一文读懂选择Qwen做RAG应用的全过程(1)

Qwen 系列模型因其在中文领域的出色表现和开源开放的特性,成为了 RAG 架构中一个非常实用的选择。


1. 模型选择:Qwen 系列模型的不同版本

Qwen 模型家族有很多成员,选择哪个取决于你的具体需求和硬件资源。

  • Qwen2-7B-Instruct这是一个非常理想的起点。它的参数量适中,能够在消费级显卡(如 NVIDIA 3090、4090)上轻松部署。7B 模型的性能已经足够强大,可以处理大多数 RAG 任务。它的 Instruct 版本经过了指令微调,更适合直接作为问答模型使用。

  • Qwen1.5-14B-Chat:如果你对模型的性能有更高要求,但又不想完全依赖超大模型,这个版本是一个很好的折中。它的性能比 7B 更强,但需要更多的显存(可能需要 A10G 或更高配置的显卡)。

  • Qwen2-57B-A14B:这是一个混合专家模型(MoE)。它的性能非常出色,但在推理时会消耗更多资源。如果你有强大的硬件基础设施,并且追求极致的性能,可以考虑这个模型。但对于初创项目或资源有限的团队来说,7B 或 14B 模型是更务实的选择

我的建议是:从 Qwen2-7B-Instruct 开始。 它在性能、成本和部署难度上找到了一个很好的平衡点,非常适合 RAG 实践。


2. RAG 流程的具体建议

选择了模型后,RAG 的整个工作流至关重要。我们可以将它分解为三个主要步骤:数据准备、检索、生成

a. 数据准备(Embedding & Vector Store)

这是 RAG 的基石。你需要将自己的知识库(如 PDF 文档、Word 文件等)处理成可供检索的格式。

  • 分块(Chunking):将长文档切分成小块。这一步非常重要。如果块太大,检索时会引入大量无关信息;如果块太小,则会丢失上下文。你需要根据文档类型和内容来调整块的大小和重叠度。例如,对于技术文档,可以按段落或章节进行切分。

  • 嵌入模型(Embedding Model):用于将文本块转换成向量。我建议使用专门针对中文和 RAG 优化的嵌入模型,例如 BGE-M3m3e-base。它们在语义理解上比通用模型更出色,能显著提升检索的准确性。

  • 向量数据库(Vector Database):用于存储和检索向量。可以选择 ChromaDBMilvusFaiss。如果数据量不大,ChromaDB 简单易用;如果数据量大且需要高可用性,Milvus 会是更好的选择。

b. 检索(Retrieval)

当用户提问时,你需要从知识库中找到最相关的文本块。

  • 相似度搜索:使用用户问题的向量,在向量数据库中进行相似度搜索,找到与问题最匹配的几个文本块。

  • 元数据过滤:如果你的文档有元数据(如作者、日期、来源),在检索时可以结合这些信息进行过滤,进一步提升相关性。

c. 生成(Generation)

这是 Qwen 模型发挥作用的地方。

  • 构建 Prompt:将检索到的相关文本块和用户的原始问题,一起组织成一个完整的 Prompt,作为输入喂给 Qwen 模型。这个 Prompt 的质量直接决定了最终答案的好坏。你可以使用一些模板来构建 Prompt,明确告诉模型它的角色、任务,并要求它只根据提供的上下文来回答。

  • 模型调用:使用 Hugging Face Transformers 等库加载 Qwen 模型,并调用它来生成答案。

3. 性能与优化

在实际部署时,你还需要考虑如何优化性能。

  • 模型量化:对于 Qwen-7B,可以尝试将其量化到 INT4 或 INT8。这会显著减少显存占用,并提升推理速度,同时对性能影响很小。
  • 推理框架:使用像 vLLM 这样的高性能推理框架,可以利用其高效的调度和内存管理,大幅提升吞吐量。

总结一下,选择 Qwen2-7B-Instruct 作为你的生成模型,并配合一个优质的中文嵌入模型,是落地 RAG 的一个非常稳健的方案。 从这套组合开始,你可以快速搭建起 RAG 架构,并根据实际效果再进行迭代优化。

### Qwen 2.5 RAG 实现细节 Qwen 2.5 的检索增强生成 (RAG, Retrieval-Augmented Generation) 功能旨在通过结合外部数据源来提高大型语言模型在特定应用场景下的性能。具体来说,在处理知识密集型任务时,该方法能够显著改善模型的表现。 #### 架构概述 为了实现这一目标,Qwen 2.5 设计了一套完整的框架用于集成检索模块与生成模块: - **检索部分**:负责从预先构建的知识库中提取最相关的文档片段作为上下文信息提供给后续阶段; - **融合机制**:将上述获得的外部证据同原始输入一起送入到编码器内部进行联合表示学习; - **解码过程**:基于更新后的隐状态序列来进行最终输出预测[^1]。 #### 技术要点 以下是几个关键技术点说明如何有效地支持高效而精准的信息检索以及高质量的回答生成: - 使用高效的索引结构加速近似最近邻搜索速度,从而实现在大规模语料上快速定位相似条目; - 应用双塔架构分别对查询项和候选集建模以便更好地捕捉两者间潜在关联模式; - 引入多实例学习策略优化整个系统的端到端训练流程,确保所选背景资料确实有助于提升下游任务效果[^2]。 ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration tokenizer = RagTokenizer.from_pretrained("qwen/Qwen-2.5-Rag") retriever = RagRetriever.from_pretrained("qwen/Qwen-2.5-Retriever", index_name="exact", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("qwen/Qwen-2.5") input_dict = tokenizer.prepare_seq2seq_batch( ["What is the capital of France?"], return_tensors="pt" ) outputs = model.generate(input_ids=input_dict["input_ids"], retriever=retriever) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ``` 此代码展示了加载预训练好的Qwen 2.5 RAG模型并执行简单问答的过程。注意这里使用了一个虚拟的数据集来演示用途,在实际部署环境中应当替换为真实可靠的资源链接。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值