当你的数据集经过精心清洗,并注入了富有洞察力的新特征后,下一个挑战随之而来:如何选择最佳模型,并调整其参数以达到最佳性能?在传统流程中,这通常是一个漫长的试错过程,依赖于数据科学家的经验和直觉。
本章,我们将继续利用LLM,把它当作一个经验丰富的“智能副驾驶”,帮助你高效地完成模型选择与超参数调优。
1. 模型推荐:让LLM为你指路
传统做法:
数据科学家需要根据项目类型(分类、回归等)和数据特点(数据量大小、特征类型等)来手动选择模型。例如,如果数据量大且需要高性能,可能会考虑梯度提升树(Gradient Boosting Tree)。
LLM驱动的做法:
你可以直接向LLM描述你的项目目标和数据特点,让它为你推荐最合适的模型,并解释原因。
你的提问:
“我的项目目标是预测客户是否流失,这是一个二元分类问题。我已经准备好了包含数值型和类别型特征的表格数据。基于这些信息,你推荐我使用哪种模型?请解释一下为什么。”
LLM的回答(示例):
“根据你的描述,我推荐你使用**梯度提升树(Gradient Boosting Tree)**模型,例如 LightGBM 或 XGBoost。
推荐理由:
- 高性能