LLM实践系列:利用LLM重构数据科学流程03- LLM驱动的数据探索与清洗

第3章:LLM驱动的数据探索与清洗

在传统的数据科学流程中,数据探索与清洗是耗时最长、最依赖人工的环节。它就像是为一场盛大晚宴准备食材,需要仔细清洗、去皮、切块,容不得半点马虎。但如果有一个智能助手能帮你完成这些繁琐的工作,情况又会如何呢?

本章,我们将以一个预测客户流失的电商数据集为例,演示如何利用LLM作为你的“智能数据管家”,高效地完成数据探索与清洗。

案例背景:预测电商客户流失

假设我们拥有一个名为 customer_data.csv 的数据集,它包含以下字段:

  • customer_id:客户唯一ID
  • age:客户年龄
  • city:客户所在城市
  • join_date:注册日期
  • last_purchase_date:最后一次购买日期
  • total_spend:总消费金额
  • churned:是否流失(1为流失,0为未流失)

我们希望用这些数据构建一个模型来预测客户流失,而首要任务就是对数据进行清洗和准备。

1. 初步探索:让LLM发现数据中的“脏东西”

传统做法:

数据科学家会手动编写代码,例如使用 df.info() 或 df

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值