SlideShare a Scribd company logo
Apache Apex (incubating)
Fault Tolerance and Processing Semantics
Thomas Weise, Architect & Co-founder, PPMC member
Pramod Immaneni, Architect, PPMC member
March 24th 2016
Apache Apex Features
• In-memory Stream Processing
• Partitioning and Scaling out
• Windowing (temporal boundary)
• Reliability
ᵒ Stateful
ᵒ Automatic Recovery
ᵒ Processing Guarantees
• Operability
• Compute Locality
• Dynamic updates
2
Apex Platform Overview
3
Native Hadoop Integration
4
• YARN is
the
resource
manager
• HDFS used
for storing
any
persistent
state
Streaming Windows
5
 Application window
 Sliding window and tumbling window
 Checkpoint window
 No artificial latency
Fault Tolerance
6
• Operator state is checkpointed to persistent store
ᵒ Automatically performed by engine, no additional coding needed
ᵒ Asynchronous and distributed
ᵒ In case of failure operators are restarted from checkpoint state
• Automatic detection and recovery of failed containers
ᵒ Heartbeat mechanism
ᵒ YARN process status notification
• Buffering to enable replay of data from recovered point
ᵒ Fast, incremental recovery, spike handling
• Application master state checkpointed
ᵒ Snapshot of physical (and logical) plan
ᵒ Execution layer change log
Checkpointing Operator State
7
• Save state of operator so that it can be recovered on failure
• Pluggable storage handler
• Default implementation
ᵒ Serialization with Kryo
ᵒ All non-transient fields serialized
ᵒ Serialized state written to HDFS
ᵒ Writes asynchronous, non-blocking
• Possible to implement custom handlers for alternative approach to
extract state or different storage backend (such as IMDG)
• For operators that rely on previous state for computation
ᵒ Operators can be marked @Stateless to skip checkpointing
• Checkpoint frequency tunable (by default 30s)
ᵒ Based on streaming windows for consistent state
• In-memory PubSub
• Stores results emitted by operator until committed
• Handles backpressure / spillover to local disk
• Ordering, idempotency
Operator
1
Container 1
Buffer
Server
Node 1
Operator
2
Container 2
Node 2
Buffer Server
8
Application Master State
9
• Snapshot state on plan change
ᵒ Serialize Physical Plan (includes logical plan)
ᵒ Infrequent, expensive operation
• WAL (Write-ahead-Log) for state changes
ᵒ Execution layer changes
ᵒ Container, operator state, property changes
• Containers locate master through DFS
ᵒ AM can fail and restart, other containers need to find it
ᵒ Work preserving restart
• Recovery
ᵒ YARN restarts application master
ᵒ Apex restores state from snapshot and replays log
• Container process fails
• NM detects
• In case of AM (Apex Application Master), YARN launches replacement
container (for attempt count < max)
• Node Manager Process fails
• RM detects NM failure and notifies AM
• Machine fails
• RM detects NM/AM failure and recovers or notifies AM
• RM fails - RM HA option
• Entire YARN cluster down – stateful restart of Apex application
Failure Scenarios
10
NM NM
Resource
Manager
Apex AM
3
2
1
Apex AM
1 2
3
NM
Failure Scenarios
NM
11
Failure Scenarios
… EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1
sum
0
… EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1
sum
7
… EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1
sum
10
… EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1
sum
7
12
Processing Guarantees
13
At-least-once
• On recovery data will be replayed from a previous checkpoint
ᵒ No messages lost
ᵒ Default, suitable for most applications
• Can be used to ensure data is written once to store
ᵒ Transactions with meta information, Rewinding output, Feedback from
external entity, Idempotent operations
At-most-once
• On recovery the latest data is made available to operator
ᵒ Useful in use cases where some data loss is acceptable and latest data is
sufficient
Exactly-once
ᵒ At-least-once + idempotency + transactional mechanisms (operator logic) to
achieve end-to-end exactly once behavior
End-to-End Exactly Once
14
• Becomes important when writing to external systems
• Data should not be duplicated or lost in the external system even in case of
application failures
• Common external systems
ᵒ Databases
ᵒ Files
ᵒ Message queues
• Platform support for at least once is a must so that no data is lost
• Data duplication must still be avoided when data is replayed from checkpoint
ᵒ Operators implement the logic dependent on the external system
• Aid of platform features such as stateful checkpointing and windowing
• Three different mechanisms with implementations explained in next slides
Files
15
• Streaming data is being written to file on a continuous basis
• Failure at a random point results in file with an unknown amount of data
• Operator works with platform to ensure exactly once
ᵒ Platform responsibility
• Restores state and restarts operator from an earlier checkpoint
• Platform replays data from the exact point after checkpoint
ᵒ Operator responsibility
• Replayed data doesn’t get duplicated in the file
• Accomplishes by keeping track of file offset as state
ᵒ Details in next slide
• Implemented in operator AbstractFileOutputOperator in apache/incubator-
apex-malhar github repository available here
• Example application AtomicFileOutputApp available here
Exactly Once Strategy
16
File Data
Offset
• Operator saves file offset during
checkpoint
• File contents are flushed before
checkpoint to ensure there is no
pending data in buffer
• On recovery platform restores the file
offset value from checkpoint
• Operator truncates the file to the
offset
• Starts writing data again
• Ensures no data is duplicated or lost
Chk
Transactional databases
17
• Use of streaming windows
• For exactly once in failure scenarios
ᵒ Operator uses transactions
ᵒ Stores window id in a separate table in the database
ᵒ Details in next slide
• Implemented in operator AbstractJdbcTransactionableOutputOperator in
apache/incubator-apex-malhar github repository available here
• Example application streaming data in from kafka and writing to a JDBC
database is available here
Exactly Once Strategy
18
d11 d12 d13
d21 d22 d23
lwn1 lwn2 lwn3
op-id wn
chk wn wn+1
Lwn+11 Lwn+12 Lwn+13
op-id wn+1
Data Table
Meta Table
• Data in a window is written out in a single
transaction
• Window id is also written to a meta table
as part of the same transaction
• Operator reads the window id from meta
table on recovery
• Ignores data for windows less than the
recovered window id and writes new data
• Partial window data before failure will not
appear in data table as transaction was not
committed
• Assumes idempotency for replay
Stateful Message Queue
19
• Data is being sent to a stateful message queue like Apache Kafka
• On failure data already sent to message queue should not be re-sent
• Exactly once strategy
ᵒ Sends a key along with data that is monotonically increasing
ᵒ On recovery operator asks the message queue for the last sent message
• Gets the recovery key from the message
ᵒ Ignores all replayed data with key that is less than or equal to the recovered key
ᵒ If the key is not monotonically increasing then data can be sorted on the key at the end
of the window and sent to message queue
• Implemented in operator AbstractExactlyOnceKafkaOutputOperator in
apache/incubator-apex-malhar github repository available here
Resources
20
• Subscribe - http://apex.incubator.apache.org/community.html
• Download - http://apex.incubator.apache.org/downloads.html
• Apex website - http://apex.incubator.apache.org/
• Twitter - @ApacheApex; Follow - https://twitter.com/apacheapex
• Facebook - https://www.facebook.com/ApacheApex/
• Meetup - http://www.meetup.com/topics/apache-apex
Q&A
21

More Related Content

What's hot (20)

Apache Apex Fault Tolerance and Processing Semantics
Apache Apex Fault Tolerance and Processing SemanticsApache Apex Fault Tolerance and Processing Semantics
Apache Apex Fault Tolerance and Processing Semantics
Apache Apex
 
Capital One's Next Generation Decision in less than 2 ms
Capital One's Next Generation Decision in less than 2 msCapital One's Next Generation Decision in less than 2 ms
Capital One's Next Generation Decision in less than 2 ms
Apache Apex
 
Intro to Apache Apex @ Women in Big Data
Intro to Apache Apex @ Women in Big DataIntro to Apache Apex @ Women in Big Data
Intro to Apache Apex @ Women in Big Data
Apache Apex
 
Developing streaming applications with apache apex (strata + hadoop world)
Developing streaming applications with apache apex (strata + hadoop world)Developing streaming applications with apache apex (strata + hadoop world)
Developing streaming applications with apache apex (strata + hadoop world)
Apache Apex
 
Introduction to Apache Apex
Introduction to Apache ApexIntroduction to Apache Apex
Introduction to Apache Apex
Apache Apex
 
DataTorrent Presentation @ Big Data Application Meetup
DataTorrent Presentation @ Big Data Application MeetupDataTorrent Presentation @ Big Data Application Meetup
DataTorrent Presentation @ Big Data Application Meetup
Thomas Weise
 
Introduction to Apache Apex
Introduction to Apache ApexIntroduction to Apache Apex
Introduction to Apache Apex
Apache Apex
 
Building your first aplication using Apache Apex
Building your first aplication using Apache ApexBuilding your first aplication using Apache Apex
Building your first aplication using Apache Apex
Yogi Devendra Vyavahare
 
Apache Apex Meetup at Cask
Apache Apex Meetup at CaskApache Apex Meetup at Cask
Apache Apex Meetup at Cask
Apache Apex
 
Stream data from Apache Kafka for processing with Apache Apex
Stream data from Apache Kafka for processing with Apache ApexStream data from Apache Kafka for processing with Apache Apex
Stream data from Apache Kafka for processing with Apache Apex
Apache Apex
 
Low Latency Polyglot Model Scoring using Apache Apex
Low Latency Polyglot Model Scoring using Apache ApexLow Latency Polyglot Model Scoring using Apache Apex
Low Latency Polyglot Model Scoring using Apache Apex
Apache Apex
 
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and TransformIntro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Apache Apex
 
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache ApexApache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
Apache Apex
 
Java High Level Stream API
Java High Level Stream APIJava High Level Stream API
Java High Level Stream API
Apache Apex
 
Apex as yarn application
Apex as yarn applicationApex as yarn application
Apex as yarn application
Chinmay Kolhatkar
 
Introduction to Apache Apex - CoDS 2016
Introduction to Apache Apex - CoDS 2016Introduction to Apache Apex - CoDS 2016
Introduction to Apache Apex - CoDS 2016
Bhupesh Chawda
 
Ingestion and Dimensions Compute and Enrich using Apache Apex
Ingestion and Dimensions Compute and Enrich using Apache ApexIngestion and Dimensions Compute and Enrich using Apache Apex
Ingestion and Dimensions Compute and Enrich using Apache Apex
Apache Apex
 
Fault-Tolerant File Input & Output
Fault-Tolerant File Input & OutputFault-Tolerant File Input & Output
Fault-Tolerant File Input & Output
Apache Apex
 
IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform
 IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform
IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform
Apache Apex
 
From Batch to Streaming with Apache Apex Dataworks Summit 2017
From Batch to Streaming with Apache Apex Dataworks Summit 2017From Batch to Streaming with Apache Apex Dataworks Summit 2017
From Batch to Streaming with Apache Apex Dataworks Summit 2017
Apache Apex
 
Apache Apex Fault Tolerance and Processing Semantics
Apache Apex Fault Tolerance and Processing SemanticsApache Apex Fault Tolerance and Processing Semantics
Apache Apex Fault Tolerance and Processing Semantics
Apache Apex
 
Capital One's Next Generation Decision in less than 2 ms
Capital One's Next Generation Decision in less than 2 msCapital One's Next Generation Decision in less than 2 ms
Capital One's Next Generation Decision in less than 2 ms
Apache Apex
 
Intro to Apache Apex @ Women in Big Data
Intro to Apache Apex @ Women in Big DataIntro to Apache Apex @ Women in Big Data
Intro to Apache Apex @ Women in Big Data
Apache Apex
 
Developing streaming applications with apache apex (strata + hadoop world)
Developing streaming applications with apache apex (strata + hadoop world)Developing streaming applications with apache apex (strata + hadoop world)
Developing streaming applications with apache apex (strata + hadoop world)
Apache Apex
 
Introduction to Apache Apex
Introduction to Apache ApexIntroduction to Apache Apex
Introduction to Apache Apex
Apache Apex
 
DataTorrent Presentation @ Big Data Application Meetup
DataTorrent Presentation @ Big Data Application MeetupDataTorrent Presentation @ Big Data Application Meetup
DataTorrent Presentation @ Big Data Application Meetup
Thomas Weise
 
Introduction to Apache Apex
Introduction to Apache ApexIntroduction to Apache Apex
Introduction to Apache Apex
Apache Apex
 
Building your first aplication using Apache Apex
Building your first aplication using Apache ApexBuilding your first aplication using Apache Apex
Building your first aplication using Apache Apex
Yogi Devendra Vyavahare
 
Apache Apex Meetup at Cask
Apache Apex Meetup at CaskApache Apex Meetup at Cask
Apache Apex Meetup at Cask
Apache Apex
 
Stream data from Apache Kafka for processing with Apache Apex
Stream data from Apache Kafka for processing with Apache ApexStream data from Apache Kafka for processing with Apache Apex
Stream data from Apache Kafka for processing with Apache Apex
Apache Apex
 
Low Latency Polyglot Model Scoring using Apache Apex
Low Latency Polyglot Model Scoring using Apache ApexLow Latency Polyglot Model Scoring using Apache Apex
Low Latency Polyglot Model Scoring using Apache Apex
Apache Apex
 
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and TransformIntro to Apache Apex - Next Gen Platform for Ingest and Transform
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Apache Apex
 
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache ApexApache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
Apache Apex
 
Java High Level Stream API
Java High Level Stream APIJava High Level Stream API
Java High Level Stream API
Apache Apex
 
Introduction to Apache Apex - CoDS 2016
Introduction to Apache Apex - CoDS 2016Introduction to Apache Apex - CoDS 2016
Introduction to Apache Apex - CoDS 2016
Bhupesh Chawda
 
Ingestion and Dimensions Compute and Enrich using Apache Apex
Ingestion and Dimensions Compute and Enrich using Apache ApexIngestion and Dimensions Compute and Enrich using Apache Apex
Ingestion and Dimensions Compute and Enrich using Apache Apex
Apache Apex
 
Fault-Tolerant File Input & Output
Fault-Tolerant File Input & OutputFault-Tolerant File Input & Output
Fault-Tolerant File Input & Output
Apache Apex
 
IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform
 IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform
IoT Ingestion & Analytics using Apache Apex - A Native Hadoop Platform
Apache Apex
 
From Batch to Streaming with Apache Apex Dataworks Summit 2017
From Batch to Streaming with Apache Apex Dataworks Summit 2017From Batch to Streaming with Apache Apex Dataworks Summit 2017
From Batch to Streaming with Apache Apex Dataworks Summit 2017
Apache Apex
 

Viewers also liked (19)

Introduction to Real-time data processing
Introduction to Real-time data processingIntroduction to Real-time data processing
Introduction to Real-time data processing
Yogi Devendra Vyavahare
 
Harvesting the Power of Samza in LinkedIn's Feed
Harvesting the Power of Samza in LinkedIn's FeedHarvesting the Power of Samza in LinkedIn's Feed
Harvesting the Power of Samza in LinkedIn's Feed
Mohamed El-Geish
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
DataWorks Summit/Hadoop Summit
 
Lambda-less Stream Processing @Scale in LinkedIn
Lambda-less Stream Processing @Scale in LinkedIn Lambda-less Stream Processing @Scale in LinkedIn
Lambda-less Stream Processing @Scale in LinkedIn
DataWorks Summit/Hadoop Summit
 
Apache Gearpump - Lightweight Real-time Streaming Engine
Apache Gearpump - Lightweight Real-time Streaming EngineApache Gearpump - Lightweight Real-time Streaming Engine
Apache Gearpump - Lightweight Real-time Streaming Engine
Tianlun Zhang
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
Yousun Jeong
 
Sensing the world with Data of Things
Sensing the world with Data of ThingsSensing the world with Data of Things
Sensing the world with Data of Things
Sriskandarajah Suhothayan
 
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017
Viktor Gamov
 
Gearpump akka streams
Gearpump akka streamsGearpump akka streams
Gearpump akka streams
Kam Kasravi
 
Introduction to Apache Apex by Thomas Weise
Introduction to Apache Apex by Thomas WeiseIntroduction to Apache Apex by Thomas Weise
Introduction to Apache Apex by Thomas Weise
Big Data Spain
 
fluent-plugin-norikra #fluentdcasual
fluent-plugin-norikra #fluentdcasualfluent-plugin-norikra #fluentdcasual
fluent-plugin-norikra #fluentdcasual
SATOSHI TAGOMORI
 
Apache Big Data EU 2016: Building Streaming Applications with Apache Apex
Apache Big Data EU 2016: Building Streaming Applications with Apache ApexApache Big Data EU 2016: Building Streaming Applications with Apache Apex
Apache Big Data EU 2016: Building Streaming Applications with Apache Apex
Apache Apex
 
Deep Dive into Apache Apex App Development
Deep Dive into Apache Apex App DevelopmentDeep Dive into Apache Apex App Development
Deep Dive into Apache Apex App Development
Apache Apex
 
Hadoop admiin demo
Hadoop admiin demoHadoop admiin demo
Hadoop admiin demo
sparrowAnalytics.com
 
Apache spark basics
Apache spark basicsApache spark basics
Apache spark basics
sparrowAnalytics.com
 
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Helena Edelson
 
Big data ppt
Big data pptBig data ppt
Big data ppt
IDBI Bank Ltd.
 
What is Big Data?
What is Big Data?What is Big Data?
What is Big Data?
Bernard Marr
 
Big data ppt
Big  data pptBig  data ppt
Big data ppt
Nasrin Hussain
 
Introduction to Real-time data processing
Introduction to Real-time data processingIntroduction to Real-time data processing
Introduction to Real-time data processing
Yogi Devendra Vyavahare
 
Harvesting the Power of Samza in LinkedIn's Feed
Harvesting the Power of Samza in LinkedIn's FeedHarvesting the Power of Samza in LinkedIn's Feed
Harvesting the Power of Samza in LinkedIn's Feed
Mohamed El-Geish
 
Apache Gearpump - Lightweight Real-time Streaming Engine
Apache Gearpump - Lightweight Real-time Streaming EngineApache Gearpump - Lightweight Real-time Streaming Engine
Apache Gearpump - Lightweight Real-time Streaming Engine
Tianlun Zhang
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
Yousun Jeong
 
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017
[NYJavaSig] Riding the Distributed Streams - Feb 2nd, 2017
Viktor Gamov
 
Gearpump akka streams
Gearpump akka streamsGearpump akka streams
Gearpump akka streams
Kam Kasravi
 
Introduction to Apache Apex by Thomas Weise
Introduction to Apache Apex by Thomas WeiseIntroduction to Apache Apex by Thomas Weise
Introduction to Apache Apex by Thomas Weise
Big Data Spain
 
fluent-plugin-norikra #fluentdcasual
fluent-plugin-norikra #fluentdcasualfluent-plugin-norikra #fluentdcasual
fluent-plugin-norikra #fluentdcasual
SATOSHI TAGOMORI
 
Apache Big Data EU 2016: Building Streaming Applications with Apache Apex
Apache Big Data EU 2016: Building Streaming Applications with Apache ApexApache Big Data EU 2016: Building Streaming Applications with Apache Apex
Apache Big Data EU 2016: Building Streaming Applications with Apache Apex
Apache Apex
 
Deep Dive into Apache Apex App Development
Deep Dive into Apache Apex App DevelopmentDeep Dive into Apache Apex App Development
Deep Dive into Apache Apex App Development
Apache Apex
 
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Helena Edelson
 
Ad

Similar to Fault Tolerance and Processing Semantics in Apache Apex (19)

February 2017 HUG: Exactly-once end-to-end processing with Apache Apex
February 2017 HUG: Exactly-once end-to-end processing with Apache ApexFebruary 2017 HUG: Exactly-once end-to-end processing with Apache Apex
February 2017 HUG: Exactly-once end-to-end processing with Apache Apex
Yahoo Developer Network
 
Real-time Stream Processing using Apache Apex
Real-time Stream Processing using Apache ApexReal-time Stream Processing using Apache Apex
Real-time Stream Processing using Apache Apex
Apache Apex
 
Apache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data 2016: Next Gen Big Data Analytics with Apache ApexApache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Apache Apex
 
Apache Apex: Stream Processing Architecture and Applications
Apache Apex: Stream Processing Architecture and Applications Apache Apex: Stream Processing Architecture and Applications
Apache Apex: Stream Processing Architecture and Applications
Comsysto Reply GmbH
 
Intro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Intro to Apache Apex - Next Gen Native Hadoop Platform - HackacIntro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Intro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Apache Apex
 
BigDataSpain 2016: Introduction to Apache Apex
BigDataSpain 2016: Introduction to Apache ApexBigDataSpain 2016: Introduction to Apache Apex
BigDataSpain 2016: Introduction to Apache Apex
Thomas Weise
 
Next Gen Big Data Analytics with Apache Apex
Next Gen Big Data Analytics with Apache Apex Next Gen Big Data Analytics with Apache Apex
Next Gen Big Data Analytics with Apache Apex
DataWorks Summit/Hadoop Summit
 
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)
Apache Apex
 
Stateful streaming data pipelines
Stateful streaming data pipelinesStateful streaming data pipelines
Stateful streaming data pipelines
Timothy Farkas
 
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Dataconomy Media
 
Big Data Berlin v8.0 Stream Processing with Apache Apex
Big Data Berlin v8.0 Stream Processing with Apache Apex Big Data Berlin v8.0 Stream Processing with Apache Apex
Big Data Berlin v8.0 Stream Processing with Apache Apex
Apache Apex
 
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lightbend
 
#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics
#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics
#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics
PivotalOpenSourceHub
 
Apex & Geode: In-memory streaming, storage & analytics
Apex & Geode: In-memory streaming, storage & analyticsApex & Geode: In-memory streaming, storage & analytics
Apex & Geode: In-memory streaming, storage & analytics
Ashish Tadose
 
Hadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorialHadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorial
hadooparchbook
 
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra TagareActionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Apache Apex
 
Next-Gen Decision Making in Under 2ms
Next-Gen Decision Making in Under 2msNext-Gen Decision Making in Under 2ms
Next-Gen Decision Making in Under 2ms
Ilya Ganelin
 
Stream Processing use cases and applications with Apache Apex by Thomas Weise
Stream Processing use cases and applications with Apache Apex by Thomas WeiseStream Processing use cases and applications with Apache Apex by Thomas Weise
Stream Processing use cases and applications with Apache Apex by Thomas Weise
Big Data Spain
 
Hadoop Application Architectures - Fraud Detection
Hadoop Application Architectures - Fraud  DetectionHadoop Application Architectures - Fraud  Detection
Hadoop Application Architectures - Fraud Detection
hadooparchbook
 
February 2017 HUG: Exactly-once end-to-end processing with Apache Apex
February 2017 HUG: Exactly-once end-to-end processing with Apache ApexFebruary 2017 HUG: Exactly-once end-to-end processing with Apache Apex
February 2017 HUG: Exactly-once end-to-end processing with Apache Apex
Yahoo Developer Network
 
Real-time Stream Processing using Apache Apex
Real-time Stream Processing using Apache ApexReal-time Stream Processing using Apache Apex
Real-time Stream Processing using Apache Apex
Apache Apex
 
Apache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data 2016: Next Gen Big Data Analytics with Apache ApexApache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Apache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Apache Apex
 
Apache Apex: Stream Processing Architecture and Applications
Apache Apex: Stream Processing Architecture and Applications Apache Apex: Stream Processing Architecture and Applications
Apache Apex: Stream Processing Architecture and Applications
Comsysto Reply GmbH
 
Intro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Intro to Apache Apex - Next Gen Native Hadoop Platform - HackacIntro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Intro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Apache Apex
 
BigDataSpain 2016: Introduction to Apache Apex
BigDataSpain 2016: Introduction to Apache ApexBigDataSpain 2016: Introduction to Apache Apex
BigDataSpain 2016: Introduction to Apache Apex
Thomas Weise
 
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)
GE IOT Predix Time Series & Data Ingestion Service using Apache Apex (Hadoop)
Apache Apex
 
Stateful streaming data pipelines
Stateful streaming data pipelinesStateful streaming data pipelines
Stateful streaming data pipelines
Timothy Farkas
 
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Dataconomy Media
 
Big Data Berlin v8.0 Stream Processing with Apache Apex
Big Data Berlin v8.0 Stream Processing with Apache Apex Big Data Berlin v8.0 Stream Processing with Apache Apex
Big Data Berlin v8.0 Stream Processing with Apache Apex
Apache Apex
 
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lightbend
 
#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics
#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics
#GeodeSummit - Apex & Geode: In-memory streaming, storage & analytics
PivotalOpenSourceHub
 
Apex & Geode: In-memory streaming, storage & analytics
Apex & Geode: In-memory streaming, storage & analyticsApex & Geode: In-memory streaming, storage & analytics
Apex & Geode: In-memory streaming, storage & analytics
Ashish Tadose
 
Hadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorialHadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorial
hadooparchbook
 
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra TagareActionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Apache Apex
 
Next-Gen Decision Making in Under 2ms
Next-Gen Decision Making in Under 2msNext-Gen Decision Making in Under 2ms
Next-Gen Decision Making in Under 2ms
Ilya Ganelin
 
Stream Processing use cases and applications with Apache Apex by Thomas Weise
Stream Processing use cases and applications with Apache Apex by Thomas WeiseStream Processing use cases and applications with Apache Apex by Thomas Weise
Stream Processing use cases and applications with Apache Apex by Thomas Weise
Big Data Spain
 
Hadoop Application Architectures - Fraud Detection
Hadoop Application Architectures - Fraud  DetectionHadoop Application Architectures - Fraud  Detection
Hadoop Application Architectures - Fraud Detection
hadooparchbook
 
Ad

Recently uploaded (20)

Improving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevExImproving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevEx
Justin Reock
 
Palo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity FoundationPalo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity Foundation
VICTOR MAESTRE RAMIREZ
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
AI Trends - Mary Meeker
AI Trends - Mary MeekerAI Trends - Mary Meeker
AI Trends - Mary Meeker
Razin Mustafiz
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
LSNIF: Locally-Subdivided Neural Intersection Function
LSNIF: Locally-Subdivided Neural Intersection FunctionLSNIF: Locally-Subdivided Neural Intersection Function
LSNIF: Locally-Subdivided Neural Intersection Function
Takahiro Harada
 
Fortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in CybersecurityFortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in Cybersecurity
VICTOR MAESTRE RAMIREZ
 
Microsoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentationMicrosoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentation
Digitalmara
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
The case for on-premises AI
The case for on-premises AIThe case for on-premises AI
The case for on-premises AI
Principled Technologies
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
Improving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevExImproving Developer Productivity With DORA, SPACE, and DevEx
Improving Developer Productivity With DORA, SPACE, and DevEx
Justin Reock
 
Palo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity FoundationPalo Alto Networks Cybersecurity Foundation
Palo Alto Networks Cybersecurity Foundation
VICTOR MAESTRE RAMIREZ
 
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptxECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
ECS25 - The adventures of a Microsoft 365 Platform Owner - Website.pptx
Jasper Oosterveld
 
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath InsightsUiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPath Community Berlin: Studio Tips & Tricks and UiPath Insights
UiPathCommunity
 
Droidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing HealthcareDroidal: AI Agents Revolutionizing Healthcare
Droidal: AI Agents Revolutionizing Healthcare
Droidal LLC
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
6th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 20256th Power Grid Model Meetup - 21 May 2025
6th Power Grid Model Meetup - 21 May 2025
DanBrown980551
 
AI Trends - Mary Meeker
AI Trends - Mary MeekerAI Trends - Mary Meeker
AI Trends - Mary Meeker
Razin Mustafiz
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Agentic AI Explained: The Next Frontier of Autonomous Intelligence & Generati...
Aaryan Kansari
 
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Nix(OS) for Python Developers - PyCon 25 (Bologna, Italia)
Peter Bittner
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
TrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy ContractingTrustArc Webinar: Mastering Privacy Contracting
TrustArc Webinar: Mastering Privacy Contracting
TrustArc
 
Data Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any ApplicationData Virtualization: Bringing the Power of FME to Any Application
Data Virtualization: Bringing the Power of FME to Any Application
Safe Software
 
LSNIF: Locally-Subdivided Neural Intersection Function
LSNIF: Locally-Subdivided Neural Intersection FunctionLSNIF: Locally-Subdivided Neural Intersection Function
LSNIF: Locally-Subdivided Neural Intersection Function
Takahiro Harada
 
Fortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in CybersecurityFortinet Certified Associate in Cybersecurity
Fortinet Certified Associate in Cybersecurity
VICTOR MAESTRE RAMIREZ
 
Microsoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentationMicrosoft Build 2025 takeaways in one presentation
Microsoft Build 2025 takeaways in one presentation
Digitalmara
 
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyesEnd-to-end Assurance for SD-WAN & SASE with ThousandEyes
End-to-end Assurance for SD-WAN & SASE with ThousandEyes
ThousandEyes
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 

Fault Tolerance and Processing Semantics in Apache Apex

  • 1. Apache Apex (incubating) Fault Tolerance and Processing Semantics Thomas Weise, Architect & Co-founder, PPMC member Pramod Immaneni, Architect, PPMC member March 24th 2016
  • 2. Apache Apex Features • In-memory Stream Processing • Partitioning and Scaling out • Windowing (temporal boundary) • Reliability ᵒ Stateful ᵒ Automatic Recovery ᵒ Processing Guarantees • Operability • Compute Locality • Dynamic updates 2
  • 4. Native Hadoop Integration 4 • YARN is the resource manager • HDFS used for storing any persistent state
  • 5. Streaming Windows 5  Application window  Sliding window and tumbling window  Checkpoint window  No artificial latency
  • 6. Fault Tolerance 6 • Operator state is checkpointed to persistent store ᵒ Automatically performed by engine, no additional coding needed ᵒ Asynchronous and distributed ᵒ In case of failure operators are restarted from checkpoint state • Automatic detection and recovery of failed containers ᵒ Heartbeat mechanism ᵒ YARN process status notification • Buffering to enable replay of data from recovered point ᵒ Fast, incremental recovery, spike handling • Application master state checkpointed ᵒ Snapshot of physical (and logical) plan ᵒ Execution layer change log
  • 7. Checkpointing Operator State 7 • Save state of operator so that it can be recovered on failure • Pluggable storage handler • Default implementation ᵒ Serialization with Kryo ᵒ All non-transient fields serialized ᵒ Serialized state written to HDFS ᵒ Writes asynchronous, non-blocking • Possible to implement custom handlers for alternative approach to extract state or different storage backend (such as IMDG) • For operators that rely on previous state for computation ᵒ Operators can be marked @Stateless to skip checkpointing • Checkpoint frequency tunable (by default 30s) ᵒ Based on streaming windows for consistent state
  • 8. • In-memory PubSub • Stores results emitted by operator until committed • Handles backpressure / spillover to local disk • Ordering, idempotency Operator 1 Container 1 Buffer Server Node 1 Operator 2 Container 2 Node 2 Buffer Server 8
  • 9. Application Master State 9 • Snapshot state on plan change ᵒ Serialize Physical Plan (includes logical plan) ᵒ Infrequent, expensive operation • WAL (Write-ahead-Log) for state changes ᵒ Execution layer changes ᵒ Container, operator state, property changes • Containers locate master through DFS ᵒ AM can fail and restart, other containers need to find it ᵒ Work preserving restart • Recovery ᵒ YARN restarts application master ᵒ Apex restores state from snapshot and replays log
  • 10. • Container process fails • NM detects • In case of AM (Apex Application Master), YARN launches replacement container (for attempt count < max) • Node Manager Process fails • RM detects NM failure and notifies AM • Machine fails • RM detects NM/AM failure and recovers or notifies AM • RM fails - RM HA option • Entire YARN cluster down – stateful restart of Apex application Failure Scenarios 10
  • 11. NM NM Resource Manager Apex AM 3 2 1 Apex AM 1 2 3 NM Failure Scenarios NM 11
  • 12. Failure Scenarios … EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1 sum 0 … EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1 sum 7 … EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1 sum 10 … EW2, 1, 3, BW2, EW1, 4, 2, 1, BW1 sum 7 12
  • 13. Processing Guarantees 13 At-least-once • On recovery data will be replayed from a previous checkpoint ᵒ No messages lost ᵒ Default, suitable for most applications • Can be used to ensure data is written once to store ᵒ Transactions with meta information, Rewinding output, Feedback from external entity, Idempotent operations At-most-once • On recovery the latest data is made available to operator ᵒ Useful in use cases where some data loss is acceptable and latest data is sufficient Exactly-once ᵒ At-least-once + idempotency + transactional mechanisms (operator logic) to achieve end-to-end exactly once behavior
  • 14. End-to-End Exactly Once 14 • Becomes important when writing to external systems • Data should not be duplicated or lost in the external system even in case of application failures • Common external systems ᵒ Databases ᵒ Files ᵒ Message queues • Platform support for at least once is a must so that no data is lost • Data duplication must still be avoided when data is replayed from checkpoint ᵒ Operators implement the logic dependent on the external system • Aid of platform features such as stateful checkpointing and windowing • Three different mechanisms with implementations explained in next slides
  • 15. Files 15 • Streaming data is being written to file on a continuous basis • Failure at a random point results in file with an unknown amount of data • Operator works with platform to ensure exactly once ᵒ Platform responsibility • Restores state and restarts operator from an earlier checkpoint • Platform replays data from the exact point after checkpoint ᵒ Operator responsibility • Replayed data doesn’t get duplicated in the file • Accomplishes by keeping track of file offset as state ᵒ Details in next slide • Implemented in operator AbstractFileOutputOperator in apache/incubator- apex-malhar github repository available here • Example application AtomicFileOutputApp available here
  • 16. Exactly Once Strategy 16 File Data Offset • Operator saves file offset during checkpoint • File contents are flushed before checkpoint to ensure there is no pending data in buffer • On recovery platform restores the file offset value from checkpoint • Operator truncates the file to the offset • Starts writing data again • Ensures no data is duplicated or lost Chk
  • 17. Transactional databases 17 • Use of streaming windows • For exactly once in failure scenarios ᵒ Operator uses transactions ᵒ Stores window id in a separate table in the database ᵒ Details in next slide • Implemented in operator AbstractJdbcTransactionableOutputOperator in apache/incubator-apex-malhar github repository available here • Example application streaming data in from kafka and writing to a JDBC database is available here
  • 18. Exactly Once Strategy 18 d11 d12 d13 d21 d22 d23 lwn1 lwn2 lwn3 op-id wn chk wn wn+1 Lwn+11 Lwn+12 Lwn+13 op-id wn+1 Data Table Meta Table • Data in a window is written out in a single transaction • Window id is also written to a meta table as part of the same transaction • Operator reads the window id from meta table on recovery • Ignores data for windows less than the recovered window id and writes new data • Partial window data before failure will not appear in data table as transaction was not committed • Assumes idempotency for replay
  • 19. Stateful Message Queue 19 • Data is being sent to a stateful message queue like Apache Kafka • On failure data already sent to message queue should not be re-sent • Exactly once strategy ᵒ Sends a key along with data that is monotonically increasing ᵒ On recovery operator asks the message queue for the last sent message • Gets the recovery key from the message ᵒ Ignores all replayed data with key that is less than or equal to the recovered key ᵒ If the key is not monotonically increasing then data can be sorted on the key at the end of the window and sent to message queue • Implemented in operator AbstractExactlyOnceKafkaOutputOperator in apache/incubator-apex-malhar github repository available here
  • 20. Resources 20 • Subscribe - http://apex.incubator.apache.org/community.html • Download - http://apex.incubator.apache.org/downloads.html • Apex website - http://apex.incubator.apache.org/ • Twitter - @ApacheApex; Follow - https://twitter.com/apacheapex • Facebook - https://www.facebook.com/ApacheApex/ • Meetup - http://www.meetup.com/topics/apache-apex