深度学习模型训练中的batch_size, batch和epoch关系详解

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

训练过程中的批量大小、批次和时期背后的故事

定义

在深度学习中,batchbatch_sizeepoch 是训练过程中的核心概念,其中文专业术语及详细解释如下:

1. Batch Size

  • 中文术语批次大小批量大小
  • 定义:每个批次中包含的样本数量,是训练前需设定的超参数。
  • 选择依据
    • 硬件限制:GPU内存较小需选择较小的batch_size(如32)。
    • 性能权衡
      • 大批次(如256):梯度估计更准确,但可能陷入局部最优。
      • 小批次(如16):训练随机性高,可能提升泛化能力,但收敛慢。
  • 常见值:通常为2的幂次(如32、64),以优化硬件计算效率。

2. Batch(批次)

  • 中文术语批次
  • 定义:指数据集中数据集大小除以Batch Size。通过将数据集划分为多个批次,可以实现高效的内存利用和并行计算。
  • 作用
    • 计算效率:利用GPU的并行计算能力,加速训练过程。
    • 梯度稳定性:多个样本的平均梯度比单样本梯度更稳定,减少训练震荡。
  • 示例:若数据集有1000个样本,batch_size=100,则共有10个批次。

3. Epoch(周期)

  • 中文术语周期轮次
  • 定义:模型完整遍历整个训练数据集一次的过程,为1个epoch。通常我们需要训练多个Epoch来使模型达到收敛。
  • 作用
    • 训练进度衡量:例如10个epoch表示数据集被训练10轮。
    • 学习率调整:通常随epoch增加动态调整学习率以优化收敛。
  • 计算关系
    • 若数据集有1000样本,batch_size=100,则1个epoch需10次迭代。

三者的关系与训练流程

  1. 数据划分:数据集 → 多个epoch → 每个epoch划分为多个batch。
  2. 参数更新每个batch计算一次梯度并更新模型参数,完成所有batch即结束一个epoch。
  3. 示例
    • 数据集:60000样本,batch_size=1000 → 每个epoch包含60次迭代,10个epoch共600次迭代。

常见问题

批次如何计算以及权重

如果我们有一个包含1000张图像的图像数据集,在情况1中:假设批量大小为10,在另一种情况下批量大小为100,它们对模型训练的影响是什么,权重会在每个批次或每个epoch后更新吗?

一个包含1000张图片的数据集:

案例 1: 批量为 10

每个epoch的批次数量: 1000/10 = 100 个批次。
权重更新:模型的权重将在每个批次后更新。 这意味着在一个 epoch 内,权重将被调整 100 次。

案例 2: 批量为 100

每个时期的批次数量: 1000/100 = 10 个批次。
权重更新:模型的权重将在每批处理后更新。 在这种情况下,每个 epoch 将有 10 个权重更新。

特征批量大小10批量大小100
每个epoch的批次数量10010
权重更新在100个批次中的每一个之后在10个批次中的每一个之后
更新频率
训练噪声更高更低
收敛速度初始可能更快初始可能更慢
泛化能力可能更好可能更差
每个epoch的计算成本更高更低

概念说明

模型训练: 在 一个epoch 期间,模型批量处理训练数据。在每个批次之后,模型计算该批次的损失,并使用它通过反向传播和优化算法(如 Adam 或 SGD)更新模型的权重。

Epoch 结束: 一旦模型处理完训练数据集中的所有批次,则表示一个 epoch 就完成了,通常模型会训练多个epoch。

模型验证(在epoch之后): 通常在一个epoch训练完成之后,会在验证数据集上进行模型评估验证,以查看模型的性能收敛情况。

下一个 Epoch 的开始: 如果继续训练,模型将在下一个 epoch 中再次遍历训练数据集。 下一个 epoch 中的权重更新将基于在该新 epoch 的训练批次上计算的损失,而不是来自前一个 epoch 的验证步骤的损失。

总结

  1. 模型权重的更新是在每个batch之后,而不是每个epoch之后;
  2. 批次大小batch_size决定在一个epoch中,权重的更新次数,batch_size越大,权重更新次数越少;
  3. 一般情况下,batch_size越大,模型收敛速度越快。

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值