第4章:模型量化(Quantization)
在端侧设备上部署AI模型时,一个核心挑战是平衡模型的性能、大小和功耗。模型量化正是解决这一问题的关键技术,它能显著减小模型体积,并提高推理速度,同时尽可能地保持模型的精度。
什么是量化?原理与收益
量化的基本思想是减少模型中用于表示参数和激活值的比特数。在模型训练时,参数通常使用32位浮点数(FP32)进行存储,这提供了高精度,但也消耗大量的内存和计算资源。量化则将这些32位浮点数转换成低比特数表示,通常是8位整数(INT8)。
量化的原理可以概括为:对浮点数范围进行校准,并将其映射到更小的整数范围内。例如,将一个FP32的权重(如-1.5到1.5)映射到INT8的范围(-128到127)。在推理过程中,模型将使用这些低精度的整数进行计算,从而大大减少了所需的计算量。
量化带来的主要收益包括:
- 减少模型大小:将32位浮点数转换为8位整数,理论上可以将模型大小减少75%,这对于存储空间有限的端侧设备至关重要。
- 提升推理速度:许多硬件,特别是NPU,都专门为INT8计算进行了优化,它们处理整数运算的速度远快于浮点运算。这使得量化后的模型推理速度显著提升。
- 降低功耗:更快的计算和更小的内存访问量,意味着设备在处理AI任务时消耗更少的电量,延长