描述
农民John每年有很多栅栏要修理。
他总是骑着马穿过每一个栅栏并修复它破损的地方。
John是一个与其他农民一样懒的人。
他讨厌骑马,因此从来不两次经过一个栅栏。
你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。
John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。
每一个栅栏连接两个顶点,顶点用 1 到 500 标号(虽然有的农场并没有 500 个顶点)。
一个顶点上可连接任意多( ≥1 )个栅栏。
所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。
你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。
我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一个数较小的,如果还有多组解,输出第二个数较小的,等等)。
输入数据保证至少有一个解。
输入描述
第 1 行:一个整数 F,表示栅栏的数目;
第 2 到 F+1 行:每行两个整数 i,j 表示这条栅栏连接 i 与 j 号顶点。
输出描述
输出应当有 F+1 行,每行一个整数,依次表示路径经过的顶点号。
注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。
样例输入 1
9 1 2 2 3 3 4 4 2 4 5 2 5 5 6 5 7 4 6
样例输出 1
1 2 3 4 2 5 4 6 5 7
提示
【数据范围】
对于100%的数据,1≤F≤1024 , 1≤i,j≤500。
#include<bits/stdc++.h>
using namespace std;
#define N 505
#define M 1050
struct Node
{
int v, e;
Node(){}
Node(int a, int b):v(a), e(b){}
};
int n, m, beg[N], deg[N];
bool vis[M];
vector<Node> g[N];
stack<int> stk;
bool cmp(Node a, Node b)
{
return a.v < b.v;
}
void dfs(int u)
{
for(int &i = beg[u]; i < g[u].size(); ++i)
{
int v = g[u][i].v, e = g[u][i].e;
if(vis[e] == false)
{
vis[e] = true;
dfs(v);
}
}
stk.push(u);
}
int main()
{
int f, t, st = 1;
cin >> m;
for(int i = 1; i <= m; ++i)
{
cin >> f >> t;
n = max(n, max(f, t));
g[f].push_back(Node(t, i));
g[t].push_back(Node(f, i));
deg[f]++;
deg[t]++;
}
for(int v = 1; v <= n; ++v)
sort(g[v].begin(), g[v].end(), cmp);
for(int v = 1; v <= n; ++v)
{
if(deg[v] % 2 == 1)
{
st = v;
break;
}
}
dfs(st);
while(stk.empty() == false)
{
cout << stk.top() << endl;
stk.pop();
}
return 0;
}