【CV前沿】1.39M参数碾压26M!Mobile U-ViT:面向移动端医疗影像分割的轻量级U型视觉Transformer

《博主简介》

小伙伴们好,我是阿旭。专注于计算机视觉领域,包括目标检测、图像分类、图像分割和目标跟踪等项目开发,也可提供模型对比实验等服务。

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统
93.【基于深度学习的工业压力表智能检测与读数系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

1. 文章摘要

在这里插入图片描述

来自中科大、上海交大等团队提出的Mobile U-ViT,通过创新性地结合大核卷积与U型Transformer架构,在保持轻量化的同时实现了医疗影像分割的SOTA性能。该方法在8个公开2D/3D数据集上超越现有模型,参数量仅1.39M时推理速度达326FPS,特别适合超声、CT等移动医疗场景。核心突破包括:

  • 仿Transformer模式的ConvUtr模块(参数量降低68%)
  • 局部-全局-局部信息交换的LKLGL块(计算复杂度降低至O(N²/p⁴))
  • 下采样跳跃连接的级联解码器

2. 研究背景

医疗影像的独特挑战​:
在这里插入图片描述

  • 信息密度低:相比自然图像,超声/CT等影像局部特征稀疏
  • 噪声干扰强:病灶边界模糊,存在成像伪影
  • 移动端需求:实时诊断要求模型在Jetson Nano等设备上高效运行

现有方法局限​:

  • 轻量CNN(如MobileNetV2)感受野不足
  • 传统ViT计算开销大(UNETR需92.61M参数)
  • 自然图像轻量模型(如MobileViT)医疗场景性能下降36%

3. 模型方法原理

3.1 整体架构

在这里插入图片描述

采用五阶段编码器-解码器结构:

  • 前3阶段:ConvUtr块(CNN结构)
  • 第4阶段:LKLGL块
  • 解码器:上采样块+下采样跳跃连接

3.2 核心组件

ConvUtr模块:一个轻量级的,受Transformer启发的CNN主干,有效地将医学图像从稀疏的像素空间压缩成紧凑的潜在表示;
在这里插入图片描述
相比标准卷积复杂度从O(h×w×d²×k²)降至O(h×w×d×(k²+2d))

LKLGL块
在这里插入图片描述

  1. 大核DSConv局部聚合(红)
  2. 池化token压缩(计算量↓p²倍)
  3. 注意力全局交互(蓝)
  4. 转置卷积局部传播(绿)

解码器创新

  • 横向连接采用最大池化(比卷积下采样Jaccard↑1.88%)
  • 级联上采样保留细节(表6实验显示跳过连接提升23%性能)

4. 实验对比结果

4.1 2D多模态测试

在这里插入图片描述

模型参数量BUS(IoU)ISIC(IoU)
nnUNet26.1M87.5183.31
MobileViT-s10.7M82.5780.12
Ours1.39M87.2883.23

在超声(BUS)、皮肤镜(ISIC)等数据集平均IoU达81.67%,超越轻量医学模型UNeXt 4.14%

4.2 3D体积分割

在这里插入图片描述

模型Dice↑HD95↓(mm)参数量
SegMamba74.0313.9565.18M
Ours-3D74.689.9811.06M

在BTCV多器官分割中,胆囊分割Dice达69.35%(比SOTA↑7.8%)

4.3 零样本泛化

在这里插入图片描述
在这里插入图片描述

跨设备/中心测试:

  • BUSI→BUS迁移IoU 78.19%(比ERDUnet↑6.44%)
  • 甲状腺结节分割TUCC数据集F1达71.44%

5. 总结与展望

创新价值

  1. 首次实现医疗ViT的移动端部署(Jetson Nano实测51FPS)
  2. 提出信息密度自适应的大核设计范式
  3. 开源模型支持超声/CT/皮肤镜等多模态

未来方向

  • 扩展至实时视频分割
  • 结合LLM实现语义辅助分割
  • 探索Mamba架构的混合设计

代码已开源:https://github.com/FengheTan9/Mobile-U-ViT


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值