第4章:智能特征工程:LLM的创造力与自动化
如果说数据清洗是为食材去芜存菁,那么特征工程就是将其烹制成美味佳肴。这是数据科学中最具创造性,也最依赖经验的环节。它决定了模型的“上限”,但同时也是一个众所周知的“瓶颈”。
在本章中,我们将继续沿用上章的客户流失预测项目,展示如何利用LLM,将特征工程从一门依赖人工的“艺术”,转变为一个高效、可自动化的过程。
1. 特征构思:让LLM成为你的“业务顾问”
传统做法:
数据科学家需要深入理解业务,构思出如RFM(近期消费、消费频率、消费金额)这样的经典特征,并手动创建。这通常需要花费大量时间与业务团队沟通。
LLM驱动的做法:
我们可以将业务背景和数据字段直接告诉LLM,让它像一个经验丰富的业务顾问一样,提出富有洞察力的特征构想。
你的提问:
“我的目标是预测电商客户是否流失。基于我已有的数据字段:
customer_id
、age
、city
、join_date
、last_purchase_date
、total_spend
,请帮我构思一些有价值的新特征,并解释为什么它们对预测客户流失有帮助。”
LLM的回答(示例):
LLM会根据其对商业和客户行为的理解,提出多个维度的特征: