresentation, X Í [3..4], property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

31. The lod4ImplicitRepresentation property (type: core:ImplicitRepresentationPropertyType) of the ele-

ment IntBridgeInstallation may contain a core:ImplicitGeometry element inline or an XLink reference

to a remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case,

the xlink:href attribute of the lod4ImplicitRepresentation property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

32. The lod4ImplicitRepresentation property (type: core:ImplicitRepresentationPropertyType) of the ele-

ment BridgeFurniture may contain a core:ImplicitGeometry element inline or an XLink reference to a

remote core:ImplicitGeometry element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the lod4ImplicitRepresentation property may only point to a remote

core:ImplicitGeometry element (where remote core:ImplicitGeometry elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 119

10.6 Water bodies

Waters have always played an important role in urbanisation processes and cities were built preferably at rivers

and places where landfall seemed to be easy. Obviously, water is essential for human alimentation and sanita-

tion. Water bodies present the most economical way of transportation and are barriers at the same time, that

avoid instant access to other locations. Bridging waterways caused the first efforts of construction and resulted in

high-tech bridges of today. The landscapes of many cities are dominated by water, which directly relates to 3D

city models. Furthermore, water bodies are important for urban life as subject of recreation and possible hazards

as e.g. floods.

The distinct character of water bodies compared with the permanence of buildings, roadways, and terrain is

considered in this thematic model. Water bodies are dynamic surfaces. Tides occur regularly, but irregular events

predominate with respect to natural forces, for example flood events. The visible water surface changes in height

and its covered area with the necessity to model its semantics and geometry distinct from adjacent objects like

terrain or buildings.

This first modelling approach of water bodies fulfils the requirements of 3D city models. It does not inherit any

hydrological or other dynamic aspects. In these terms it does not claim to be complete. However, the semantic

and geometric description given here allows further enhancements of dynamics and conceptually different

descriptions. The water bodies model of CityGML is embraced by the thematic extension module WaterBody

(cf. chapter 7).

The water bodies model represents the thematic aspects and three-dimensional geometry of rivers, canals, lakes,

and basins. In the LOD 2-4 water bodies are bounded by distinct thematic surfaces. These surfaces are the

obligatory WaterSurface, defined as the boundary between water and air, the optional WaterGroundSurface,

defined as the boundary between water and underground (e.g. DTM or floor of a 3D basin object), and zero or

more WaterClosureSurfaces, defined as virtual boundaries between different water bodies or between water and

the end of a modelled region (see Fig. 55). A dynamic element may be the WaterSurface to represent temporarily

changing situations of tidal flats.

Fig. 55: Illustration of a water body defined in CityGML (graphic: IGG Uni Bonn).

The UML diagram of the water body model is depicted in Fig. 56, for the XML schema definition see below and

annex A.13. Each WaterBody object may have the attributes class, function and usage whose possible values can

be enumerated in code lists (cf. chapter 10.6.3 and annex C.9). The attribute class defines the classification of the

object, e.g. lake, river, or fountain and can occur only once. The attribute function contains the purpose of the

object like, for example national waterway or public swimming, while the attribute usage defines the actual

usages, e.g. whether the water body is navigable. The latter two attributes can occur multiple times.

WaterBody is a subclass of _WaterObject and transitively of the root class _CityObject. The class _WaterObject

may be differentiated in further subclasses of water objects in the future. The geometrical representation of the

WaterBody varies through the different levels of detail. Since WaterBody is a subclass of _CityObject and hence

a feature, it inherits the attribute gml:name. The WaterBody can be differentiated semantically by the class

_WaterBoundarySurface. A _WaterBoundarySurface is a part of the water bodyôs exterior shell with a special

Water

WaterSurface

WaterGroundSurface

WaterClosure
Surface

WaterBody

120 Copyright © 2012 Open Geospatial Consortium.

function like WaterSurface, WaterGroundSurface or WaterClosureSurface. As with any _CityObject, WaterBody

objects as well as WaterSurface, WaterGroundSurface, and WaterClosureSurface may be assigned ExternalRef-

erences (cf. chapter 6.7) and may be augmented by generic attributes using CityGMLôs Generics module (cf.

chapter 10.12).

The optional attribute waterLevel of a WaterSurface can be used to describe the water level, for which the given

3D surface geometry was acquired. This is especially important when the water body is influenced by the tide.

The allowed values can be defined in a corresponding code list.

Fig. 56: UML diagram of the water body model in CityGML. Prefixes are used to indicate XML namespaces associated with model ele-

ments. Element names without a prefix are defined within the CityGML WaterBody module.

Both LOD0 and LOD1 represent a low level of illustration and high grade of generalisation. Here the rivers are

modelled as MultiCurve geometry and brooks are omitted. Seas, oceans and lakes with significant extent are

represented as a MultiSurface (Fig. 56). Every WaterBody may be assigned a combination of geometries of

different types. Linear water bodies are represented as a network of 3D curves. Each curve is composed of

straight line segments, where the line orientation denotes the flow direction (water flows from the first point of a

curve, e.g. a gml:LineString, to the last). Areal objects like lakes or seas are represented by 3D surface geome-

tries of the water surface.

Starting from LOD1 water bodies may also be modelled as water filled volumes represented by Solids. If a water

body is represented by a gml:Solid in LOD2 or higher, the surface geometries of the corresponding thematic

WaterClosureSurface, WaterGroundSurface, and WaterSurface objects must coincide with the exterior shell of

the gml:Solid. This can be ensured, if for each LOD X the respective lodXSolid representation (where X is

between 2 and 4) does not redundantly define the geometry, but instead references the corresponding polygons

(using GML3ôs XLink mechanism) of the lodXSurface elements (where X is between 2 and 4) of Water-

ClosureSurface, WaterGroundSurface, and WaterSurface.

LOD2 to LOD4 demand a higher grade of detail and therefore any WaterBody can be outlined by thematic

surfaces or a solid composed of the surrounding thematic surfaces.

Every object of the class WaterSurface, WaterClosureSurface, and WaterGroundSurface must have at least one

associated surface geometry. This means, that every WaterSurface, WaterClosureSurface, and WaterGroundSur-

face feature within a CityGML instance document must contain at least one of the following properties:

lod2Surface, lod3Surface, lod4Surface.

The water body model implicitly includes the concept of TerrainIntersectionCurves (TIC), e.g. to specify the

exact intersection of the DTM with the 3D geometry of a WaterBody or to adjust a WaterBody or WaterSurface

to the surrounding DTM (see chapter 6.5). The rings defining the WaterSurface polygons implicitly delineate the

intersection of the water body with the terrain or basin.

XML namespace

The XML namespace of the CityGML WaterBody module is identified by the Uniform Resource Identifier

(URI) http://www.opengis.net/citygml/waterbody/2.0. Within the XML Schema definition of the WaterBody

module, this URI is also used to identify the default namespace.

<<Feature>>

core::_CityObject

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

WaterBody

<<Feature>>

_WaterBoundarySurface

+waterLevel : gml::CodeType [0..1]

<<Feature>>

WaterSurface<<Feature>>

WaterGroundSurface

<<Feature>>

WaterClosureSurface

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::MultiCurve

<<Feature>>

_WaterObject
<<Geometry>>

gml::MultiSurface

<<Geometry>>

gml::_Surface
0..1

*lod1Solid
* lod3Surface

*lod3Solid

0..1

* lod2Surface

* lod4Surface

*lod0MultiCurve

*lod2Solid

*lod4Solid

**

boundedBy

*

lod1MultiSurface

0..1

*

lod0MultiSurface

0..1

*

lod1MultiCurve

Visual Paradigm for UML Standard Edition(Technical University Berlin)

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 121

10.6.1 Water body

AbstractWaterObjectType, _WaterObject

<xs:complexType name="AbstractWaterObjectType" abstract="true">

 <xs:complexContent>

 <xs:extension base="core:AbstractCityObjectType">
 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfWaterObject" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:extension>

 </xs:complexContent>

</xs:complexType>
<!-- === -->

<xs:element name="_WaterObject" type="AbstractWaterObjectType" abstract="true" substitutionGroup="core:_CityObject"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWaterObject" type="xs:anyType" abstract="true"/>

WaterBodyType, WaterBody

<xs:complexType name="WaterBodyType">

 <xs:complexContent>
 <xs:extension base="AbstractWaterObjectType">

 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>
 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod0MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>
 <xs:element name="lod0MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod1MultiCurve" type="gml:MultiCurvePropertyType" minOccurs="0"/>

 <xs:element name="lod1MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod1Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod2Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="lod3Solid" type="gml:SolidPropertyType" minOccurs="0"/>
 <xs:element name="lod4Solid" type="gml:SolidPropertyType" minOccurs="0"/>

 <xs:element name="boundedBy" type="BoundedByWaterSurfacePropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="_GenericApplicationPropertyOfWaterBody" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="WaterBody" type="WaterBodyType" substitutionGroup="_WaterObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWaterBody" type="xs:anyType" abstract="true"/>

10.6.2 Boundary surfaces

With respect to different functions and characteristics three boundary classes for water are defined to build a

solid or composite surface geometry (Fig. 55).

1. Boundary class ñAir to Waterò. The WaterSurface is mandatory to the model and usually is registered using

photogrammetric analysis or mapping exploration. The representation may vary due to tidal flats or chang-

ing water levels, which can be reflected by including different static water surfaces having different wa-

terLevels (gml:CodeType), as for example highest flooding event, mean sea level, or minimum water level.

This offers the opportunity to describe significant water surfaces due to levels that are important for certain

representations e.g. in tidal zones.

2. Boundary class ñWater to Groundò. The WaterGroundSurface may be known by sonar exploration or other

depth measurements. Also part of the ground surface is the boundary ñWater to Constructionò. The ground

surface might be identical to the underwater terrain model, but also describes the contour to other underwa-

ter objects. The usefulness of this concept arises from the existence of water defence constructions like

sluices, sills, flood barrage or tidal power stations. The use of WaterGroundSurface as boundary layer to

man-made constructions is relevant in urban situations, where such objects may enclose the modeled water

body completely, for example fountains and swimming pools. The WaterSurface objects together with the

WaterGroundSurface objects enclose the WaterBody as a volume.

122 Copyright © 2012 Open Geospatial Consortium.

3. Boundary class ñWater to Waterò. The WaterClosureSurface is an optional feature that comes in use when

the union of the WaterSurfaces and WaterGroundSurfaces of a water body does not define a closed volume.

The WaterClosureSurface is then used to complete the enclosure of water volumes and to separate water

volumes from those where only the surface is known. This might occur, where the cross section and ground

surface of rivers is partly available during its course.

_WaterBoundarySurfaces should only be included as parts of corresponding WaterBody objects and should not

be used as stand-alone objects within a CityGML model.

AbstractWaterBoundarySurfaceType, _WaterBoundarySurface

<xs:complexType name="AbstractWaterBoundarySurfaceType" abstract="true">

 <xs:complexContent>
 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element name="lod2Surface" type="gml:SurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod3Surface" type="gml:SurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4Surface" type="gml:SurfacePropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfWaterBoundarySurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="_WaterBoundarySurface" type="AbstractWaterBoundarySurfaceType" abstract="true"
 substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWaterBoundarySurface" type="xs:anyType" abstract="true"/>

WaterSurfaceType, WaterSurface

<xs:complexType name="WaterSurfaceType">

 <xs:complexContent>

 <xs:extension base="AbstractWaterBoundarySurfaceType">
 <xs:sequence>

 <xs:element name="waterLevel" type="gml:CodeType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfWaterSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="WaterSurface" type="WaterSurfaceType" substitutionGroup="_WaterBoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWaterSurface" type="xs:anyType" abstract="true"/>

WaterGroundSurfaceType, WaterGroundSurface

<xs:complexType name="WaterGroundSurfaceType">
 <xs:complexContent>

 <xs:extension base="AbstractWaterBoundarySurfaceType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfWaterGroundSurface" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="WaterGroundSurface" type="WaterGroundSurfaceType" substitutionGroup="_WaterBoundarySurface"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWaterGroundSurface" type="xs:anyType" abstract="true"/>

WaterClosureSurfaceType, WaterClosureSurface

<xs:complexType name="WaterClosureSurfaceType">

 <xs:complexContent>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 123

 <xs:extension base="AbstractWaterBoundarySurfaceType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfWaterClosureSurface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="WaterClosureSurface" type="WaterClosureSurfaceType" substitutionGroup="_WaterBoundarySurface"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfWaterClosureSurface" type="xs:anyType" abstract="true"/>

10.6.3 Code lists

The attributes class, function, and usage of the feature WaterBody as well as the attribute waterLevel of the

feature WaterSurface are specified as gml:CodeType. The values of these properties can be enumerated in code

lists. Proposals for corresponding code lists can be found in annex C.9.

10.6.4 Conformance requirements

Base requirements

1. For LOD0 and LOD1, the geometry of a WaterBody may be modelled as a linear network using

gml:MultiCurve geometry elements. In that case, each gml:MultiCurve shall be composed of straight

line segements, where the line orientation denotes the flow direction. The flow direction is from the first

point of a line segment to its last point.

2. Starting from LOD2, the exterior shell of a WaterBody may be semantically decomposed into

_WaterBoundarySurface elements using the boundedBy property (type: BoundedByWaterSurfaceProp-

ertyType) of WaterBody. The boundedBy property shall not be used if the water body is only represented

in lower LODs.

If the exterior shell is represented by _WaterBoundarySurface elements, an additional geometric repre-

sentation as volume model using the lodXSolid, X Í [2..4], property of WaterBody shall not explicitly

define the geometry, but has to reference the according gml:_Surface elements of the

_WaterBoundarySurface objects within each LOD using the XLink concept of GML 3.1.1.

3. Each _WaterBoundarySurface element must have at least one associated surface geometry given by the

lodXSurface, X Í [2..4], properties of _WaterBoundarySurface.

4. _WaterBoundarySurface elements shall only be included as parts of corresponding WaterBody ele-

ments. They may not be given as stand-alone city objects within a CityGML model.

Referential integrity

5. The boundedBy property (type: BoundedByWaterSurfacePropertyType) of the element WaterBody may

contain a _WaterBoundarySurface element inline or an XLink reference to a remote

_WaterBoundarySurface element using the XLink concept of GML 3.1.1. In the latter case, the

xlink:href attribute of the boundedBy property may only point to a remote _WaterBoundarySurface el-

ement (where remote _WaterBoundarySurface elements are located in another document or elsewhere

in the same document). Either the contained element or the reference must be given, but neither both

nor none.

124 Copyright © 2012 Open Geospatial Consortium.

10.7 Transportation objects

The transportation model of CityGML is a multi-functional, multi-scale model focusing on thematic and func-

tional as well as on geometrical/topological aspects. Transportation features are represented as a linear network

in LOD0. Starting from LOD1, all transportation features are geometrically described by 3D surfaces. The areal

modelling of transportation features allows for the application of geometric route planning algorithms. This can

be useful to determine restrictions and manoeuvres required along a transportation route. This information can

also be employed for trajectory planning of mobile robots in the real world or the automatic placement of avatars

(virtual people) or vehicle models in 3D visualisations and training simulators. The transportation model of

CityGML is provided by the thematic extension module Transportation (cf. chapter 7).

The main class is TransportationComplex, which represents, for example, a road, a track, a railway, or a square.

Fig. 57 illustrates the four different thematic classes.

é.. é.. é..

Fig. 57: Representations of TransportationComplex (from left to right: examples of road, track, rail, and square)

(source: Rheinmetall Defence Electronics).

A TransportationComplex is composed of the parts TrafficArea and AuxiliaryTrafficArea. Fig. 58 depicts an

example for a LOD2 TransportationComplex configuration within a virtual 3D city model. The Road consists of

several TrafficAreas for the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised

flower beds.

Fig. 58: Example for the representation of a TransportationComplex in LOD2 in CityGML: a road, which is the

aggregation of TrafficAreas and AuxiliaryTrafficAreas (source: City of Solingen, IGG Uni Bonn).

Fig. 59 depicts the UML diagram of the transportation model, for the XML schema definition see annex A.10.

Traffic
area

Auxiliary
traffic
areas

Traffic
area

Traffic
area

Road

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 125

Fig. 59: UML diagram of the transportation model in CityGML. Prefixes are used to indicate XML namespaces associated with model

elements. Element names without a prefix are defined within the CityGML Transportation module.

The road itself is represented as a TransportationComplex, which is further subdivided into TrafficAreas and

AuxiliaryTrafficAreas. The TrafficAreas are those elements, which are important in terms of traffic usage, like

car driving lanes, pedestrian zones and cycle lanes. The AuxiliaryTrafficAreas are describing further elements of

the road, like kerbstones, middle lanes, and green areas.

TransportationComplex objects can be thematically differentiated using the subclasses Track, Road, Railway,

and Square. Every TransportationComplex has the attributes class, function and usage whose possible values

can be enumerated in code lists (chapter 10.7.4 and annex C.8). The attribute class describes the classification of

the object, function describes the purpose of the object, for example national motorway, country road, or airport,

while the attribute usage can be used, if the actual usage differs from the function. The attributes function and

usage can occur multiple times.

In addition both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function, usage, and sur-

faceMaterial. The attribute class describes the classification of the object. For TrafficArea, function describes, if

the object for example may be a car driving lane, a pedestrian zones, or a cycle lane, while the usage attribute

indicates which modes of transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute sur-

faceMaterial specifies the type of pavement and may also be used for AuxiliaryTrafficAreas (e.g. asphalt, con-

crete, gravel, soil, rail, grass). The function attribute of the AuxiliaryTrafficArea defines, for example kerbstones,

middle lanes, or green areas. The possible values can also be specified in code lists.

The shape of each traffic area is defined by a surface geometry. Additional metadata may be defined by using

attributes from pre-defined catalogues. This affects the class, function and usage of each traffic area as well as its

surface material. The attribute catalogues may be customer- or country-specific. The following tables show

examples for various kinds of TrafficArea:

Example: Country road Motorway entry

TransportationComplex ï Function road road

TrafficArea ï Usage car, truck, bus, taxi, motorcycle car, truck, bus, taxi, motorcycle

TrafficArea ï Function driving lane motorway_entry

TrafficArea ï SurfaceMaterial asphalt concrete

Example: Runway of an airport Apron of an airport

TransportationComplex ï Function road apron

TrafficArea ï Usage aeroplane aeroplane, car, truck, bus, pedestrian

TrafficArea ï Function airport ï runway airport ï apron

TrafficArea ï SurfaceMaterial concrete concrete

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

TransportationComplex

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+surfaceMaterial : gml::CodeType [0..1]

<<Feature>>

TrafficArea

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+surfaceMaterial : gml::CodeType [0..1]

<<Feature>>

AuxiliaryTrafficArea

<<Feature>>

Track

<<Feature>>

Road

<<Feature>>

Railway

<<Feature>>

Square

<<Geometry>>

gml::GeometricComplex

<<Feature>>

_TransportationObject

*

lod4MultiSurface

* *

trafficArea

*

lod4MultiSurface

0..1

*

lod2MultiSurface

*

lod4MultiSurface

*

lod3MultiSurface
0..1

*

lod2MultiSurface

*

lod2MultiSurface

*

lod3MultiSurface

*

lod3MultiSurface

**

auxiliaryTrafficArea

*

* lod0Network

0..1

*

lod1MultiSurface

Visual Paradigm for UML Standard Edition(Technical University Berlin)

126 Copyright © 2012 Open Geospatial Consortium.

TransportationComplex is a subclass of _TransportationObject and of the root class _CityObject. The geomet-

rical representation of the TransportationComplex varies through the different levels of detail. Since Transporta-

tionComplex is a subclass of _CityObject and hence a feature, it inherits the attribute gml:name. The street name

is also stored within the gml:name property of the Road feature.

In the coarsest LOD0 the transportation complexes are modelled by line objects establishing a linear network.

On this abstract level, path finding algorithms or similar analyses can be executed. It also can be used to generate

schematic drawings and visualisations of the transport network. Since this abstract definition of transportation

network does not contain explicit descriptions of the transportation objects, it may be task of the viewer applica-

tion to generate the graphical visualisation, for example by using a library with style-definitions (width, color

resp. texture) for each transportation object.

Starting from LOD1 a TransportationComplex provides an explicit surface geometry, reflecting the actual shape

of the object, not just its centerline. In LOD2 to LOD4, it is further subdivided thematically into TrafficAreas,

which are used by transportation, such as cars, trains, public transport, airplanes, bicycles or pedestrians and in

AuxiliaryTrafficAreas, which are of minor importance for transportation purposes, for example road markings,

green spaces or flower tubs. The different representations of a TransportationComplex for each LOD are illus-

trated in Fig. 60.

Fig. 60: TransportationComplex in LOD0, 1, and 2-4 (example shows part of a motorway) (source: Rheinmetall Defence Electronics).

In LOD0 areal transportation objects like squares should be modelled in the same way as in GDF, the ISO

standard for transportation networks, which is used in most car navigation systems. In GDF a square is typically

represented as a ring surrounding the place and to which the incident roads connect. CityGML does not cover

further functional aspects of transportation network models (e.g. speed limits) as it is intended to complement

and not replace existing standards like GDF. However, if specific functional aspects have to be associated with

CityGML transportation objects, generic attributes provided by CityGMLôs Generics module (cf. chapter 10.12)

can be used. Moreover, further objects of interest can be added from other information systems by the use of

ExternalReferences (see chapter 6.11). For example, GDF datasets, which provide additional information for car

navigation, can be used for simulation and visualisation of traffic flows. The values of the object attributes can

be augmented or replaced using the concept of dictionaries (see chapter 6.6). These directories may be country-

or user-specific (especially for country-specific road signs and signals).

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 127

Fig. 61: TransportationComplex in LOD 2-4: representation of a road with a complex cross-
section profile (example shows urban road) (source: Rheinmetall Defence Electronics).

The following example shows a complex urban crossing. The picture on the left is a screenshot of an editor

application for a training simulator, which allows the definition of road networks consisting of transportation

objects, external references, buildings and vegetation objects. On the right, the 3D representation of the defined

crossing is shown including all referenced static and dynamic models.

Fig. 62: Complex urban intersection (left: linear transportation network with surface descriptions and external references,

right: generated scene) (source: Rheinmetall Defence Electronics).

XML namespace

The XML namespace of the CityGML Transportation module is identified by the Uniform Resource Identifier

(URI) http://www.opengis.net/citygml/transportation/2.0. Within the XML Schema definition of the Transporta-

tion module, this URI is also used to identify the default namespace.

10.7.1 Transportation complex

AbstractTransportationObjectType, _TransportationObject

<xs:complexType name="AbstractTransportationObjectType" abstract="true">

 <xs:complexContent>

128 Copyright © 2012 Open Geospatial Consortium.

 <xs:extension base="core:AbstractCityObjectType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfTransportationObject" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="_TransportationObject" type="AbstractTransportationObjectType" abstract="true"
 substitutionGroup="core:_CityObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfTransportationObject" type="xs:anyType" abstract="true"/>

_TransportationObject represents the abstract superclass for transportation objects. Future extensions of the

CityGML transportation model shall be modelled as subclasses of this class.

TransportationComplexType, TransportationComplex

<xs:complexType name="TransportationComplexType">

 <xs:complexContent>

 <xs:extension base="AbstractTransportationObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="trafficArea" type="TrafficAreaPropertyType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="auxiliaryTrafficArea" type="AuxiliaryTrafficAreaPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod0Network" type="gml:GeometricComplexPropertyType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="lod1MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfTransportationComplex" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="TransportationComplex" type="TransportationComplexType" substitutionGroup="_TransportationObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfTransportationComplex" type="xs:anyType" abstract="true"/>

This type and element describe transportation complexes like roads or railways which may be aggregated from

different thematic components (traffic areas, e.g. pedestrian path, and auxiliary traffic areas). As a subclass of

_CityObject, TransportationComplex inherits all attributes and relations, in particular an id, names, external

references, and generalisation relations. Furthermore, it represents the superclass for thematically distinct types

of transportation complexes.

10.7.2 Subclasses of transportation complexes

TrackType, Track

<xs:complexType name="TrackType">

 <xs:complexContent>
 <xs:extension base="TransportationComplexType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfTrack" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="Track" type="TrackType" substitutionGroup="TransportationComplex"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfTrack" type="xs:anyType" abstract="true"/>

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 129

A Track is a small path mainly used by pedestrians. It is a subclass of TransportationComplex and thus inherits

all its attributes and relations.

RoadType, Road

<xs:complexType name="RoadType">
 <xs:complexContent>

 <xs:extension base="TransportationComplexType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfRoad" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="Road" type="RoadType" substitutionGroup="TransportationComplex"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfRoad" type="xs:anyType" abstract="true"/>

Road is intended to be used to represent transportation features that are mainly used by vehicles like cars, for

example streets, motorways, and country roads. It is a subclass of TransportationComplex and thus inherits all its

attributes and relations.

RailwayType, Railway

<xs:complexType name="RailwayType">
 <xs:complexContent>

 <xs:extension base="TransportationComplexType">

 <xs:sequence>
 <xs:element ref="_GenericApplicationPropertyOfRailway" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="Railway" type="RailwayType" substitutionGroup="TransportationComplex"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfRailway" type="xs:anyType" abstract="true"/>

Railway represents routes that are utilised by rail vehicles like trams or trains. It is a subclass of Transportation-

Complex and thus inherits all its attributes and relations.

SquareType, Square

<xs:complexType name="SquareType">

 <xs:complexContent>
 <xs:extension base="TransportationComplexType">

 <xs:sequence>

 <xs:element ref="_GenericApplicationPropertyOfSquare" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="Square" type="SquareType" substitutionGroup="TransportationComplex"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfSquare" type="xs:anyType" abstract="true"/>

A Square is an open area commonly found in cities (e.g. a plaza, market square). It is a subclass of Transporta-

tionComplex and thus inherits all its attributes and relations.

130 Copyright © 2012 Open Geospatial Consortium.

10.7.3 Subdivisions of transportation complexes

TrafficAreaType, TrafficArea

<xs:complexType name="TrafficAreaType">

 <xs:complexContent>

 <xs:extension base="AbstractTransportationObjectType">
 <xs:sequence>

 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="surfaceMaterial" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element ref="_GenericApplicationPropertyOfTrafficArea" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>
 </xs:complexContent>

</xs:complexType>

<!-- === -->
<xs:element name="TrafficArea" type="TrafficAreaType" substitutionGroup="_TransportationObject"/>

<!-- === -->

<xs:element name="_GenericApplicationPropertyOfTrafficArea" type="xs:anyType" abstract="true"/>

AuxiliaryTrafficAreaType, AuxiliaryTrafficArea

<xs:complexType name="AuxiliaryTrafficAreaType">
 <xs:complexContent>

 <xs:extension base="AbstractTransportationObjectType">

 <xs:sequence>
 <xs:element name="class" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="function" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="usage" type="gml:CodeType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="surfaceMaterial" type="gml:CodeType" minOccurs="0"/>

 <xs:element name="lod2MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element name="lod3MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>
 <xs:element name="lod4MultiSurface" type="gml:MultiSurfacePropertyType" minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfAuxiliaryTrafficArea" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>
</xs:complexType>

<!-- === -->

<xs:element name="AuxiliaryTrafficArea" type="AuxiliaryTrafficAreaType" substitutionGroup="_TransportationObject"/>
<!-- === -->

<xs:element name="_GenericApplicationPropertyOfAuxiliaryTrafficArea" type="xs:anyType" abstract="true"/>

10.7.4 Code lists

The attributes class, function, and usage of the features TransportationComplex, TrafficArea and AuxiliaryTraf-

ficArea as well as the attribute surfaceMaterial of the features TrafficArea and AuxiliaryTrafficArea are speci-

fied as gml:CodeType. The values of these properties can be enumerated in code lists. Proposals for correspond-

ing code lists can be found in annex C.8.

10.7.5 Conformance requirements

Base requirements

1. For LOD0, the geometry of a TransportationComplex shall be modelled using GML line objects repre-

senting the centerline of the transportation complex. The line objects shall establish a linear network.

Thus, the lod0Network property (type: gml:GeometricComplexPropertyType) of the element Transpor-

tationComplex may only contain or reference an appropriate curve geometry element.

2. Starting from LOD2, the trafficArea property (type: TrafficAreaPropertyType) as well as the auxilia-

ryTrafficArea property (type: AuxiliaryTrafficAreaPropertyType) of the element TransportationCom-

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 131

plex may be used. These properties shall not be used if the transportation complex is only represented in

lower LODs.

Referential integrity

3. The trafficArea property (type: TrafficAreaPropertyType) of the element TransportationComplex may

contain a TrafficArea element inline or an XLink reference to a remote TrafficArea element using the

XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute of the trafficArea property may

only point to a remote TrafficArea element (where remote TrafficArea elements are located in another

document or elsewhere in the same document). Either the contained element or the reference must be

given, but neither both nor none.

4. The auxiliaryTrafficArea property (type: TrafficAreaPropertyType) of the element TransportationCom-

plex may contain an AuxiliaryTrafficArea element inline or an XLink reference to a remote Auxilia-

ryTrafficArea element using the XLink concept of GML 3.1.1. In the latter case, the xlink:href attribute

of the auxiliaryTrafficArea property may only point to a remote AuxiliaryTrafficArea element (where

remote AuxiliaryTrafficArea elements are located in another document or elsewhere in the same docu-

ment). Either the contained element or the reference must be given, but neither both nor none.

132 Copyright © 2012 Open Geospatial Consortium.

10.8 Vegetation objects

Vegetation features are important components of a 3D city model, since they support the recognition of the

surrounding environment. By the analysis and visualisation of vegetation objects, statements on their distribu-

tion, structure and diversification can be made. Habitats can be analysed and impacts on the fauna can be de-

rived. The vegetation model may be used as a basis for simulations of, for example forest fire, urban aeration or

micro climate. The model could be used, for example to examine forest damage, to detect obstacles (e.g. con-

cerning air traffic) or to perform analysis tasks in the field of environmental protection. The vegetation model of

CityGML is defined by the thematic extension module Vegetation (cf. chapter 7).

The vegetation model of CityGML distinguishes between solitary vegetation objects like trees and vegetation

areas, which represent biotopes like forests or other plant communities (Fig. 63). Single vegetation objects are

modelled by the class SolitaryVegetationObject, whereas for areas filled with a specific vegetation the class

PlantCover is used. The geometry representation of a PlantCover feature may be a MultiSurface or a MultiSolid,

depending on the vertical extent of the vegetation. For example regarding forests, a MultiSolid representation

might be more appropriate. The UML diagram of the vegetation model is depicted in Fig. 64, for the XML

schema definition see below and annex A.12.

Fig. 63: Example for vegetation objects of the classes SolitaryVegetationObject and

PlantCover (graphic: District of Recklinghausen).

A SolitaryVegetationObject may have the attributes class, function, usage, species height, trunkDiameter and

crownDiameter. The attribute class contains the classification of the object or plant habit, e.g. tree, bush, grass,

and can occur only once (see chapter 10.8.4 and annex C.7). The attribute species defines the speciesô name, for

example ñAbies albaò, and can occur at most once (see chapter 10.8.4 and annex C.7). The optional attributes

function and usage denotes the intended respectively real purpose of the object, for example botanical monu-

ment, and can occur multiple times. The possible attribute values for class, species, function, and usage can be

provided in a code list. The attribute height contains the relative height of the object. The attributes crownDiame-

ter and trunkDiameter represent the plant crown and trunk diameter respectively. The trunk diameter is often

used in regulations of municipal cadastre (e.g. tree management rules).

A PlantCover feature may have the attributes class, function, usage and averageHeight. The plant community of

a PlantCover is represented by the attribute class. The values of this attribute can be specified in a code list (cf.

chapter 10.8.4 and annex C.7) whose values should not only describe one plant type or species, but denote a

typical mixture of plant types in a plant community. This information can be used in particular to generate

realistic 3D visualisations, where the PlantCover region is automatically, perhaps randomly, filled with a corre-

sponding mixture of 3D plant objects. The attributes function and usage indicate the intended respectively real

purpose of the object, for example national forest, and can occur multiple times. The attribute averageHeight

denotes the average relative vegetation height.

 OGC 12-019

Copyright © 2012 Open Geospatial Consortium. 133

Since both SolitaryVegetationObject and PlantCover are derived fom _CityObject, they inherit all attributes of a

city object, in particular a name (gml:name) and an ExternalReference to a corresponding object in an external

information system, which may contain botanical information from public environmental agencies (see chapter

6.7).

Fig. 64: UML diagram of vegetation objects in CityGML. Prefixes are used to indicate XML namespaces associated with model elements.

Element names without a prefix are defined within the CityGML Vegetation module.

The geometry of a SolitaryVegetationObject may be defined in LOD 1-4 explicitly by a GML geometry having

absolute coordinates, or prototypically by an ImplicitGeometry (cf. chapter 8.2). Solitary vegetation objects

probably are one of the most important features where implicit geometries are appropriate, since the shape of

most types of vegetation objects, such as trees of the same species, can be treated as identical in most cases.

Furthermore, season dependent appearances may by mapped using ImplicitGeometry. For visualisation purposes,

only the content of the library object defining the objectôs shape and appearance has to be swapped (cf. Fig. 65).

Fig. 65: Visualisation of a vegetation object in different seasons (source: District of Recklinghausen).

A SolitaryVegetationObject or a PlantCover may have a different geometry in each LOD. Whereas a

SolitaryVegetationObject is associated with the gml:_Geometry class representing an arbitrary GML geometry

(by the relation lodXGeometry, X Í [1..4]), a PlantCover is restricted to be either a gml:MultiSolid or a

gml:MultiSurface. An example of a PlantCover modelled as gml:MultiSolid is a ósolid forest modelô, see Fig. 66.

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiSurface+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+species : gml::CodeType [0..1]

+height : gml::LengthType [0..1]

+trunkDiameter : gml::LengthType [0..1]

+crownDiameter : gml::LengthType [0..1]

<<Feature>>

SolitaryVegetationObject

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+averageHeight : gml::LengthType [0..1]

<<Feature>>

PlantCover

<<Object>>

core::ImplicitGeometry

<<Feature>>

_VegetationObject

<<Geometry>>

gml::MultiSolid

<<Geometry>>

gml::_Geometry

* lod4MultiSolid

0..1

*lod1Geometry

*lod3ImplicitRepresentation

*

*lod3Geometry * lod3MultiSurface

0..1

*

*lod4ImplicitRepresentation

0..1

*lod1ImplicitRepresentation

* lod4MultiSurface

*

*lod4Geometry

0..1

* lod1MultiSurface

*lod2Geometry

*lod2ImplicitRepresentation

* lod2MultiSurface

lod1MultiSolid

lod2MultiSolid

lod3MultiSolid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

