- Apache Apex is a platform and framework for building highly scalable and fault-tolerant distributed applications on Hadoop.
- It allows developers to build any custom logic as distributed applications and ensures fault tolerance, scalability and data flow. Applications can process streaming or batch data with high throughput and low latency.
- Apex applications are composed of operators that perform processing on streams of data tuples. Operators can run in a distributed fashion across a cluster and automatically recover from failures without reprocessing data from the beginning.
Smart Partitioning with Apache Apex (Webinar)Apache Apex
Processing big data often requires running the same computations parallelly in multiple processes or threads, called partitions, with each partition handling a subset of the data. This becomes all the more necessary when processing live data streams where maintaining SLA is paramount. Furthermore, multiple different computations make up an application and each of them may have different partitioning needs. Partitioning also needs to adapt to changing data rates, input sources and other application requirements like SLA.
In this talk, we will introduce how Apache Apex, a distributed stream processing platform on Hadoop, handles partitioning. We will look at different partitioning schemes provided by Apex some of which are unique in this space. We will also look at how Apex does dynamic partitioning, a feature unique to and pioneered by Apex to handle varying data needs with examples. We will also talk about the different utilities and libraries that Apex provides for users to be able to affect their own custom partitioning.
Introduction to Apache Apex and writing a big data streaming application Apache Apex
Introduction to Apache Apex - The next generation native Hadoop platform, and writing a native Hadoop big data Apache Apex streaming application.
This talk will cover details about how Apex can be used as a powerful and versatile platform for big data. Apache apex is being used in production by customers for both streaming and batch use cases. Common usage of Apache Apex includes big data ingestion, streaming analytics, ETL, fast batch. alerts, real-time actions, threat detection, etc.
Presenter : <b>Pramod Immaneni</b> Apache Apex PPMC member and senior architect at DataTorrent Inc, where he works on Apex and specializes in big data applications. Prior to DataTorrent he was a co-founder and CTO of Leaf Networks LLC, eventually acquired by Netgear Inc, where he built products in core networking space and was granted patents in peer-to-peer VPNs. Before that he was a technical co-founder of a mobile startup where he was an architect of a dynamic content rendering engine for mobile devices.
This is a video of the webcast of an Apache Apex meetup event organized by Guru Virtues at 267 Boston Rd no. 9, North Billerica, MA, on <b>May 7th 2016</b> and broadcasted from San Jose, CA. If you are interested in helping organize i.e., hosting, presenting, community leadership Apache Apex community, please email [email protected]
Hadoop Summit SJ 2016: Next Gen Big Data Analytics with Apache ApexApache Apex
This is an overview of architecture with use cases for Apache Apex, a big data analytics platform. It comes with a powerful stream processing engine, rich set of functional building blocks and an easy to use API for the developer to build real-time and batch applications. Apex runs natively on YARN and HDFS and is used in production in various industries. You will learn more about two use cases: A leading Ad Tech company serves billions of advertising impressions and collects terabytes of data from several data centers across the world every day. Apex was used to implement rapid actionable insights, for real-time reporting and allocation, utilizing Kafka and files as source, dimensional computation and low latency visualization. A customer in the IoT space uses Apex for Time Series service, including efficient storage of time series data, data indexing for quick retrieval and queries at high scale and precision. The platform leverages the high availability, horizontal scalability and operability of Apex.
Architectual Comparison of Apache Apex and Spark StreamingApache Apex
This presentation discusses architectural differences between Apache Apex features with Spark Streaming. It discusses how these differences effect use cases like ingestion, fast real-time analytics, data movement, ETL, fast batch, very low latency SLA, high throughput and large scale ingestion.
Also, it will cover fault tolerance, low latency, connectors to sources/destinations, smart partitioning, processing guarantees, computation and scheduling model, state management and dynamic changes. Further, it will discuss how these features affect time to market and total cost of ownership.
Apache Apex: Stream Processing Architecture and ApplicationsThomas Weise
Slides from http://www.meetup.com/Hadoop-User-Group-Munich/events/230313355/
This is an overview of architecture with use cases for Apache Apex, a big data analytics platform. It comes with a powerful stream processing engine, rich set of functional building blocks and an easy to use API for the developer to build real-time and batch applications. Apex runs natively on YARN and HDFS and is used in production in various industries. You will learn more about two use cases: A leading Ad Tech company serves billions of advertising impressions and collects terabytes of data from several data centers across the world every day. Apex was used to implement rapid actionable insights, for real-time reporting and allocation, utilizing Kafka and files as source, dimensional computation and low latency visualization. A customer in the IoT space uses Apex for Time Series service, including efficient storage of time series data, data indexing for quick retrieval and queries at high scale and precision. The platform leverages the high availability, horizontal scalability and operability of Apex.
Intro to Apache Apex (next gen Hadoop) & comparison to Spark StreamingApache Apex
Presenter: Devendra Tagare - DataTorrent Engineer, Contributor to Apex, Data Architect experienced in building high scalability big data platforms.
Apache Apex is a next generation native Hadoop big data platform. This talk will cover details about how it can be used as a powerful and versatile platform for big data.
Apache Apex is a native Hadoop data-in-motion platform. We will discuss architectural differences between Apache Apex features with Spark Streaming. We will discuss how these differences effect use cases like ingestion, fast real-time analytics, data movement, ETL, fast batch, very low latency SLA, high throughput and large scale ingestion.
We will cover fault tolerance, low latency, connectors to sources/destinations, smart partitioning, processing guarantees, computation and scheduling model, state management and dynamic changes. We will also discuss how these features affect time to market and total cost of ownership.
Apache Apex Fault Tolerance and Processing SemanticsApache Apex
Components of an Apex application running on YARN, how they are made fault tolerant, how checkpointing works, recovery from failures, incremental recovery, processing guarantees.
Capital One's Next Generation Decision in less than 2 msApache Apex
This document discusses using Apache Apex for real-time decision making within 2 milliseconds. It provides performance benchmarks for Apex, showing average latency of 0.25ms for over 54 million events with 600GB of RAM. It compares Apex favorably to other streaming technologies like Storm and Flink, noting Apex's self-healing capabilities, independence of operators, and ability to meet latency and throughput requirements even during failures. The document recommends Apex for its maturity, fault tolerance, and ability to meet the goals of latency under 16ms, 99.999% availability, and scalability.
David Yan offers an overview of Apache Apex, a stream processing engine used in production by several large companies for real-time data analytics.
Apache Apex uses a programming paradigm based on a directed acyclic graph (DAG). Each node in the DAG represents an operator, which can be data input, data output, or data transformation. Each directed edge in the DAG represents a stream, which is the flow of data from one operator to another.
As part of Apex, the Malhar library provides a suite of connector operators so that Apex applications can read from or write to various data sources. It also includes utility operators that are commonly used in streaming applications, such as parsers, deduplicators and join, and generic building blocks that facilitate scalable state management and checkpointing.
In addition to processing based on ingression time and processing time, Apex supports event-time windows and session windows. It also supports windowing, watermarks, allowed lateness, accumulation mode, triggering, and retraction detailed by Apache Beam as well as feedback loops in the DAG for iterative processing and at-least-once and “end-to-end” exactly-once processing guarantees. Apex provides various ways to fine-tune applications, such as operator partitioning, locality, and affinity.
Apex is integrated with several open source projects, including Apache Beam, Apache Samoa (distributed machine learning), and Apache Calcite (SQL-based application specification). Users can choose Apex as the backend engine when running their application model based on these projects.
David explains how to develop fault-tolerant streaming applications with low latency and high throughput using Apex, presenting the programming model with examples and demonstrating how custom business logic can be integrated using both the declarative high-level API and the compositional DAG-level API.
Apache Apex (incubating) is a next generation native Hadoop big data platform. This talk will cover details about how it can be used as a powerful and versatile platform for big data.
Presented by Pramod Immaneni at Data Riders Meetup hosted by Nexient on Apr 5th, 2016
DataTorrent Presentation @ Big Data Application MeetupThomas Weise
The document introduces Apache Apex, an open source unified streaming and batch processing framework. It discusses how Apex integrates with native Hadoop components like YARN and HDFS. It then describes Apex's programming model using directed acyclic graphs of operators and streams to process data. The document outlines Apex's support for scaling applications through partitioning, windowing, fault tolerance, and guarantees on processing semantics. It provides an example of building an application pipeline and shows the logical and physical plans. In closing, it directs the reader to Apache Apex community resources for more information.
This document provides an overview of building an Apache Apex application, including key concepts like DAGs, operators, and ports. It also includes an example "word count" application and demonstrates how to define the application and operators, and build Apache Apex from source code. The document outlines the sample application workflow and includes information on resources for learning more about Apache Apex.
This document provides an overview of Apache Apex, an open source unified streaming and fast batching platform. It discusses key aspects of Apex including its application programming model using operators and directed acyclic graphs, native Hadoop integration using YARN and HDFS, partitioning and scaling operators for high throughput, windowing support, fault tolerance, and data locality features. Examples of building a data processing pipeline and its logical and physical plans are also presented.
Stream data from Apache Kafka for processing with Apache ApexApache Apex
Meetup presentation: How Apache Apex consumes from Kafka topics for real-time time processing and analytics. Learn about features of the Apex Kafka Connector, which is one of the most popular operators in the Apex Malhar operator library, and powers several production use cases. We explain the advanced features this operator provides for high throughput, low latency ingest and how it enables fault tolerant topologies with exactly once processing semantics.
Low Latency Polyglot Model Scoring using Apache ApexApache Apex
This document discusses challenges in building low-latency machine learning applications and how Apache Apex can help address them. It introduces Apache Apex as a distributed streaming engine and describes how it allows embedding models from frameworks like R, Python, H2O through custom operators. It provides various data and model scoring patterns in Apex like dynamic resource allocation, checkpointing, exactly-once processing to meet SLAs. The document also demonstrates techniques like canary deployment, dormant models, model ensembles through logical overlays on the Apex DAG.
Intro to Apache Apex - Next Gen Platform for Ingest and TransformApache Apex
Introduction to Apache Apex - The next generation native Hadoop platform. This talk will cover details about how Apache Apex can be used as a powerful and versatile platform for big data processing. Common usage of Apache Apex includes big data ingestion, streaming analytics, ETL, fast batch alerts, real-time actions, threat detection, etc.
Bio:
Pramod Immaneni is Apache Apex PMC member and senior architect at DataTorrent, where he works on Apache Apex and specializes in big data platform and applications. Prior to DataTorrent, he was a co-founder and CTO of Leaf Networks LLC, eventually acquired by Netgear Inc, where he built products in core networking space and was granted patents in peer-to-peer VPNs.
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache ApexApache Apex
Stream data processing is becoming increasingly important to support business needs for faster time to insight and action with growing volume of information from more sources. Apache Apex (http://apex.apache.org/) is a unified big data in motion processing platform for the Apache Hadoop ecosystem. Apex supports demanding use cases with:
* Architecture for high throughput, low latency and exactly-once processing semantics.
* Comprehensive library of building blocks including connectors for Kafka, Files, Cassandra, HBase and many more
* Java based with unobtrusive API to build real-time and batch applications and implement custom business logic.
* Advanced engine features for auto-scaling, dynamic changes, compute locality.
Apex was developed since 2012 and is used in production in various industries like online advertising, Internet of Things (IoT) and financial services.
Presenter - Siyuan Hua, Apache Apex PMC Member & DataTorrent Engineer
Apache Apex provides a DAG construction API that gives the developers full control over the logical plan. Some use cases don't require all of that flexibility, at least so it may appear initially. Also a large part of the audience may be more familiar with an API that exhibits more functional programming flavor, such as the new Java 8 Stream interfaces and the Apache Flink and Spark-Streaming API. Thus, to make Apex beginners to get simple first app running with familiar API, we are now providing the Stream API on top of the existing DAG API. The Stream API is designed to be easy to use yet flexible to extend and compatible with the native Apex API. This means, developers can construct their application in a way similar to Flink, Spark but also have the power to fine tune the DAG at will. Per our roadmap, the Stream API will closely follow Apache Beam (aka Google Data Flow) model. In the future, you should be able to either easily run Beam applications with the Apex Engine or express an existing application in a more declarative style.
Apache Apex is a stream processing framework that provides high performance, scalability, and fault tolerance. It uses YARN for resource management, can achieve single digit millisecond latency, and automatically recovers from failures without data loss through checkpointing. Apex applications are modeled as directed acyclic graphs of operators and can be partitioned for scalability. It has a large community of committers and is in the process of becoming a top-level Apache project.
Ingestion and Dimensions Compute and Enrich using Apache ApexApache Apex
Presenter: Devendra Tagare - DataTorrent Engineer, Contributor to Apex, Data Architect experienced in building high scalability big data platforms.
This talk will be a deep dive into ingesting unbounded file data and streaming data from Kafka into Hadoop. We will also cover data enrichment and dimensional compute. Customer use-case and reference architecture.
Deep dive into how operators reads and writes from/to files in an idempotent manner. This will cover file input operator, file splitter, block reader on the input side and file output operator on the output side. We will present how these operators are made scalable and fault tolerant with the hooks provided by Apache Apex platform.
IoT Ingestion & Analytics using Apache Apex - A Native Hadoop PlatformApache Apex
Internet of Things (IoT) devices are becoming more ubiquitous in consumer, business and industrial landscapes. They are being widely used in applications ranging from home automation to the industrial internet. They pose a unique challenge in terms of the volume of data they produce, and the velocity with which they produce it, and the variety of sources they need to handle. The challenge is to ingest and process this data at the speed at which it is being produced in a real-time and fault tolerant fashion. Apache Apex is an industrial grade, scalable and fault tolerant big data processing platform that runs natively on Hadoop. In this deck, you will see how Apex is being used in IoT applications and also see how the enterprise features such as dimensional analytics, real-time dashboards and monitoring play a key role.
Presented by Pramod Immaneni, Principal Architect at DataTorrent and PPMC member Apache Apex, on BrightTALK webinar on Apr 6th, 2016
From Batch to Streaming with Apache Apex Dataworks Summit 2017Apache Apex
This document discusses transitioning from batch to streaming data processing using Apache Apex. It provides an overview of Apex and how it can be used to build real-time streaming applications. Examples are given of how to build an application that processes Twitter data streams and visualizes results. The document also outlines Apex's capabilities for scalable stream processing, queryable state, and its growing library of connectors and transformations.
These slides were designed for Apache Hadoop + Apache Apex workshop (University program).
Audience was mainly from third year engineering students from Computer, IT, Electronics and telecom disciplines.
I tried to keep it simple for beginners to understand. Some of the examples are using context from India. But, in general this would be good starting point for the beginners.
Advanced users/experts may not find this relevant.
Harvesting the Power of Samza in LinkedIn's FeedMohamed El-Geish
LinkedIn's Feed is the entry point for hundreds of millions of members who seek to stay informed about their professional interests. The feed strives to provide relevant content to members that's also new and fresh. How does the feed solve this problem at scale? What role does Samza play in this? Join us to find out.
Apache Apex Fault Tolerance and Processing SemanticsApache Apex
Components of an Apex application running on YARN, how they are made fault tolerant, how checkpointing works, recovery from failures, incremental recovery, processing guarantees.
Capital One's Next Generation Decision in less than 2 msApache Apex
This document discusses using Apache Apex for real-time decision making within 2 milliseconds. It provides performance benchmarks for Apex, showing average latency of 0.25ms for over 54 million events with 600GB of RAM. It compares Apex favorably to other streaming technologies like Storm and Flink, noting Apex's self-healing capabilities, independence of operators, and ability to meet latency and throughput requirements even during failures. The document recommends Apex for its maturity, fault tolerance, and ability to meet the goals of latency under 16ms, 99.999% availability, and scalability.
David Yan offers an overview of Apache Apex, a stream processing engine used in production by several large companies for real-time data analytics.
Apache Apex uses a programming paradigm based on a directed acyclic graph (DAG). Each node in the DAG represents an operator, which can be data input, data output, or data transformation. Each directed edge in the DAG represents a stream, which is the flow of data from one operator to another.
As part of Apex, the Malhar library provides a suite of connector operators so that Apex applications can read from or write to various data sources. It also includes utility operators that are commonly used in streaming applications, such as parsers, deduplicators and join, and generic building blocks that facilitate scalable state management and checkpointing.
In addition to processing based on ingression time and processing time, Apex supports event-time windows and session windows. It also supports windowing, watermarks, allowed lateness, accumulation mode, triggering, and retraction detailed by Apache Beam as well as feedback loops in the DAG for iterative processing and at-least-once and “end-to-end” exactly-once processing guarantees. Apex provides various ways to fine-tune applications, such as operator partitioning, locality, and affinity.
Apex is integrated with several open source projects, including Apache Beam, Apache Samoa (distributed machine learning), and Apache Calcite (SQL-based application specification). Users can choose Apex as the backend engine when running their application model based on these projects.
David explains how to develop fault-tolerant streaming applications with low latency and high throughput using Apex, presenting the programming model with examples and demonstrating how custom business logic can be integrated using both the declarative high-level API and the compositional DAG-level API.
Apache Apex (incubating) is a next generation native Hadoop big data platform. This talk will cover details about how it can be used as a powerful and versatile platform for big data.
Presented by Pramod Immaneni at Data Riders Meetup hosted by Nexient on Apr 5th, 2016
DataTorrent Presentation @ Big Data Application MeetupThomas Weise
The document introduces Apache Apex, an open source unified streaming and batch processing framework. It discusses how Apex integrates with native Hadoop components like YARN and HDFS. It then describes Apex's programming model using directed acyclic graphs of operators and streams to process data. The document outlines Apex's support for scaling applications through partitioning, windowing, fault tolerance, and guarantees on processing semantics. It provides an example of building an application pipeline and shows the logical and physical plans. In closing, it directs the reader to Apache Apex community resources for more information.
This document provides an overview of building an Apache Apex application, including key concepts like DAGs, operators, and ports. It also includes an example "word count" application and demonstrates how to define the application and operators, and build Apache Apex from source code. The document outlines the sample application workflow and includes information on resources for learning more about Apache Apex.
This document provides an overview of Apache Apex, an open source unified streaming and fast batching platform. It discusses key aspects of Apex including its application programming model using operators and directed acyclic graphs, native Hadoop integration using YARN and HDFS, partitioning and scaling operators for high throughput, windowing support, fault tolerance, and data locality features. Examples of building a data processing pipeline and its logical and physical plans are also presented.
Stream data from Apache Kafka for processing with Apache ApexApache Apex
Meetup presentation: How Apache Apex consumes from Kafka topics for real-time time processing and analytics. Learn about features of the Apex Kafka Connector, which is one of the most popular operators in the Apex Malhar operator library, and powers several production use cases. We explain the advanced features this operator provides for high throughput, low latency ingest and how it enables fault tolerant topologies with exactly once processing semantics.
Low Latency Polyglot Model Scoring using Apache ApexApache Apex
This document discusses challenges in building low-latency machine learning applications and how Apache Apex can help address them. It introduces Apache Apex as a distributed streaming engine and describes how it allows embedding models from frameworks like R, Python, H2O through custom operators. It provides various data and model scoring patterns in Apex like dynamic resource allocation, checkpointing, exactly-once processing to meet SLAs. The document also demonstrates techniques like canary deployment, dormant models, model ensembles through logical overlays on the Apex DAG.
Intro to Apache Apex - Next Gen Platform for Ingest and TransformApache Apex
Introduction to Apache Apex - The next generation native Hadoop platform. This talk will cover details about how Apache Apex can be used as a powerful and versatile platform for big data processing. Common usage of Apache Apex includes big data ingestion, streaming analytics, ETL, fast batch alerts, real-time actions, threat detection, etc.
Bio:
Pramod Immaneni is Apache Apex PMC member and senior architect at DataTorrent, where he works on Apache Apex and specializes in big data platform and applications. Prior to DataTorrent, he was a co-founder and CTO of Leaf Networks LLC, eventually acquired by Netgear Inc, where he built products in core networking space and was granted patents in peer-to-peer VPNs.
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache ApexApache Apex
Stream data processing is becoming increasingly important to support business needs for faster time to insight and action with growing volume of information from more sources. Apache Apex (http://apex.apache.org/) is a unified big data in motion processing platform for the Apache Hadoop ecosystem. Apex supports demanding use cases with:
* Architecture for high throughput, low latency and exactly-once processing semantics.
* Comprehensive library of building blocks including connectors for Kafka, Files, Cassandra, HBase and many more
* Java based with unobtrusive API to build real-time and batch applications and implement custom business logic.
* Advanced engine features for auto-scaling, dynamic changes, compute locality.
Apex was developed since 2012 and is used in production in various industries like online advertising, Internet of Things (IoT) and financial services.
Presenter - Siyuan Hua, Apache Apex PMC Member & DataTorrent Engineer
Apache Apex provides a DAG construction API that gives the developers full control over the logical plan. Some use cases don't require all of that flexibility, at least so it may appear initially. Also a large part of the audience may be more familiar with an API that exhibits more functional programming flavor, such as the new Java 8 Stream interfaces and the Apache Flink and Spark-Streaming API. Thus, to make Apex beginners to get simple first app running with familiar API, we are now providing the Stream API on top of the existing DAG API. The Stream API is designed to be easy to use yet flexible to extend and compatible with the native Apex API. This means, developers can construct their application in a way similar to Flink, Spark but also have the power to fine tune the DAG at will. Per our roadmap, the Stream API will closely follow Apache Beam (aka Google Data Flow) model. In the future, you should be able to either easily run Beam applications with the Apex Engine or express an existing application in a more declarative style.
Apache Apex is a stream processing framework that provides high performance, scalability, and fault tolerance. It uses YARN for resource management, can achieve single digit millisecond latency, and automatically recovers from failures without data loss through checkpointing. Apex applications are modeled as directed acyclic graphs of operators and can be partitioned for scalability. It has a large community of committers and is in the process of becoming a top-level Apache project.
Ingestion and Dimensions Compute and Enrich using Apache ApexApache Apex
Presenter: Devendra Tagare - DataTorrent Engineer, Contributor to Apex, Data Architect experienced in building high scalability big data platforms.
This talk will be a deep dive into ingesting unbounded file data and streaming data from Kafka into Hadoop. We will also cover data enrichment and dimensional compute. Customer use-case and reference architecture.
Deep dive into how operators reads and writes from/to files in an idempotent manner. This will cover file input operator, file splitter, block reader on the input side and file output operator on the output side. We will present how these operators are made scalable and fault tolerant with the hooks provided by Apache Apex platform.
IoT Ingestion & Analytics using Apache Apex - A Native Hadoop PlatformApache Apex
Internet of Things (IoT) devices are becoming more ubiquitous in consumer, business and industrial landscapes. They are being widely used in applications ranging from home automation to the industrial internet. They pose a unique challenge in terms of the volume of data they produce, and the velocity with which they produce it, and the variety of sources they need to handle. The challenge is to ingest and process this data at the speed at which it is being produced in a real-time and fault tolerant fashion. Apache Apex is an industrial grade, scalable and fault tolerant big data processing platform that runs natively on Hadoop. In this deck, you will see how Apex is being used in IoT applications and also see how the enterprise features such as dimensional analytics, real-time dashboards and monitoring play a key role.
Presented by Pramod Immaneni, Principal Architect at DataTorrent and PPMC member Apache Apex, on BrightTALK webinar on Apr 6th, 2016
From Batch to Streaming with Apache Apex Dataworks Summit 2017Apache Apex
This document discusses transitioning from batch to streaming data processing using Apache Apex. It provides an overview of Apex and how it can be used to build real-time streaming applications. Examples are given of how to build an application that processes Twitter data streams and visualizes results. The document also outlines Apex's capabilities for scalable stream processing, queryable state, and its growing library of connectors and transformations.
These slides were designed for Apache Hadoop + Apache Apex workshop (University program).
Audience was mainly from third year engineering students from Computer, IT, Electronics and telecom disciplines.
I tried to keep it simple for beginners to understand. Some of the examples are using context from India. But, in general this would be good starting point for the beginners.
Advanced users/experts may not find this relevant.
Harvesting the Power of Samza in LinkedIn's FeedMohamed El-Geish
LinkedIn's Feed is the entry point for hundreds of millions of members who seek to stay informed about their professional interests. The feed strives to provide relevant content to members that's also new and fresh. How does the feed solve this problem at scale? What role does Samza play in this? Join us to find out.
This document summarizes Julian Hyde's talk on streaming SQL. The key points are:
1) Streaming SQL allows for relational queries over both streaming and stored data, including joins between streams and tables.
2) Queries are valid if the system can provide data with reasonable latency, using techniques like watermarks and monotonic columns.
3) Views, materialized views, and standing queries can be used to maintain windowed histories and summaries of streaming data.
4) A standard streaming SQL allows data in motion and at rest to be accessed together, combining real-time and historical data.
Lambda-less Stream Processing @Scale in LinkedIn
The document discusses challenges with stream processing including data accuracy and reprocessing. It proposes a "lambda-less" approach using windowed computations and handling late and out-of-order events to produce eventually correct results. Samza is used in LinkedIn's implementation to store streaming data locally using RocksDB for processing within configurable windows. The approach avoids code duplication compared to traditional lambda architectures while still supporting reprocessing through resetting offsets. Challenges remain in merging online and reprocessed results at large scale.
Apache Gearpump is a lightweight, real-time streaming engine that was conceived at Intel in 2014 and became an Apache incubating project in 2016. It uses a message-driven architecture based on Akka actors to provide out-of-order processing, exactly-once semantics, flow control, and fault tolerance. Gearpump supports dynamic DAGs, local and distributed deployments, and compatibility with Storm APIs.
Spark Streaming allows processing of live data streams in Spark. It integrates streaming data and batch processing within the same Spark application. Spark SQL provides a programming abstraction called DataFrames and can be used to query structured data in Spark. Structured Streaming in Spark 2.0 provides a high-level API for building streaming applications on top of Spark SQL's engine. It allows running the same queries on streaming data as on batch data and unifies streaming, interactive, and batch processing.
This document discusses concepts related to analyzing data from internet of things (IoT) devices. It describes the distributed and real-time nature of IoT data, and different types of analytics needed, including real-time, batch, interactive, and predictive analytics. It also discusses challenges like processing data from many distributed devices, handling duplicate, out-of-order or missing IoT events, and addressing uncertainty in sensor readings. The document recommends using technologies like Apache Storm and WSO2 Complex Event Processing for real-time analytics, and Hadoop, Spark, and Drill for batch, interactive queries and deep investigations of IoT data.
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017Viktor Gamov
This slide deck discusses distributed data processing using Java 8 Streams and Hazelcast Jet. It provides an overview of Java Streams and their limitations for large datasets. It then introduces Hazelcast IMDG for distributed caching and collections. Hazelcast Jet is presented as a distributed data processing framework built on Hazelcast IMDG that can be used to distribute and parallelize stream processing. Examples of distributed streams and the directed acyclic graph (DAG) model used by Jet are shown.
The document discusses integrating Akka streams with the Gearpump big data streaming platform. It provides background on Akka streams and Gearpump, and describes how Gearpump implements a GearpumpMaterializer to rewrite the Akka streams module tree for distributed execution across a Gearpump cluster. Key points covered include the object models of Akka streams and Gearpump, prerequisites for big data platforms, challenges integrating the two, and how the materializer handles distribution.
Apache Big Data EU 2016: Building Streaming Applications with Apache ApexApache Apex
Stream processing applications built on Apache Apex run on Hadoop clusters and typically power analytics use cases where availability, flexible scaling, high throughput, low latency and correctness are essential. These applications consume data from a variety of sources, including streaming sources like Apache Kafka, Kinesis or JMS, file based sources or databases. Processing results often need to be stored in external systems (sinks) for downstream consumers (pub-sub messaging, real-time visualization, Hive and other SQL databases etc.). Apex has the Malhar library with a wide range of connectors and other operators that are readily available to build applications. We will cover key characteristics like partitioning and processing guarantees, generic building blocks for new operators (write-ahead-log, incremental state saving, windowing etc.) and APIs for application specification.
This document provides an agenda for a demo on Hadoop administration and development. It begins with an introduction to big data and Hadoop, explaining that Hadoop is an open-source software framework that supports distributed applications working with large datasets and clusters. The document then gives a brief history of Hadoop, defines what constitutes big data, and outlines some of the key components of the Hadoop ecosystem that will be demonstrated, including HDFS, MapReduce, Hive, HBase, Flume, Kafka and Spark.
Apache Spark is an open source Big Data analytical framework. It introduces the concept of RDDs (Resilient Distributed Datasets) which allow parallel operations on large datasets. The document discusses starting Spark, Spark applications, transformations and actions on RDDs, RDD creation in Scala and Python, and examples including word count. It also covers flatMap vs map, custom methods, and assignments involving transformations on lists.
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)Helena Edelson
This document provides an overview of streaming big data with Spark, Kafka, Cassandra, Akka, and Scala. It discusses delivering meaning in near-real time at high velocity and an overview of Spark Streaming, Kafka and Akka. It also covers Cassandra and the Spark Cassandra Connector as well as integration in big data applications. The presentation is given by Helena Edelson, a Spark Cassandra Connector committer and Akka contributor who is a Scala and big data conference speaker working as a senior software engineer at DataStax.
Big data is large amounts of unstructured data that require new techniques and tools to analyze. Key drivers of big data growth are increased storage capacity, processing power, and data availability. Big data analytics can uncover hidden patterns to provide competitive advantages and better business decisions. Applications include healthcare, homeland security, finance, manufacturing, and retail. The global big data market is expected to grow significantly, with India's market projected to reach $1 billion by 2015. This growth will increase demand for data scientists and analysts to support big data solutions and technologies like Hadoop and NoSQL databases.
This presentation, by big data guru Bernard Marr, outlines in simple terms what Big Data is and how it is used today. It covers the 5 V's of Big Data as well as a number of high value use cases.
This document provides an overview of big data. It defines big data as large volumes of diverse data that are growing rapidly and require new techniques to capture, store, distribute, manage, and analyze. The key characteristics of big data are volume, velocity, and variety. Common sources of big data include sensors, mobile devices, social media, and business transactions. Tools like Hadoop and MapReduce are used to store and process big data across distributed systems. Applications of big data include smarter healthcare, traffic control, and personalized marketing. The future of big data is promising with the market expected to grow substantially in the coming years.
February 2017 HUG: Exactly-once end-to-end processing with Apache ApexYahoo Developer Network
Apache Apex (http://apex.apache.org/) is a stream processing platform that helps organizations to build processing pipelines with fault tolerance and strong processing guarantees. It was built to support low processing latency, high throughput, scalability, interoperability, high availability and security. The platform comes with Malhar library - an extensive collection of processing operators and a wide range of input and output connectors for out-of-the-box integration with an existing infrastructure. In the talk I am going to describe how connectors together with the distributed checkpointing (a mechanism used by the Apex to support fault tolerance and high availability) provide exactly-once end-to-end processing guarantees.
Speakers:
Vlad Rozov is Apache Apex PMC member and back-end engineer at DataTorrent where he focuses on the buffer server, Apex platform network layer, benchmarks and optimizing the core components for low latency and high throughput. Prior to DataTorrent Vlad worked on distributed BI platform at Huawei and on multi-dimensional database (OLAP) at Hyperion Solutions and Oracle.
Real-time Stream Processing using Apache ApexApache Apex
Apache Apex is a stream processing framework that provides high performance, scalability, and fault tolerance. It uses YARN for resource management, can achieve single digit millisecond latency, and automatically recovers from failures without data loss through checkpointing. Apex applications are modeled as directed acyclic graphs of operators and can be partitioned for scalability. It has a large community of committers and is in the process of becoming a top-level Apache project.
Apache Big Data 2016: Next Gen Big Data Analytics with Apache ApexApache Apex
Apache Apex is a next gen big data analytics platform. Originally developed at DataTorrent it comes with a powerful stream processing engine, rich set of functional building blocks and an easy to use API for the developer to build real-time and batch applications. Apex runs natively on YARN and HDFS and is used in production in various industries. You will learn about the Apex architecture, including its unique features for scalability, fault tolerance and processing guarantees, programming model and use cases.
http://apachebigdata2016.sched.org/event/6M0L/next-gen-big-data-analytics-with-apache-apex-thomas-weise-datatorrent
Apache Apex: Stream Processing Architecture and Applications Comsysto Reply GmbH
• Architecture highlights: high throughput, low-latency, operability with stateful fault tolerance, strong processing guarantees, auto-scaling etc
• Application development model, unified approach for real-time and batch use cases
• Tools for ease of use, ease of operability and ease of management
• How customers use Apache Apex in production
Intro to Apache Apex - Next Gen Native Hadoop Platform - HackacApache Apex
Apache Apex is a platform and runtime engine that enables development of scalable and fault-tolerant distributed applications on Hadoop in a native fashion. It processes streaming or batch big data with high throughput and low latency. Applications are built from operators that run distributed across a cluster and can scale up or down dynamically. Apex provides automatic recovery from failures without reprocessing and preserves state. It includes a library of common operators to simplify application development.
BigDataSpain 2016: Introduction to Apache ApexThomas Weise
Apache Apex is an open source stream processing platform, built for large scale, high-throughput, low-latency, high availability and operability. With a unified architecture it can be used for real-time and batch processing. Apex is Java based and runs natively on Apache Hadoop YARN and HDFS.
We will discuss the key features of Apache Apex and architectural differences from similar platforms and how these differences affect use cases like ingestion, fast real-time analytics, data movement, ETL, fast batch, low latency SLA, high throughput and large scale ingestion.
Apex APIs and libraries of operators and examples focus on developer productivity. We will present the programming model with examples and how custom business logic can be easily integrated based on the Apex operator API.
We will cover integration with connectors to sources/destinations (including Kafka, JMS, SQL, NoSQL, files etc.), scalability with advanced partitioning, fault tolerance and processing guarantees, computation and scheduling model, state management, windowing and dynamic changes. Attendees will also learn how these features affect time to market and total cost of ownership and how they are important in existing Apex production deployments.
https://www.bigdataspain.org/
Next Gen Big Data Analytics with Apache Apex discusses Apache Apex, an open source stream processing framework. It provides an overview of Apache Apex's capabilities for processing continuous, real-time data streams at scale. Specifically, it describes how Apache Apex allows for in-memory, distributed stream processing using a programming model of operators in a directed acyclic graph. It also covers Apache Apex's features for fault tolerance, dynamic scaling, and integration with Hadoop and YARN.
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)Apache Apex
This presentation will introduce usage of Apache Apex for Time Series & Data Ingestion Service by General Electric Internet of things Predix platform. Apache Apex is a native Hadoop data in motion platform that is being used by customers for both streaming as well as batch processing. Common use cases include ingestion into Hadoop, streaming analytics, ETL, database off-loads, alerts and monitoring, machine model scoring, etc.
Abstract: Predix is an General Electric platform for Internet of Things. It helps users develop applications that connect industrial machines with people through data and analytics for better business outcomes. Predix offers a catalog of services that provide core capabilities required by industrial internet applications. We will deep dive into Predix Time Series and Data Ingestion services leveraging fast, scalable, highly performant, and fault tolerant capabilities of Apache Apex.
Speakers:
- Venkatesh Sivasubramanian, Sr Staff Software Engineer, GE Predix & Committer of Apache Apex
- Pramod Immaneni, PPMC member of Apache Apex, and DataTorrent Architect
This document discusses stateful streaming data pipelines using Apache Apex. It introduces Apache Apex and describes its key components like tuples, operators, and the directed acyclic graph (DAG) structure. It then discusses challenges around checkpointing large operator state and introduces managed state and spillable data structures as solutions. Managed state incrementally checkpoints state to disk and allows configuring memory thresholds. Spillable data structures decouple data from serialization and provide map, list, and set interfaces to stored data. Examples demonstrate building complex data structures on top of managed state.
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...Dataconomy Media
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder of DataTorrent presented "Streaming Analytics with Apache Apex" as part of the Big Data, Berlin v 8.0 meetup organised on the 14th of July 2016 at the WeWork headquarters.
Big Data Berlin v8.0 Stream Processing with Apache Apex Apache Apex
This document discusses Apache Apex, an open source stream processing framework. It provides an overview of stream data processing and common use cases. It then describes key Apache Apex capabilities like in-memory distributed processing, scalability, fault tolerance, and state management. The document also highlights several customer use cases from companies like PubMatic, GE, and Silver Spring Networks that use Apache Apex for real-time analytics on data from sources like IoT sensors, ad networks, and smart grids.
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...Lightbend
In this guest webinar with Chris McDermott, Lead Data Engineer at HPE, learn how HPE InfoSight–powered by Lightbend Platform–has emerged as the go-to solution for providing real-time metrics and predictive analytics across various network, server, storage, and data center technologies.
Apache Apex and Apache Geode are two of the most promising incubating open source projects. Combined, they promise to fill gaps of existing big data analytics platforms. Apache Apex is an enterprise grade native YARN big data-in-motion platform that unifies stream and batch processing. Apex is highly scalable, performant, fault tolerant, and strong in operability. Apache Geode provides a database-like consistency model, reliable transaction processing and a shared-nothing architecture to maintain very low latency performance with high concurrency processing. We will also look at some use cases where how these two projects can be used together to form distributed, fault tolerant, reliable in memory data processing layer.
Apache Apex and Apache Geode are two of the most promising incubating open source projects. Combined, they promise to fill gaps of existing big data analytics platforms. Apache Apex is an enterprise grade native YARN big data-in-motion platform that unifies stream and batch processing. Apex is highly scalable, performant, fault tolerant, and strong in operability. Apache Geode provides a database-like consistency model, reliable transaction processing and a shared-nothing architecture to maintain very low latency performance with high concurrency processing. We will also look at some use cases where how these two projects can be used together to form distributed, fault tolerant, reliable in memory data processing layer.
Presented at Geode summit - https://2016.event.geodesummit.com/schedule/sessions/apex_geode_in_memory_streaming_storage_analytics.html
Building a fraud detection application using the tools in the Hadoop ecosystem. Presentation given by authors of O'Reilly's Hadoop Application Architectures book at Strata + Hadoop World in San Jose, CA 2016.
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra TagareApache Apex
The presentation covers how Apache Apex is used to deliver actionable insights in real-time for Ad-tech. It includes a reference architecture to provide dimensional aggregates on TB scale for billions of events per day. The reference architecture covers concepts around Apache Apex, with Kafka as source and dimensional compute. Slides from Devendra Tagare at Apache Big Data North America in Miami 2017.
This talk covers the Vault 8 team's journey at Capital One where we investigated a wide variety of stream processing solutions to build a next generation real-time decisioning platform to power Capital One's infrastructure.
The result of our analysis showed Apache Storm, Apache Flink, and Apache Apex as prime contenders for our use case with Apache Apex ultimately proving to be the solution of choice based on its present readiness for enterprise deployment and its excellent performance.
This document discusses a case study on fraud detection using Hadoop. It begins with an overview of fraud detection requirements, including the need for real-time and near real-time processing of large volumes and varieties of data. It then covers considerations for the system architecture, including using HDFS and HBase for storage, Kafka for ingestion, and Spark and Storm for stream and batch processing. Data modeling with HBase and caching options are also discussed.
Improving Developer Productivity With DORA, SPACE, and DevExJustin Reock
Ready to measure and improve developer productivity in your organization?
Join Justin Reock, Deputy CTO at DX, for an interactive session where you'll learn actionable strategies to measure and increase engineering performance.
Leave this session equipped with a comprehensive understanding of developer productivity and a roadmap to create a high-performing engineering team in your company.
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPathCommunity
Join the UiPath Community Berlin (Virtual) meetup on May 27 to discover handy Studio Tips & Tricks and get introduced to UiPath Insights. Learn how to boost your development workflow, improve efficiency, and gain visibility into your automation performance.
📕 Agenda:
- Welcome & Introductions
- UiPath Studio Tips & Tricks for Efficient Development
- Best Practices for Workflow Design
- Introduction to UiPath Insights
- Creating Dashboards & Tracking KPIs (Demo)
- Q&A and Open Discussion
Perfect for developers, analysts, and automation enthusiasts!
This session streamed live on May 27, 18:00 CET.
Check out all our upcoming UiPath Community sessions at:
👉 https://community.uipath.com/events/
Join our UiPath Community Berlin chapter:
👉 https://community.uipath.com/berlin/
Droidal: AI Agents Revolutionizing HealthcareDroidal LLC
Droidal’s AI Agents are transforming healthcare by bringing intelligence, speed, and efficiency to key areas such as Revenue Cycle Management (RCM), clinical operations, and patient engagement. Built specifically for the needs of U.S. hospitals and clinics, Droidal's solutions are designed to improve outcomes and reduce administrative burden.
Through simple visuals and clear examples, the presentation explains how AI Agents can support medical coding, streamline claims processing, manage denials, ensure compliance, and enhance communication between providers and patients. By integrating seamlessly with existing systems, these agents act as digital coworkers that deliver faster reimbursements, reduce errors, and enable teams to focus more on patient care.
Droidal's AI technology is more than just automation — it's a shift toward intelligent healthcare operations that are scalable, secure, and cost-effective. The presentation also offers insights into future developments in AI-driven healthcare, including how continuous learning and agent autonomy will redefine daily workflows.
Whether you're a healthcare administrator, a tech leader, or a provider looking for smarter solutions, this presentation offers a compelling overview of how Droidal’s AI Agents can help your organization achieve operational excellence and better patient outcomes.
A free demo trial is available for those interested in experiencing Droidal’s AI Agents firsthand. Our team will walk you through a live demo tailored to your specific workflows, helping you understand the immediate value and long-term impact of adopting AI in your healthcare environment.
To request a free trial or learn more:
https://droidal.com/
Offshore IT Support: Balancing In-House and Offshore Help Desk Techniciansjohn823664
In today's always-on digital environment, businesses must deliver seamless IT support across time zones, devices, and departments. This SlideShare explores how companies can strategically combine in-house expertise with offshore talent to build a high-performing, cost-efficient help desk operation.
From the benefits and challenges of offshore support to practical models for integrating global teams, this presentation offers insights, real-world examples, and key metrics for success. Whether you're scaling a startup or optimizing enterprise support, discover how to balance cost, quality, and responsiveness with a hybrid IT support strategy.
Perfect for IT managers, operations leads, and business owners considering global help desk solutions.
6th Power Grid Model Meetup
Join the Power Grid Model community for an exciting day of sharing experiences, learning from each other, planning, and collaborating.
This hybrid in-person/online event will include a full day agenda, with the opportunity to socialize afterwards for in-person attendees.
If you have a hackathon proposal, tell us when you register!
About Power Grid Model
The global energy transition is placing new and unprecedented demands on Distribution System Operators (DSOs). Alongside upgrades to grid capacity, processes such as digitization, capacity optimization, and congestion management are becoming vital for delivering reliable services.
Power Grid Model is an open source project from Linux Foundation Energy and provides a calculation engine that is increasingly essential for DSOs. It offers a standards-based foundation enabling real-time power systems analysis, simulations of electrical power grids, and sophisticated what-if analysis. In addition, it enables in-depth studies and analysis of the electrical power grid’s behavior and performance. This comprehensive model incorporates essential factors such as power generation capacity, electrical losses, voltage levels, power flows, and system stability.
Power Grid Model is currently being applied in a wide variety of use cases, including grid planning, expansion, reliability, and congestion studies. It can also help in analyzing the impact of renewable energy integration, assessing the effects of disturbances or faults, and developing strategies for grid control and optimization.
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Aaryan Kansari
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generative AI
Discover Agentic AI, the revolutionary step beyond reactive generative AI. Learn how these autonomous systems can reason, plan, execute, and adapt to achieve human-defined goals, acting as digital co-workers. Explore its promise, key frameworks like LangChain and AutoGen, and the challenges in designing reliable and safe AI agents for future workflows.
Sticky Note Bullets:
Definition: Next stage beyond ChatGPT-like systems, offering true autonomy.
Core Function: Can "reason, plan, execute and adapt" independently.
Distinction: Proactive (sets own actions for goals) vs. Reactive (responds to prompts).
Promise: Acts as "digital co-workers," handling grunt work like research, drafting, bug fixing.
Industry Outlook: Seen as a game-changer; Deloitte predicts 50% of companies using GenAI will have agentic AI pilots by 2027.
Key Frameworks: LangChain, Microsoft's AutoGen, LangGraph, CrewAI.
Development Focus: Learning to think in workflows and goals, not just model outputs.
Challenges: Ensuring reliability, safety; agents can still hallucinate or go astray.
Best Practices: Start small, iterate, add memory, keep humans in the loop for final decisions.
Use Cases: Limited only by imagination (e.g., drafting business plans, complex simulations).
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Peter Bittner
How do you onboard new colleagues in 2025? How long does it take? Would you love a standardized setup under version control that everyone can customize for themselves? A stable desktop setup, reinstalled in just minutes. It can be done.
This talk was given in Italian, 29 May 2025, at PyCon 25, Bologna, Italy. All slides are provided in English.
Original slides at https://slides.com/bittner/pycon25-nixos-for-python-developers
European Accessibility Act & Integrated Accessibility TestingJulia Undeutsch
Emma Dawson will guide you through two important topics in this session.
Firstly, she will prepare you for the European Accessibility Act (EAA), which comes into effect on 28 June 2025, and show you how development teams can prepare for it.
In the second part of the webinar, Emma Dawson will explore with you various integrated testing methods and tools that will help you improve accessibility during the development cycle, such as Linters, Storybook, Playwright, just to name a few.
Focus: European Accessibility Act, Integrated Testing tools and methods (e.g. Linters, Storybook, Playwright)
Target audience: Everyone, Developers, Testers
As data privacy regulations become more pervasive across the globe and organizations increasingly handle and transfer (including across borders) meaningful volumes of personal and confidential information, the need for robust contracts to be in place is more important than ever.
This webinar will provide a deep dive into privacy contracting, covering essential terms and concepts, negotiation strategies, and key practices for managing data privacy risks.
Whether you're in legal, privacy, security, compliance, GRC, procurement, or otherwise, this session will include actionable insights and practical strategies to help you enhance your agreements, reduce risk, and enable your business to move fast while protecting itself.
This webinar will review key aspects and considerations in privacy contracting, including:
- Data processing addenda, cross-border transfer terms including EU Model Clauses/Standard Contractual Clauses, etc.
- Certain legally-required provisions (as well as how to ensure compliance with those provisions)
- Negotiation tactics and common issues
- Recent lessons from recent regulatory actions and disputes
Data Virtualization: Bringing the Power of FME to Any ApplicationSafe Software
Imagine building web applications or dashboards on top of all your systems. With FME’s new Data Virtualization feature, you can deliver the full CRUD (create, read, update, and delete) capabilities on top of all your data that exploit the full power of FME’s all data, any AI capabilities. Data Virtualization enables you to build OpenAPI compliant API endpoints using FME Form’s no-code development platform.
In this webinar, you’ll see how easy it is to turn complex data into real-time, usable REST API based services. We’ll walk through a real example of building a map-based app using FME’s Data Virtualization, and show you how to get started in your own environment – no dev team required.
What you’ll take away:
-How to build live applications and dashboards with federated data
-Ways to control what’s exposed: filter, transform, and secure responses
-How to scale access with caching, asynchronous web call support, with API endpoint level security.
-Where this fits in your stack: from web apps, to AI, to automation
Whether you’re building internal tools, public portals, or powering automation – this webinar is your starting point to real-time data delivery.
Neural representations have shown the potential to accelerate ray casting in a conventional ray-tracing-based rendering pipeline. We introduce a novel approach called Locally-Subdivided Neural Intersection Function (LSNIF) that replaces bottom-level BVHs used as traditional geometric representations with a neural network. Our method introduces a sparse hash grid encoding scheme incorporating geometry voxelization, a scene-agnostic training data collection, and a tailored loss function. It enables the network to output not only visibility but also hit-point information and material indices. LSNIF can be trained offline for a single object, allowing us to use LSNIF as a replacement for its corresponding BVH. With these designs, the network can handle hit-point queries from any arbitrary viewpoint, supporting all types of rays in the rendering pipeline. We demonstrate that LSNIF can render a variety of scenes, including real-world scenes designed for other path tracers, while achieving a memory footprint reduction of up to 106.2x compared to a compressed BVH.
https://arxiv.org/abs/2504.21627
Microsoft Build 2025 takeaways in one presentationDigitalmara
Microsoft Build 2025 introduced significant updates. Everything revolves around AI. DigitalMara analyzed these announcements:
• AI enhancements for Windows 11
By embedding AI capabilities directly into the OS, Microsoft is lowering the barrier for users to benefit from intelligent automation without requiring third-party tools. It's a practical step toward improving user experience, such as streamlining workflows and enhancing productivity. However, attention should be paid to data privacy, user control, and transparency of AI behavior. The implementation policy should be clear and ethical.
• GitHub Copilot coding agent
The introduction of coding agents is a meaningful step in everyday AI assistance. However, it still brings challenges. Some people compare agents with junior developers. They noted that while the agent can handle certain tasks, it often requires supervision and can introduce new issues. This innovation holds both potential and limitations. Balancing automation with human oversight is crucial to ensure quality and reliability.
• Introduction of Natural Language Web
NLWeb is a significant step toward a more natural and intuitive web experience. It can help users access content more easily and reduce reliance on traditional navigation. The open-source foundation provides developers with the flexibility to implement AI-driven interactions without rebuilding their existing platforms. NLWeb is a promising level of web interaction that complements, rather than replaces, well-designed UI.
• Introduction of Model Context Protocol
MCP provides a standardized method for connecting AI models with diverse tools and data sources. This approach simplifies the development of AI-driven applications, enhancing efficiency and scalability. Its open-source nature encourages broader adoption and collaboration within the developer community. Nevertheless, MCP can face challenges in compatibility across vendors and security in context sharing. Clear guidelines are crucial.
• Windows Subsystem for Linux is open-sourced
It's a positive step toward greater transparency and collaboration in the developer ecosystem. The community can now contribute to its evolution, helping identify issues and expand functionality faster. However, open-source software in a core system also introduces concerns around security, code quality management, and long-term maintenance. Microsoft’s continued involvement will be key to ensuring WSL remains stable and secure.
• Azure AI Foundry platform hosts Grok 3 AI models
Adding new models is a valuable expansion of AI development resources available at Azure. This provides developers with more flexibility in choosing language models that suit a range of application sizes and needs. Hosting on Azure makes access and integration easier when using Microsoft infrastructure.
Exploring the advantages of on-premises Dell PowerEdge servers with AMD EPYC processors vs. the cloud for small to medium businesses’ AI workloads
AI initiatives can bring tremendous value to your business, but you need to support your new AI workloads effectively. That means choosing the best possible infrastructure for your needs—and many companies are finding that the cloud isn’t right for them. According to a recent Rackspace survey of IT executives, 69 percent of companies have moved some of their applications on-premises from the cloud, with half of those citing security and compliance as the reason and 44 percent citing cost.
On-premises solutions provide a number of advantages. With full control over your security infrastructure, you can be certain that all compliance requirements remain firmly in the hands of your IT team. Opting for on-premises also gives you the ability to design your infrastructure to the precise needs of that team and your new AI workloads. Depending on the workload, you may also see performance benefits, along with more predictable costs. As you start to build your next AI initiative, consider an on-premises solution utilizing AMD EPYC processor-powered Dell PowerEdge servers.
AI Emotional Actors: “When Machines Learn to Feel and Perform"AkashKumar809858
Welcome to the era of AI Emotional Actors.
The entertainment landscape is undergoing a seismic transformation. What started as motion capture and CGI enhancements has evolved into a full-blown revolution: synthetic beings not only perform but express, emote, and adapt in real time.
For reading further follow this link -
https://akash97.gumroad.com/l/meioex
AI Emotional Actors: “When Machines Learn to Feel and Perform"AkashKumar809858
Fault Tolerance and Processing Semantics in Apache Apex
1. Apache Apex (incubating)
Fault Tolerance and Processing Semantics
Thomas Weise, Architect & Co-founder, PPMC member
Pramod Immaneni, Architect, PPMC member
March 24th 2016
6. Fault Tolerance
6
• Operator state is checkpointed to persistent store
ᵒ Automatically performed by engine, no additional coding needed
ᵒ Asynchronous and distributed
ᵒ In case of failure operators are restarted from checkpoint state
• Automatic detection and recovery of failed containers
ᵒ Heartbeat mechanism
ᵒ YARN process status notification
• Buffering to enable replay of data from recovered point
ᵒ Fast, incremental recovery, spike handling
• Application master state checkpointed
ᵒ Snapshot of physical (and logical) plan
ᵒ Execution layer change log
7. Checkpointing Operator State
7
• Save state of operator so that it can be recovered on failure
• Pluggable storage handler
• Default implementation
ᵒ Serialization with Kryo
ᵒ All non-transient fields serialized
ᵒ Serialized state written to HDFS
ᵒ Writes asynchronous, non-blocking
• Possible to implement custom handlers for alternative approach to
extract state or different storage backend (such as IMDG)
• For operators that rely on previous state for computation
ᵒ Operators can be marked @Stateless to skip checkpointing
• Checkpoint frequency tunable (by default 30s)
ᵒ Based on streaming windows for consistent state
8. • In-memory PubSub
• Stores results emitted by operator until committed
• Handles backpressure / spillover to local disk
• Ordering, idempotency
Operator
1
Container 1
Buffer
Server
Node 1
Operator
2
Container 2
Node 2
Buffer Server
8
9. Application Master State
9
• Snapshot state on plan change
ᵒ Serialize Physical Plan (includes logical plan)
ᵒ Infrequent, expensive operation
• WAL (Write-ahead-Log) for state changes
ᵒ Execution layer changes
ᵒ Container, operator state, property changes
• Containers locate master through DFS
ᵒ AM can fail and restart, other containers need to find it
ᵒ Work preserving restart
• Recovery
ᵒ YARN restarts application master
ᵒ Apex restores state from snapshot and replays log
10. • Container process fails
• NM detects
• In case of AM (Apex Application Master), YARN launches replacement
container (for attempt count < max)
• Node Manager Process fails
• RM detects NM failure and notifies AM
• Machine fails
• RM detects NM/AM failure and recovers or notifies AM
• RM fails - RM HA option
• Entire YARN cluster down – stateful restart of Apex application
Failure Scenarios
10
13. Processing Guarantees
13
At-least-once
• On recovery data will be replayed from a previous checkpoint
ᵒ No messages lost
ᵒ Default, suitable for most applications
• Can be used to ensure data is written once to store
ᵒ Transactions with meta information, Rewinding output, Feedback from
external entity, Idempotent operations
At-most-once
• On recovery the latest data is made available to operator
ᵒ Useful in use cases where some data loss is acceptable and latest data is
sufficient
Exactly-once
ᵒ At-least-once + idempotency + transactional mechanisms (operator logic) to
achieve end-to-end exactly once behavior
14. End-to-End Exactly Once
14
• Becomes important when writing to external systems
• Data should not be duplicated or lost in the external system even in case of
application failures
• Common external systems
ᵒ Databases
ᵒ Files
ᵒ Message queues
• Platform support for at least once is a must so that no data is lost
• Data duplication must still be avoided when data is replayed from checkpoint
ᵒ Operators implement the logic dependent on the external system
• Aid of platform features such as stateful checkpointing and windowing
• Three different mechanisms with implementations explained in next slides
15. Files
15
• Streaming data is being written to file on a continuous basis
• Failure at a random point results in file with an unknown amount of data
• Operator works with platform to ensure exactly once
ᵒ Platform responsibility
• Restores state and restarts operator from an earlier checkpoint
• Platform replays data from the exact point after checkpoint
ᵒ Operator responsibility
• Replayed data doesn’t get duplicated in the file
• Accomplishes by keeping track of file offset as state
ᵒ Details in next slide
• Implemented in operator AbstractFileOutputOperator in apache/incubator-
apex-malhar github repository available here
• Example application AtomicFileOutputApp available here
16. Exactly Once Strategy
16
File Data
Offset
• Operator saves file offset during
checkpoint
• File contents are flushed before
checkpoint to ensure there is no
pending data in buffer
• On recovery platform restores the file
offset value from checkpoint
• Operator truncates the file to the
offset
• Starts writing data again
• Ensures no data is duplicated or lost
Chk
17. Transactional databases
17
• Use of streaming windows
• For exactly once in failure scenarios
ᵒ Operator uses transactions
ᵒ Stores window id in a separate table in the database
ᵒ Details in next slide
• Implemented in operator AbstractJdbcTransactionableOutputOperator in
apache/incubator-apex-malhar github repository available here
• Example application streaming data in from kafka and writing to a JDBC
database is available here
18. Exactly Once Strategy
18
d11 d12 d13
d21 d22 d23
lwn1 lwn2 lwn3
op-id wn
chk wn wn+1
Lwn+11 Lwn+12 Lwn+13
op-id wn+1
Data Table
Meta Table
• Data in a window is written out in a single
transaction
• Window id is also written to a meta table
as part of the same transaction
• Operator reads the window id from meta
table on recovery
• Ignores data for windows less than the
recovered window id and writes new data
• Partial window data before failure will not
appear in data table as transaction was not
committed
• Assumes idempotency for replay
19. Stateful Message Queue
19
• Data is being sent to a stateful message queue like Apache Kafka
• On failure data already sent to message queue should not be re-sent
• Exactly once strategy
ᵒ Sends a key along with data that is monotonically increasing
ᵒ On recovery operator asks the message queue for the last sent message
• Gets the recovery key from the message
ᵒ Ignores all replayed data with key that is less than or equal to the recovered key
ᵒ If the key is not monotonically increasing then data can be sorted on the key at the end
of the window and sent to message queue
• Implemented in operator AbstractExactlyOnceKafkaOutputOperator in
apache/incubator-apex-malhar github repository available here