第9章:移动端部署实战 - iOS
要在iOS设备上部署AI模型,苹果的Core ML框架是首选。它与苹果自研的芯片(如A系列和M系列)深度集成,能够高效利用神经引擎(Neural Engine)进行硬件加速。本章将引导你如何在Xcode中部署一个模型,并讨论相关的输入输出处理与模型管理策略。
使用Core ML在Xcode中部署一个模型
我们将通过一个简单的图像分类应用来演示部署流程。
-
准备模型:Core ML支持
.mlmodel
格式的模型。你可以使用苹果提供的工具(如coremltools
)将其他框架训练的模型(如 TensorFlow 或 PyTorch)转换为.mlmodel
格式。 -
导入模型:将
.mlmodel
文件直接拖拽到 Xcode 项目中。Xcode 会自动识别并生成一个 Swift 或 Objective-C 接口,方便你直接在代码中调用模型。 -
加载与预测:在你的 Swift 文件中,你可以直接通过生成的类来加载模型并进行预测。
Swift
import CoreML import Vision // 假设模型文件名为 'ImageClassifier.mlmodel' // Xco