July Tech Festa 2018での発表資料です。
数十のプロダクトのデータを一手に集め、処理を回すリクルートライフスタイルのビックデータ分析基盤。
分析基盤を開発・運用する我々は、データドリブンな組織を目指すためにマーケティング手法の一つであるカスタマーセントリック戦略を取り入れています。
カスタマセントリックな基盤を実現するために、どのような取り組みを行なっているかをご紹介いたします。
リクルートライフスタイル 白子 佳孝
This document summarizes a presentation about the technologies that support Gathery, a C2C service within Recruit Lifestyle. It discusses how Gathery leverages AWS technologies like ElastiCache, CloudSearch, S3, and auto-scaling to reduce costs, improve scalability and ease of operations compared to an on-premises solution. It also explains challenges of developing new services within a large company like restrictions on modifying DNS or security groups, and how they are working to address issues like internal API access control. The presentation focuses on how engineering culture and challenges are fun and interesting parts of growing a business and technology together.
July Tech Festa 2018での発表資料です。
数十のプロダクトのデータを一手に集め、処理を回すリクルートライフスタイルのビックデータ分析基盤。
分析基盤を開発・運用する我々は、データドリブンな組織を目指すためにマーケティング手法の一つであるカスタマーセントリック戦略を取り入れています。
カスタマセントリックな基盤を実現するために、どのような取り組みを行なっているかをご紹介いたします。
リクルートライフスタイル 白子 佳孝
This document summarizes a presentation about the technologies that support Gathery, a C2C service within Recruit Lifestyle. It discusses how Gathery leverages AWS technologies like ElastiCache, CloudSearch, S3, and auto-scaling to reduce costs, improve scalability and ease of operations compared to an on-premises solution. It also explains challenges of developing new services within a large company like restrictions on modifying DNS or security groups, and how they are working to address issues like internal API access control. The presentation focuses on how engineering culture and challenges are fun and interesting parts of growing a business and technology together.
Cloudera World Tokyo 2014 のライトニングセッションで使用したスライドです。
Cloudera World Tokyo 2014: http://www.cloudera.co.jp/jpevents/cwt2014
This document appears to be test results from running the Yahoo! Cloud Serving Benchmark on a system. It includes performance metrics like request latency distributions and throughput for different request sizes and concurrency levels. Various graphs and tables are presented showing results from multiple benchmark runs. The benchmark was run to test the performance of the system for serving requests in a cloud computing environment.
The Future of Hadoop: A deeper look at Apache SparkCloudera, Inc.
Jai Ranganathan, Senior Director of Product Management, discusses why Spark has experienced such wide adoption and provide a technical deep dive into the architecture. Additionally, he presents some use cases in production today. Finally, he shares our vision for the Hadoop ecosystem and why we believe Spark is the successor to MapReduce for Hadoop data processing.
Technologies for Data Analytics PlatformN Masahiro
This document discusses building a data analytics platform and summarizes various technologies that can be used. It begins by outlining reasons for analyzing data like reporting, monitoring, and exploratory analysis. It then discusses using relational databases, parallel databases, Hadoop, and columnar storage to store and process large volumes of data. Streaming technologies like Storm, Kafka, and services like Redshift, BigQuery, and Treasure Data are also summarized as options for a complete analytics platform.
2019/02/05 開催の「ソフトウェアジャパン2019」での発表資料です。データから価値を生み続けるための答えとその実現方法について、リクルートライフスタイルで年間十数億円稼ぐ CET チームならではの知見を共有します。
https://www.ipsj.or.jp/event/sj/sj2019/
This document summarizes the discussions from the OOUI Working Group meeting on October 26, 2020. It discusses several topics relating to OOUI, including defining OOUI, principles of OOUI, examples of CRUD interfaces, the relationship between UI and UX, and formatting data in CSV files. The working group aims to establish best practices and standards for developing open and accessible user interfaces.