欧拉函数_HDU 2824

本文介绍了一种高效求解指定区间内所有整数欧拉函数之和的方法,并通过素数筛选的方式更新相关数值。同时,提供了完整的C++代码实现,包括欧拉函数的计算和素数筛选的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目意思

题目给定一个区间,求解区间之间所有数字的欧拉函数之和

题目解析

我们在求解一个区间的素数的时候,我们会用到一个筛选素数的方法,它的特殊之处就在于,当我们判定x为素数时,那么我们就可以将2*x、3*x、4*x.....删掉,他们一定不会是素数,我们开始要给每个数设置一个表示,当这个数字都不是前面数字的倍数的时候,那么他一定就是素数,然后根据这个数更新后面的素数序列

我们可以利用上面求解素数的思想,我们求解区间欧拉函数的数值,欧拉函数的计算公式为:


开始我们判断一个数是否为质数,如果是质数的数,我们就更新后面包含这个质因子的数字即可

比如:

Euler[1] = 1

2是质数Euler[2] = 2*(1-1/2) = 1,然后将后面数字中包含2作为质因子的欧拉函数更新一下:

Euler[4]=4*(1-1/2) = 2,Euler[6]=6*(1-1/2) = 3

3 是质数Euler[2] = 3*(1-1/3) = 1,然后将后面数字中包含3作为质因子的欧拉函数更新一下:

Euler[6] = 3*(1-1/3) = 2

4在前面已经更新不用考虑

5 是质数Euler[5] = 5*(1-1/5) = 4,然后将后面数字中包含5作为质因子的欧拉函数更新一下:

6在前面已经更新不用考虑

那么大致就只这样一个过程

编程实现

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <cstdio>
#define N 3000010
#define ll long long

using namespace std;
int eul[N];

void getEuler(int n)
{
    for(int i =1;i <= N;i ++)
        eul[i] = i;
    for(int i = 2;i <= N;i ++)
        if(eul[i] == i)             //表示是素数
            for(int j = i;j <= n;j += i)
                eul[j] -= eul[j]/i;

}
int main()
{
    getEuler(N);
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        ll ans = 0;
        for(int i = n;i <= m;i ++)
            ans += eul[i];
        printf("%I64d\n",ans);
    }
    return 0;
}

素数筛选实现

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <malloc.h>
#include <cstring>
#include <vector>
#include <algorithm>
#define INF 0x3f3f3f3f
#define N 1000000000
#define ll long long

using namespace std;

bool isprim[N];
int prim[100000];

int main()
{
    int n;
    memset(isprim,true,sizeof(isprim));
    scanf("%d",&n);
    int num = 0;
    prim[num++] = 2;         //首先2是素数
    for(int i = 3;i <= n;i += 2)
    {
        if(isprim[i])             //不是其他数字的倍数的数一定是素数!!
        {
            prim[num++] = i;
            for(int j = i * i;j <= n;j += 2*i)   //是当前数字倍数的一定不是素数!!
                isprim[j] = false;
        }
    }
    for(int i =0;i < num;i ++)
        cout<<prim[i]<<" ";
    cout<<endl;
}

参考博客

https://www.jianshu.com/p/40ff62f6529a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值