- 博客(467)
- 资源 (16)
- 收藏
- 关注
原创 揭秘大模型 Agent:从科幻到现实,我们走到了哪一步?
Agent 技术代表了 AI 应用的下一个前沿,但它离大规模、通用化的商业落地还有很长的路要走。目前,Agent 的真正价值在于其作为智能的自动化执行器,在受控的、垂直化的场景中,将人类从繁琐、重复的工作中解放出来。我们可以预见,未来的 Agent 将会与 RAG 深度融合,具备更严谨的知识基础和更强的容错能力。在工程化手段的约束下,Agent 将逐步拓展其商业应用边界,最终成为企业不可或缺的自动化工具。
2025-08-15 15:17:48
792
原创 【成本评估】一文读懂选择Qwen做RAG应用的全过程(4)
最低成本方案:使用 Qwen-7B 模型,利用开源 RAG 框架,部署在云上的 GPU 弹性实例。主要成本是云服务费用和少量的人力投入。中等投入方案:在最低成本方案的基础上,投入更多人力优化数据分块和嵌入模型,并使用 Kubernetes 等工具进行生产部署。成本增加在人力和更稳定的云服务。最高投入方案:拥有专业团队,自建 GPU 集群,并对嵌入模型和 Qwen 模型进行深度微调。这种方案适合有长期规划和充足预算的大型项目。在做决策时,请结合你的预算、团队能力和产品上线时间表。
2025-08-14 15:53:51
910
原创 【微调】一文读懂选择Qwen做RAG应用的全过程(3)
对嵌入模型进行调优是一个非常值得投入的优化方向。它能直接提升 RAG 系统的检索精度,解决通用模型在特定领域表现不佳的问题。如果你的知识库是通用知识,那么直接使用像 BGE-M3 这样的开源嵌入模型就足够了。如果你的知识库是高度垂直的、包含大量专业术语,那么投入时间去调优嵌入模型会是一个非常明智的决定。调优后,你得到的嵌入模型会更懂你的数据,从而让 RAG 系统的整体效果更上一层楼。
2025-08-14 15:52:04
513
原创 【微调】一文读懂选择Qwen做RAG应用的全过程(2)
这种情况下,是否选择对 Qwen模型,进行微调。:这取决于你的具体情况,但通常来说,在 RAG 架构中,微调 Qwen 模型并非首要任务,但可以作为后续优化的一个手段。
2025-08-14 15:49:46
233
原创 一文读懂选择Qwen做RAG应用的全过程(1)
Qwen 系列模型因其在中文领域的出色表现和开源开放的特性,成为了 RAG 架构中一个非常实用的选择。
2025-08-14 15:44:25
476
原创 关于模型选择,给你一个务实的决策路径
如果你只是想快速验证一个想法,或者对模型能力要求极高且预算充足,直接使用商业模型 API是最快的选择。如果你的项目需要长期运营,对成本、数据安全和模型定制有要求,那么从一个适度规模的开源模型入手,并进行微调,是性价比最高的选择。如果你的应用场景对速度和设备有严格限制,考虑使用小型模型。记住,模型选择不是一步到位,而是一个不断迭代优化的过程。先从一个最适合当前需求的模型开始,然后在实践中根据反馈和数据进行调整。
2025-08-14 15:24:03
645
原创 大模型工程化落地:从模型选择到性能优化的实战指南
大模型工程化落地是一个系统性的过程,它要求我们从业务需求出发,设计合理的模型选择和部署策略。通过软硬件协同容器化部署以及持续的性能优化,才能最终将强大的AI模型转化为稳定、高效且具备成本效益的生产力。
2025-08-14 15:14:41
902
原创 提示词增强工程(PEE)框架,从原始提示词到结构化增强、LLM执行、评估和数据持久化的完整自动化流程
提示词增强工程(PEE)框架是一个模块化的原型系统,旨在将“提示词增强工程”的理念付诸实践。它将一个复杂的任务分解为六个相互独立又协作的模块,实现了从原始提示词到结构化增强、LLM执行、评估和数据持久化的完整自动化流程。我们开发的PEE-Core框架是一个模块化的 Python 库,旨在将提示词从一个简单的文本字符串升级为可管理、可优化和可自动化的“软件资产”。它通过一个完整的工作流,将用户的原始提示词自动增强为更具鲁棒性、更明确的提示词,从而提高大型语言模型(LLM)的输出质量和稳定性。
2025-08-02 12:15:34
927
原创 为什么我们需要提示词增强工程PEE(Prompt Enhancement Engineering )
如果说“提示词工程”解决了“从 0 到 1”的问题,让大模型能用起来;那么“提示词增强工程”则致力于解决“从 1 到 100”的问题,让大模型能够用得更好、更稳定、更智能。它将提示词从一个简单的输入字符串,提升为一个可管理、可优化、可适应的“软件资产”,是AI应用迈向成熟和大规模商业化的必经之路。
2025-08-01 08:58:12
808
原创 动手搭建“提示词增强工程(PEE)”的原型系统,
基于,我们开发了一个原型系统,利用大语言模型(LLM)自动优化用户输入的原始提示词。本系统采用和实现,因其简洁高效且功能强大。
2025-08-01 08:55:28
435
原创 【基于BERT 的词嵌入 自定义模型】MAP - Charting Student Math Misunderstandings
【代码】【基于BERT 的词嵌入 自定义模型】MAP - Charting Student Math Misunderstandings。
2025-08-01 07:52:18
136
原创 Kaggle竞赛提交环境无法联网,下载模型和 tokenizer 到本地,后续从本地加载/或上传到对应环境
在 自己的机器上运行以下代码,将 tokenizer 和模型保存到本地文件夹中,例如。下面是如何下载并保存模型的步骤,适用于 Kaggle 无网络环境。这样你就不再依赖联网资源了,提交代码不会报错。这一步会在本地创建一个包含以下内容的文件夹。,并在推理(提交)代码中。
2025-08-01 07:51:54
426
原创 提示词增强工程(Prompt Enhancement Engineering)白皮书草稿
*提示词增强工程(Prompt Enhancement Engineering,简称 PEE)**是一种工程化实践,它在传统提示词工程的基础上,通过自动化、系统化的手段,提升提示词的性能、适应性、鲁棒性及上下文感知能力,以确保大型语言模型在多元任务和不同模型中都能输出高质量、精确且结构化的结果。
2025-07-31 21:19:27
1620
1
原创 AutoGluon目标列中NA值作为标签的处理方案
AutoGluon要求目标列不能包含NA/缺失值,但在某些应用场景中,NA本身可能代表一种有意义的标签类别。
2025-07-31 08:17:34
250
原创 【特征工程】一文读懂如何在ML项目如何开展特征工程
特征工程指的是:从原始数据中提取、转换、构建有意义的输入特征,以增强机器学习模型的表达能力与泛化能力。
2025-07-31 08:17:09
1140
原创 【 建模分析回顾】[MultiOutputClassifier]MAP - Charting Student Math Misunderstandings
输入 X:自然语言文本(问题和学生回答)输出 Y:离散的标签值(概念分类,误解分类)目标:学习一个映射函数或任务类型:多类文本分类(Multiclass Text Classification)
2025-07-30 20:45:00
473
原创 [AutoGluon]MAP - Charting Student Math Misunderstandings
【代码】[AutoGluon]MAP - Charting Student Math Misunderstandings。
2025-07-30 20:30:00
335
原创 [MultiOutputClassifier]MAP - Charting Student Math Misunderstandings
【代码】[MultiOutputClassifier]MAP - Charting Student Math Misunderstandings。
2025-07-29 22:40:49
232
原创 【AutoML】MAP - Charting Student Math Misunderstandings
autogluon的TabularPredictor 不支持多标签任务。
2025-07-29 22:37:45
121
原创 【神经网络】一个多任务的模型 MAP - Charting Student Math Misunderstandings
【代码】【神经网络】一个多任务的模型 MAP - Charting Student Math Misunderstandings。
2025-07-25 08:29:14
311
原创 【XGBoost】两个单任务的模型 MAP - Charting Student Math Misunderstandings
【代码】【XGBoost】两个单任务的模型 MAP - Charting Student Math Misunderstandings。
2025-07-24 18:26:53
220
原创 【干货】国内开源小模型的综合比较一览表,供参考。
这个比较旨在帮助你选择最合适的模型,结合企业的业务需求、技术栈和硬件资源,具体涵盖了模型的特点、优缺点、适用场景以及适配的资源要求。
2025-07-24 18:00:52
466
原创 【XGBoost】MAP - Charting Student Math Misunderstandings
类别权重调整:可以通过遍历scale_pos_weight取值为5,6,7,8,9,10来调整类别权重,从而提升少数类别(含误解)的召回率。XGBoost:使用 XGBoost 来代替 SVM,它在不平衡数据集上表现通常较好。调参:使用 GridSearchCV 来调节模型的超参数,以提高性能。
2025-07-20 11:09:53
178
原创 【SVM class_weight 】MAP - Charting Student Math Misunderstandings
针对数据不平衡问题,用调整类别权重的方式来处理数据不平衡问题,同时使用支持向量机(SVM)模型进行训练。我们通过使用 class_weight=‘balanced’ 来调整模型对少数类别的关注度。
2025-07-19 17:48:36
231
原创 【SVM smote】MAP - Charting Student Math Misunderstandings
我们通过使用 class_weight=‘balanced’ 来调整模型对少数类别的关注度来改善模型对少数类别的识别能力。针对数据不平衡问题,用调整类别权重的方式来处理数据不平衡问题,同时使用支持向量机(SVM)模型进行训练。
2025-07-19 17:36:35
227
原创 【逻辑回归】MAP - Charting Student Math Misunderstandings
接下来,进行数据预处理,并使用学生解释文本进行特征提取。我们将清理文本、进行分词、去除停用词,并准备数据进行训练。之后,我会选择一个简单的模型-调整模型:可以考虑使用其他模型,如支持向量机(SVM)或深度学习模型(例如 BERT)来提高对含有误解解释的识别能力。数据不平衡问题:我们可以尝试使用过采样或欠采样技术,或者调整类别权重来改善模型对含误解解释的识别。模型训练完成并进行了评估。来作为起点,进行训练并评估。
2025-07-19 14:13:14
296
原创 【LoRA微调实战全过程】LLM由传统的“数据+模型+任务”范式向“预训练大模型+微调/提示工程”的范式转变
一文我们从0到1分享了一个完整的LLM的构架过程,旨在让你从底层理解LLM的工作原理,为后续深入学习和实践大模型打下坚实的基础。今天我们将以一个常见的任务——为例,分享目前最主流和方便的 LoRA微调,
2025-07-18 09:15:06
824
原创 【Android代码】绘本翻页时通过AI识别,自动通过手机/pad朗读绘本
使用了 CameraX(Android Jetpack)处理摄像头输入。使用 TextToSpeech 实现朗读。使用 ML Kit 做文字识别。
2025-07-17 21:30:00
238
原创 【LLM】从零到一构建一个小型LLM--MiniGPT
从零到一构建一个,这是许多现代LLM(如GPT系列)的核心预训练任务。我们设计的模型是一个的Transformer架构,专注于生成式任务。这里将简化其规模,以使其更易于理解和从头实现,但保留核心的Transformer组件。
2025-07-17 10:40:59
1061
原创 【迭代】绘本方案原型验证成功,后面进入产品化阶段
1.第一阶段本实现了绘本PDF的生成,但是要解决语音问题,未找到好的解决方案。但是生成PDF文件没有问题。2.第二阶段放弃了PDF,改为在线绘本,轻松解决语音播放,这个需要提前录音。在线绘本支持下载为PDF绘本,打印生实体书(可以AI识别)3.第三阶段,结合前面的实现,同时实现和验证了下面功能。实体绘本通过AI识别,然后通过手机和pad朗读文本。针对绘本方案前期进行了多种方案验证。绘本页,支持批量添加,修改。
2025-07-17 10:21:21
191
原创 【迭代】PDF绘本录音播放,点读笔方案调研和初步尝试
让点读笔(尤其是市面上常见的、或你打算开发的新型点读笔)能够“读”出纸张上的特定内容并播放对应录音,那么使用点阵码(或称为隐形码、OID码)几乎是唯一的、主流且成熟的技术方案。没有通用的、公开的、可以直接使用的“点读笔”SDK来生成点阵码。市面上大多数点读笔品牌(如小达人、外研社、步步高、易读宝等)都使用其自有的、受专利保护的点阵码技术。获取点阵码技术通常需要与特定厂商合作。
2025-07-16 13:27:14
428
原创 【迭代】绘本生成方案迭代2,解决录音播放问题
我们可以在 PDF 中创建一个可点击的文本(比如单词本身),当用户点击时,通过 PDF 内嵌的 JavaScript 来触发播放一个外部音频文件。实现复杂:ReportLab 没有直接的 API 支持,可能需要直接操作 PDF 对象的低级 API,或者结合 PyPDF2/PyMuPDF 等库。文件大小:音频文件不需要真正嵌入 PDF 内部,可以放在网络服务器上,减小 PDF 文件大小。兼容性差:不是所有 PDF 阅读器都完全支持 PDF 内嵌音频的播放。灵活性:音频文件可以随时更新,无需重新生成 PDF。
2025-07-16 13:14:34
294
原创 基于YOLOv3-Tiny 的智能门铃的人体检测模型详细部署指导(终结)
到这里已经有了一个 PyTorch YOLOv3-Tiny 模型,并且通过 QAT 进行了训练和优化,并考虑了锚框聚类。现在,是时候将其部署到目标嵌入式设备上,通常这将涉及将其转换为格式。
2025-07-14 08:00:48
875
原创 基于YOLOv3-Tiny 的智能门铃的人体检测模型的实现(下)
承接一文,为了提升模型进性能。本文主要介绍锚框聚类锚框聚类是优化 YOLOv3-Tiny 模型性能的关键一步,因为它能确保模型学习到与数据集目标尺寸更匹配的先验框,从而提高检测精度和收敛速度。这里将添加一个用于执行锚框聚类(K-means)的 Python 脚本。通过运行这个脚本来生成适合数据集的锚框,然后会将它们更新到config.py中。
2025-07-14 07:56:53
480
原创 基于YOLOv3-Tiny 的智能门铃的人体检测模型的实现(中)
这篇文章我们分享了模型的架构和设计,今天我们基于的 来开发这个模型。包括模型定义、数据集加载、训练循环、评估以及量化感知训练 (QAT) 的集成。
2025-07-13 09:45:23
1063
原创 一文读懂“人工智能”、“机器学习”、“深度学习”这些词的真正含义和关系台
你是不是也经常听到“人工智能”、“机器学习”、“深度学习”这些词,然后感觉它们像是某种高深莫测的“高科技魔法”?别担心,不止是你一个人。但今天,我们就来揭开这些概念的神秘面纱,让你一下子明白人工智能到底是什么,以及它和我们常听说的那些词之间,究竟有什么关系。人工智能 (AI):让机器“思考”的总目标想象...
2025-07-12 09:53:31
419
原创 基于YOLOv3-Tiny 的智能门铃的人体检测模型的实现(上)
我们将定义 YOLOv3-Tiny 的骨干网络和头部。# model.py"""YOLOv3-Tiny 的实现主要模块:1. ConvBlock: 卷积层 + BatchNorm + LeakyReLU2. YOLOLayer: YOLO检测头,处理输出特征图并生成边界框预测"""return xself.ignore_thres = 0.5 # IoU阈值,低于此值的预测不计入损失self.obj_scale = 1 # 目标置信度损失权重。
2025-07-12 09:36:19
828
原创 【分享】交互式 AI 模型方案选择器,轻松获得推荐AI方案
一文中的为了更好地将这些理论转化为实用工具,报告提到了一个“AI 模型方案选择器”,通过回答问题,可以为用户推荐最适合的 AI 解决方案。根据用户的的回答,帮助用户给出推荐方案及备选方案,还有多方案之间的比较,供用户选择权衡。
2025-07-11 09:07:32
274
Excel【办公软件应用】Excel 2016快速入门指南:基础功能介绍与高效办公技巧汇总了文档的主要内容
2025-07-05
大模型实战系列-08 开发一个基于 MCP 协议的多 Agent 协作系统
2025-07-03
鸿蒙分析报告,大模型 也许成为鸿蒙跨越应用“鸿沟”的契机
2025-04-12
这份报告对 YC 2023 年和 2024 年队列中的 417 家人工智能公司进行了广泛的分析
2024-08-17
世界各地很多服务提供商采纳了TM论坛的TOM2.1业务架构模式,TOM已经成为服务提供商运营管理的工业标准。但是。。。。
2022-02-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人