《骑马修栅栏》

描述

农民John每年有很多栅栏要修理。
他总是骑着马穿过每一个栅栏并修复它破损的地方。
John是一个与其他农民一样懒的人。
他讨厌骑马,因此从来不两次经过一个栅栏。
你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。
John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。
每一个栅栏连接两个顶点,顶点用 1 到 500 标号(虽然有的农场并没有 500 个顶点)。
一个顶点上可连接任意多( ≥1 )个栅栏。
所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。
你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。
我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一个数较小的,如果还有多组解,输出第二个数较小的,等等)。
输入数据保证至少有一个解。

输入描述

第 1 行:一个整数 F,表示栅栏的数目;
第 2 到 F+1 行:每行两个整数 i,j 表示这条栅栏连接 i 与 j 号顶点。

输出描述

输出应当有 F+1 行,每行一个整数,依次表示路径经过的顶点号。
注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。

样例输入 1 

9
1 2
2 3
3 4
4 2
4 5
2 5
5 6
5 7
4 6

样例输出 1 

1
2
3
4
2
5
4
6
5
7

提示

【数据范围】
对于100%的数据,1≤F≤1024 , 1≤i,j≤500。

#include<bits/stdc++.h>
using namespace std;
#define N 505
#define M 1050
struct Node
{
	int v, e;
	Node(){}
	Node(int a, int b):v(a), e(b){}
};
int n, m, beg[N], deg[N];
bool vis[M];
vector<Node> g[N];
stack<int> stk;
bool cmp(Node a, Node b)
{
	return a.v < b.v;
}
void dfs(int u)
{
    for(int &i = beg[u]; i < g[u].size(); ++i)
    {
    	int v = g[u][i].v, e = g[u][i].e;
        if(vis[e] == false)
        {
            vis[e] = true;
            dfs(v);
        }
    }
    stk.push(u);
}
int main()
{
    int f, t, st = 1;
    cin >> m;
    for(int i = 1; i <= m; ++i)
    {
        cin >> f >> t;
        n = max(n, max(f, t));
        g[f].push_back(Node(t, i));
        g[t].push_back(Node(f, i));
        deg[f]++;
        deg[t]++;
    }
    for(int v = 1; v <= n; ++v)
    	sort(g[v].begin(), g[v].end(), cmp);
    for(int v = 1; v <= n; ++v)
    {
        if(deg[v] % 2 == 1)
        {
            st = v;
            break;
        }
    }
    dfs(st);
    while(stk.empty() == false)
    {
        cout << stk.top() << endl;
        stk.pop();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值