AI 炒作与应用现实:2025 年架构师如何确保产品不偏离轨道
AI 不再是新奇事物,它已成为生活中的一个事实 。
生成式 AI 模型已经成熟,多模态系统可以相对无缝地处理文本、图像和语音,而 AI 驱动的助手(copilots)也已进入了开发者工具、办公套件,甚至设计平台 。
然而,炒作并未消退。
如果说有什么变化,那就是 AI 的炒作声浪更大了 。现在,每一场产品发布会都必须包含一句“现已加入 AI!”之类的短语 。投资者想知道你的“AI 战略”是什么 。竞争对手展示着华丽的演示 。领导团队担心“落后” 。如果你是一名软件架构师,你正身处这场 AI 风暴的中心 。
这里有一个残酷的现实:
你的工作不是追随炒作 。
你的工作是确保 AI 的使用方式适合你的应用 。
AI 是工具——而非产品战略
我多年来一直在说这句话,但现在它变得更加重要:
AI 是一种工具,而不是产品战略 。
一个选择得当的 AI 功能绝对可以增强你的产品 。但仅仅增加 AI 功能并不能取代产品愿景、商业模式或高质量的架构 。
如果你的“AI 战略”仅仅是“我们会增加一些 AI 功能”,那么你没有战略……
你只有一份购物清单 。
作为一名架构师,你有责任将管理层的指令(“我们需要 AI!”)转化为有意义、现实且可持续的东西 。这意味着要弄清楚:
- 我们到底想解决什么问题?
- 我们有什么数据来支持 AI 驱动的解决方案?
- 如果需要,我们需要哪种 AI?
- 实施和维护它的实际成本(技术、运营、财务)是什么?
2025 年——AI 流行语之年
AI 炒作传到你办公桌前的方式自早期的 ChatGPT 时代以来并没有太大变化:
-
一个竞争对手在其仪表板上添加了 AI 助手。
-
一篇 VC 博客文章宣称“AI 原生产品将主导未来十年”。
-
一位高管参加会议回来后说:“我们需要像 OpenAI 的新模型那样的东西——我们能做到吗?”。
而在 2025 年,炒作机器有了新的流行语 :
- RAG(检索增强生成)管道
- 能够“思考”和“自主行动”的智能体工作流
- 用于训练自定义模型的合成数据生成
- 微调与提示工程之争
- 企业 AI 合规框架
这里一些请求是经过深思熟虑的战略性想法 。另一些则是对市场噪音的简单膝跳反应 。这到底是哪一种并不重要 。无论哪种方式,你都需要用架构的清晰性而非简单的本能反应来回答 。
大多数你得到的想法和“建议”在合适的背景下都不是坏主意,事实上,它们可以是游戏规则的改变者 。但背景(context)是决定一切的。
架构师的角色:从炒作过滤器到战略塑造者
作为一名架构师,你的角色是双重的:
- 将业务需求转化为技术现实。
- 将技术限制转化为业务决策。
当领导层说“我们需要 AI!”时 ,他们真正想表达的可能是以下几点:
-
“我们需要更多创新。”
-
“我们想要更智能的产品。”
-
“我们想跟上竞争对手的步伐。”
你需要做的,就是采纳这种“炒作”,并帮助管理层将其转化为一个更基础的策略 :
-
我们是否试图自动化一个手动过程?
-
我们是否需要在规模上提供更多“个性化体验”?
-
我们是否在评估数据以预测未来行为?
-
我们是否试图自动化内容的生成?
而且(有点吓人的是)你难道不应该真正问一下:
我们到底需要 AI 吗?或者一个更简单、非 AI 的解决方案是否能更快、更便宜地达到同样的效果?
哇,这听起来不太符合当下“AI 炒作”的调调,对吧?33但是,事实是,有时 AI 是正确的答案 34。但通常情况下,它不是 35。虽然研究上周你在主题演讲中看到的尖端模型可能很有趣,但有时一个设计良好的规则引擎或统计算法可能更适合解决你特定的问题 36。
向上管理:设定现实的期望
作为一名架构师,你的工作很大一部分是
向上管理——在不扼杀领导层热情的情况下,引导他们走向现实的期望 。这可能意味着提出以下对话:
-
“如果我们增加 AI 驱动的个性化功能,我们需要收集和存储行为数据,这会带来隐私合规要求。”
-
“一个生成式聊天机器人可以减少支持工单,但它需要品牌安全护栏和针对棘手情况的人工回退机制。”
-
“一个预测模型可以帮助进行预测,但它需要持续的再训练和增加云成本的预算。”
这就是你如何将领导层从“我们需要在产品中加入 AI”这种基于炒作的基本陈述,转向“我们想要正确地、以正确方式实施的 AI” 。
2025 年 AI 的长尾成本
AI 存在长期成本 。在 2023 年,讨论的是你是否能整合 AI 。在 2025 年,讨论的是你是否能维持对 AI 的投资 。
在我看来,这方面的结论尚不明确。我们能维持并增加对越来越复杂的 AI 系统的依赖吗?还是会达到一个“稳定状态”,需要一种方法来减少我们的长尾 AI 成本?
维护 AI 功能不仅仅是一次性的实施工作 。一旦你决定在产品中构建一个 AI 解决方案,你就接受了许多可持续性成本 :
-
数据管道维护。 你的 AI 好坏取决于其数据的新鲜度和质量 。
-
模型更新。 供应商模型在发展,API 在变化,你微调的模型需要再训练 。
-
监控和可观测性。 漂移检测、偏见检测和性能跟踪现在已是标准实践,而且这个清单还在增长 。
-
成本控制。 运营 AI 基础设施的成本可能迅速膨胀,特别是对于大型多模态系统 。
如果你在最初的架构计划中没有考虑到这些,你的 AI 功能可能成功上线,但会成为一个难以维护的负担 。现实是,糟糕的 AI 实施实际上会伤害你的产品,它会增加显著的复杂性,减慢性能,并给你的应用引入不可预测的行为 。最终,这可能导致客户的信任问题 。
更简单地说:
糟糕的 AI 比没有 AI 更糟糕……
作为一名软件架构师,你必须防止产品团队落入这个陷阱 。你通过做出基于 AI 能提供的
价值的架构决策来做到这一点,而不是为了跟上竞争对手的最新新闻稿 。
2025 年软件架构师应对 AI 压力的实用建议
这里有一个我创建的快速清单,用于评估作的 AI方面的请求:
- 澄清真正目标。 实际期望的业务成果是什么?能否在不使用“AI”这个词的情况下,用业务价值和术语来表达?如果你不能在不使用“AI”这个词的情况下表达一个想法,那么它可能更多是 AI 炒作,而非真正的产品需求 。
- 评估替代解决方案。 你能否在没有 AI 或只用一个简单 AI 系统的情况下实现同样的事情,而不是非得使用最先进的 AI 系统?
- 评估数据准备情况。 你是否有正确的数据供 AI 系统使用?58你是否有可持续的流程来保持数据更新?
- 什么类型的 AI。 你将使用现成的 AI API 吗?微调你自己的模型?使用内部机器学习管道?
- 为可持续性做计划。 确保你的计划包括维护 AI 系统的长期成本 。这包括计算成本和监控,也包括随着时间推移再训练和升级 AI 系统的成本 。
- 合规性。 与所有架构决策一样,不要低估合规性讨论 。隐私和安全至关重要,在以 AI 为中心的架构中涉及更多,而且道德考量比非 AI 系统要重要得多 。
这个过程会让你慢下来,希望能慢到足以让理性的思维过程做出恰当、周到的决策 67。但是,遵循这些建议可以帮助你做出高质量的决策,同时又不会阻碍创新 。
可能的困境
架构师工作中一个最困难的部分是,在不扼杀创造力的情况下,回绝不现实的想法,而创造力正是产品伟大的原因 。这就是为什么你如何措辞很重要 70。
不要说:
“那个 AI 功能风险太大了。”
尝试说:
“这是个很有前景的想法,让我们确保我们有数据和护栏来把它做好。”
你不是在扼杀想法;你是在引导它们走向最佳的实施路径 72。
2025 年,AI 正处于全面炒作模式。就像所有新技术一样,考虑到所有炒作后,它能做到的现实可能比看起来要少 。
AI 绝对是应用开发领域很长一段时间以来的最大创新。但这并不意味着它是“万能的” 。
不要忘记基本原则。
不要忘记理性与规划。
不要忘记目标、价值与规划。
作为一名软件架构师,你的价值来自于连接愿景与现实 。你确保当 AI 出现在你的产品中时,它是因为对公司的业务价值和目标有意义,而不仅仅是幻灯片上的一行字 。