题目意思
题目给定一个区间,求解区间之间所有数字的欧拉函数之和
题目解析
我们在求解一个区间的素数的时候,我们会用到一个筛选素数的方法,它的特殊之处就在于,当我们判定x为素数时,那么我们就可以将2*x、3*x、4*x.....删掉,他们一定不会是素数,我们开始要给每个数设置一个表示,当这个数字都不是前面数字的倍数的时候,那么他一定就是素数,然后根据这个数更新后面的素数序列
我们可以利用上面求解素数的思想,我们求解区间欧拉函数的数值,欧拉函数的计算公式为:
开始我们判断一个数是否为质数,如果是质数的数,我们就更新后面包含这个质因子的数字即可
比如:
Euler[1] = 1
2是质数Euler[2] = 2*(1-1/2) = 1,然后将后面数字中包含2作为质因子的欧拉函数更新一下:
Euler[4]=4*(1-1/2) = 2,Euler[6]=6*(1-1/2) = 3
3 是质数Euler[2] = 3*(1-1/3) = 1,然后将后面数字中包含3作为质因子的欧拉函数更新一下:
Euler[6] = 3*(1-1/3) = 2
4在前面已经更新不用考虑
5 是质数Euler[5] = 5*(1-1/5) = 4,然后将后面数字中包含5作为质因子的欧拉函数更新一下:
无
6在前面已经更新不用考虑
那么大致就只这样一个过程
编程实现
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <cstdio>
#define N 3000010
#define ll long long
using namespace std;
int eul[N];
void getEuler(int n)
{
for(int i =1;i <= N;i ++)
eul[i] = i;
for(int i = 2;i <= N;i ++)
if(eul[i] == i) //表示是素数
for(int j = i;j <= n;j += i)
eul[j] -= eul[j]/i;
}
int main()
{
getEuler(N);
int n,m;
while(~scanf("%d%d",&n,&m))
{
ll ans = 0;
for(int i = n;i <= m;i ++)
ans += eul[i];
printf("%I64d\n",ans);
}
return 0;
}
素数筛选实现
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <malloc.h>
#include <cstring>
#include <vector>
#include <algorithm>
#define INF 0x3f3f3f3f
#define N 1000000000
#define ll long long
using namespace std;
bool isprim[N];
int prim[100000];
int main()
{
int n;
memset(isprim,true,sizeof(isprim));
scanf("%d",&n);
int num = 0;
prim[num++] = 2; //首先2是素数
for(int i = 3;i <= n;i += 2)
{
if(isprim[i]) //不是其他数字的倍数的数一定是素数!!
{
prim[num++] = i;
for(int j = i * i;j <= n;j += 2*i) //是当前数字倍数的一定不是素数!!
isprim[j] = false;
}
}
for(int i =0;i < num;i ++)
cout<<prim[i]<<" ";
cout<<endl;
}