《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
训练过程中的批量大小、批次和时期背后的故事
定义
在深度学习中,batch
、batch_size
和 epoch
是训练过程中的核心概念,其中文专业术语及详细解释如下:
1. Batch Size
- 中文术语:批次大小或批量大小
- 定义:每个批次中包含的样本数量,是训练前需设定的超参数。
- 选择依据:
- 硬件限制:GPU内存较小需选择较小的
batch_size
(如32)。 - 性能权衡:
- 大批次(如256):梯度估计更准确,但可能陷入局部最优。
- 小批次(如16):训练随机性高,可能提升泛化能力,但收敛慢。
- 硬件限制:GPU内存较小需选择较小的
- 常见值:通常为2的幂次(如32、64),以优化硬件计算效率。
2. Batch(批次)
- 中文术语:批次
- 定义:指数据集中数据集大小除以Batch Size。通过将数据集划分为多个批次,可以实现高效的内存利用和并行计算。
- 作用:
- 计算效率:利用GPU的并行计算能力,加速训练过程。
- 梯度稳定性:多个样本的平均梯度比单样本梯度更稳定,减少训练震荡。
- 示例:若数据集有1000个样本,
batch_size=100
,则共有10个批次。
3. Epoch(周期)
- 中文术语:周期或轮次
- 定义:模型完整遍历整个训练数据集一次的过程,为1个epoch。通常我们需要训练多个Epoch来使模型达到收敛。
- 作用:
- 训练进度衡量:例如10个epoch表示数据集被训练10轮。
- 学习率调整:通常随epoch增加动态调整学习率以优化收敛。
- 计算关系:
- 若数据集有1000样本,
batch_size=100
,则1个epoch需10次迭代。
- 若数据集有1000样本,
三者的关系与训练流程
- 数据划分:数据集 → 多个epoch → 每个epoch划分为多个batch。
- 参数更新:每个batch计算一次梯度并更新模型参数,完成所有batch即结束一个epoch。
- 示例:
- 数据集:60000样本,
batch_size=1000
→ 每个epoch包含60次迭代,10个epoch共600次迭代。
- 数据集:60000样本,
常见问题
批次如何计算以及权重
如果我们有一个包含1000张图像的图像数据集,在情况1中:假设批量大小为10,在另一种情况下批量大小为100,它们对模型训练的影响是什么,权重会在每个批次或每个epoch后更新吗?
一个包含1000张图片的数据集:
案例 1: 批量为 10
每个epoch的批次数量: 1000/10 = 100 个批次。
权重更新:模型的权重将在每个批次后更新。 这意味着在一个 epoch 内,权重将被调整 100 次。
案例 2: 批量为 100
每个时期的批次数量: 1000/100 = 10 个批次。
权重更新:模型的权重将在每批处理后更新。 在这种情况下,每个 epoch 将有 10 个权重更新。
特征 | 批量大小10 | 批量大小100 |
---|---|---|
每个epoch的批次数量 | 100 | 10 |
权重更新 | 在100个批次中的每一个之后 | 在10个批次中的每一个之后 |
更新频率 | 高 | 低 |
训练噪声 | 更高 | 更低 |
收敛速度 | 初始可能更快 | 初始可能更慢 |
泛化能力 | 可能更好 | 可能更差 |
每个epoch的计算成本 | 更高 | 更低 |
概念说明
模型训练: 在 一个epoch 期间,模型批量处理训练数据。在每个批次之后,模型计算该批次的损失,并使用它通过反向传播和优化算法(如 Adam 或 SGD)更新模型的权重。
Epoch 结束: 一旦模型处理完训练数据集中的所有批次,则表示一个 epoch 就完成了,通常模型会训练多个epoch。
模型验证(在epoch之后): 通常在一个epoch训练完成之后,会在验证数据集上进行模型评估验证,以查看模型的性能收敛情况。
下一个 Epoch 的开始: 如果继续训练,模型将在下一个 epoch 中再次遍历训练数据集。 下一个 epoch 中的权重更新将基于在该新 epoch 的训练批次上计算的损失,而不是来自前一个 epoch 的验证步骤的损失。
总结
- 模型权重的更新是在每个batch之后,而不是每个epoch之后;
- 批次大小batch_size决定在一个epoch中,权重的更新次数,batch_size越大,权重更新次数越少;
- 一般情况下,batch_size越大,模型收敛速度越快。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!