Python爬虫实战:从零构建完整项目(数据采集+存储+异常处理)

Python爬虫实战:从零构建完整项目(数据采集+存储+异常处理)

爬虫不是简单的请求+解析,而是一个系统工程。本文将带你体验企业级爬虫开发的核心流程。

一、前言:为什么需要完整的爬虫项目?

作为初学者,你可能写过一些单文件的爬虫脚本,但当面对真实复杂的网络环境、海量数据存储需求及各种突发异常时,这些脚本往往脆弱不堪。真正的爬虫项目,是网络请求、数据解析、持久化存储和健壮性设计的交响乐。本次我们将综合运用Python核心技术,构建一个可投入生产环境的爬虫系统。

二、项目目标与技术栈

项目目标:爬取图书网站(以豆瓣读书为例)的书籍信息,包含:

  • 书名
  • 作者
  • 评分
  • 价格
  • ISBN
  • 简介

技术栈

  • 网络请求requests (处理HTTP请求/响应)
  • 数据解析BeautifulSoup4 (HTML解析)
  • 数据存储SQLite3 (轻量级数据库)
  • 异常处理:Python内置异常机制 + 自定义重试
  • 辅助工具logging (日志记录), time (速率控制)

三、环境搭建(新手友好)

# 创建虚拟环境(可选但推荐)
python -m venv spider-env
source spider-env/bin/activate  # Linux/Mac
spider-env\Scripts\activate    # Windows

# 安装核心库
pip install requests beautifulsoup4

📌 重要提示:真实项目中务必添加 requirements.txt 管理依赖!

四、分步构建爬虫系统

4.1 数据采集模块:与网络对话

核心任务:稳定获取目标网页内容

import requests
from fake_useragent import UserAgent  # pip install fake-useragent

def fetch_page(url, retries=3):
    """
    获取网页内容,含简单重试机制
    :param url: 目标URL
    :param retries: 最大重试次数
    :return: HTML内容 (str) 或 None
    """
    headers = {
   
   'User-Agent': UserAgent().random}  # 动态生成UA
    
    for attempt in range(retries):
        try:
            response = requests.get(url, headers=headers, timeout=10)
            response.raise_for_status()  # 自动抛出HTTP错误
            return response.text
        except (requests.exceptions.RequestException, 
                requests.exceptions.Timeout) as e:
            print(f"请求失败 (尝试 {
     
     attempt+1}/{
     
     retries}): {
     
     e}")
            time.sleep(2 ** attempt)  # 指数退避策略
    return None

关键技术解析

  1. User-Agent轮换:绕过基础反爬
  2. timeout设置:防止请求阻塞
  3. raise_for_status():自动处理HTTP状态码(404, 500等)
  4. 指数退避重试:网络波动时的自愈能力

4.2 数据解析模块:从混沌中提取信息

核心任务:精准抽取目标数据

from bs4 import BeautifulSoup

def parse_book_page(html)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值