在 RAG 场景下,对嵌入模型进行调优可以带来巨大的收益。
为什么需要调优嵌入模型?
开源的通用嵌入模型,比如 BGE-M3,虽然在各种任务上表现都不错,但它毕竟是“通用”的。你的特定领域知识、专业术语或独特的文本结构,通用模型可能无法完全理解。
例如,在医疗领域,“ECG” 和 “EKG” 都是心电图,但通用模型可能认为它们是两个不相关的词。通过调优,你可以教模型理解这类同义词和专业术语,从而在检索时能更精确地匹配用户的问题。
如何调优嵌入模型?
调优嵌入模型的过程,和我们前面讨论的大模型微调有些类似,但数据和目标不同。
1. 数据准备:构建高质量的训练集
这是最关键的一步。你需要准备一个包含正样本和负样本的数据集。
- 正样本:一对语义相似的文本。例如,一个问题和它对应的标准答案。
- 负样本:一对语义不相似的文本。例如,一个问题和另一个完全不相关的答案。
数据的质量直接决定了调优后的模型效果。你可以从你的知识库中手动或半自动地构建这些数据。
2. 选择调优方法
- 有监督微调:这是最常见的方法。你可以使用 Contrastive Learning(对比学习) 的思想,通过一个三元组(Anchor, Positive, Negative)来训练模型。目标是让 Anchor 和 Positive 之间的向量距离更近,同时让 Anchor 和 Negative 之间的距离更远。
- 无监督微调:如果你没有大量的标注数据,也可以尝试无监督方法。例如,使用数据增强技术来生成正样本,或者通过聚类等方式来构建负样本。
- LoRA 微调:同样,你可以使用 LoRA 这种高效的微调技术来调优嵌入模型,这能大大降低硬件资源消耗。
3. 使用开源工具
社区提供了很多方便的工具来简化嵌入模型的调优。
- Sentence-Transformers:这是一个非常流行的库,它提供了大量预训练的嵌入模型,并且内置了各种微调方法,让你可以轻松地用自己的数据进行训练。
- Hugging Face Transformers:你也可以直接使用 Transformers 库,加载一个预训练模型,然后自己编写训练循环。
总结
对嵌入模型进行调优是一个非常值得投入的优化方向。它能直接提升 RAG 系统的检索精度,解决通用模型在特定领域表现不佳的问题。
- 如果你的知识库是通用知识,那么直接使用像 BGE-M3 这样的开源嵌入模型就足够了。
- 如果你的知识库是高度垂直的、包含大量专业术语,那么投入时间去调优嵌入模型会是一个非常明智的决定。
调优后,你得到的嵌入模型会更懂你的数据,从而让 RAG 系统的整体效果更上一层楼。